TY - JOUR
AB - We study the ground state of a dilute Bose gas in a scaling limit where the Gross-Pitaevskii functional emerges. This is a repulsive nonlinear Schrödinger functional whose quartic term is proportional to the scattering length of the interparticle interaction potential. We propose a new derivation of this limit problem, with a method that bypasses some of the technical difficulties that previous derivations had to face. The new method is based on a combination of Dyson\'s lemma, the quantum de Finetti theorem and a second moment estimate for ground states of the effective Dyson Hamiltonian. It applies equally well to the case where magnetic fields or rotation are present.
AU - Nam, Phan
AU - Rougerie, Nicolas
AU - Seiringer, Robert
ID - 1143
IS - 2
JF - Analysis and PDE
TI - Ground states of large bosonic systems: The gross Pitaevskii limit revisited
VL - 9
ER -
TY - JOUR
AB - We study the spectrum of a large system of N identical bosons interacting via a two-body potential with strength 1/N. In this mean-field regime, Bogoliubov's theory predicts that the spectrum of the N-particle Hamiltonian can be approximated by that of an effective quadratic Hamiltonian acting on Fock space, which describes the fluctuations around a condensed state. Recently, Bogoliubov's theory has been justified rigorously in the case that the low-energy eigenvectors of the N-particle Hamiltonian display complete condensation in the unique minimizer of the corresponding Hartree functional. In this paper, we shall justify Bogoliubov's theory for the high-energy part of the spectrum of the N-particle Hamiltonian corresponding to (non-linear) excited states of the Hartree functional. Moreover, we shall extend the existing results on the excitation spectrum to the case of non-uniqueness and/or degeneracy of the Hartree minimizer. In particular, the latter covers the case of rotating Bose gases, when the rotation speed is large enough to break the symmetry and to produce multiple quantized vortices in the Hartree minimizer.
AU - Nam, Phan
AU - Seiringer, Robert
ID - 2085
IS - 2
JF - Archive for Rational Mechanics and Analysis
TI - Collective excitations of Bose gases in the mean-field regime
VL - 215
ER -
TY - JOUR
AB - We prove that nonlinear Gibbs measures can be obtained from the corresponding many-body, grand-canonical, quantum Gibbs states, in a mean-field limit where the temperature T diverges and the interaction strength behaves as 1/T. We proceed by characterizing the interacting Gibbs state as minimizing a functional counting the free-energy relatively to the non-interacting case. We then perform an infinite-dimensional analogue of phase-space semiclassical analysis, using fine properties of the quantum relative entropy, the link between quantum de Finetti measures and upper/lower symbols in a coherent state basis, as well as Berezin-Lieb type inequalities. Our results cover the measure built on the defocusing nonlinear Schrödinger functional on a finite interval, as well as smoother interactions in dimensions d 2.
AU - Lewin, Mathieu
AU - Phan Thanh, Nam
AU - Rougerie, Nicolas
ID - 473
JF - Journal de l'Ecole Polytechnique - Mathematiques
TI - Derivation of nonlinear gibbs measures from many-body quantum mechanics
VL - 2
ER -
TY - JOUR
AB - We consider the quantum ferromagnetic Heisenberg model in three dimensions, for all spins S ≥ 1/2. We rigorously prove the validity of the spin-wave approximation for the excitation spectrum, at the level of the first non-trivial contribution to the free energy at low temperatures. Our proof comes with explicit, constructive upper and lower bounds on the error term. It uses in an essential way the bosonic formulation of the model in terms of the Holstein-Primakoff representation. In this language, the model describes interacting bosons with a hard-core on-site repulsion and a nearest-neighbor attraction. This attractive interaction makes the lower bound on the free energy particularly tricky: the key idea there is to prove a differential inequality for the two-particle density, which is thereby shown to be smaller than the probability density of a suitably weighted two-particle random process on the lattice.
AU - Correggi, Michele
AU - Giuliani, Alessandro
AU - Seiringer, Robert
ID - 1572
IS - 1
JF - Communications in Mathematical Physics
TI - Validity of the spin-wave approximation for the free energy of the Heisenberg ferromagnet
VL - 339
ER -
TY - JOUR
AB - We present a new, simpler proof of the unconditional uniqueness of solutions to the cubic Gross-Pitaevskii hierarchy in ℝ3. One of the main tools in our analysis is the quantum de Finetti theorem. Our uniqueness result is equivalent to the one established in the celebrated works of Erdos, Schlein, and Yau.
AU - Chen, Thomas
AU - Hainzl, Christian
AU - Pavlović, Nataša
AU - Seiringer, Robert
ID - 1573
IS - 10
JF - Communications on Pure and Applied Mathematics
TI - Unconditional uniqueness for the cubic gross pitaevskii hierarchy via quantum de finetti
VL - 68
ER -