TY - GEN
AB - We derive rigorously the leading order of the correlation energy of a Fermi
gas in a scaling regime of high density and weak interaction. The result
verifies the prediction of the random-phase approximation. Our proof refines
the method of collective bosonization in three dimensions. We approximately
diagonalize an effective Hamiltonian describing approximately bosonic
collective excitations around the Hartree-Fock state, while showing that
gapless and non-collective excitations have only a negligible effect on the
ground state energy.
AU - Benedikter, Niels P
AU - Nam, Phan Thành
AU - Porta, Marcello
AU - Schlein, Benjamin
AU - Seiringer, Robert
ID - 7901
T2 - arXiv
TI - Correlation energy of a weakly interacting Fermi gas
ER -
TY - JOUR
AB - While Hartree–Fock theory is well established as a fundamental approximation for interacting fermions, it has been unclear how to describe corrections to it due to many-body correlations. In this paper we start from the Hartree–Fock state given by plane waves and introduce collective particle–hole pair excitations. These pairs can be approximately described by a bosonic quadratic Hamiltonian. We use Bogoliubov theory to construct a trial state yielding a rigorous Gell-Mann–Brueckner–type upper bound to the ground state energy. Our result justifies the random-phase approximation in the mean-field scaling regime, for repulsive, regular interaction potentials.
AU - Benedikter, Niels P
AU - Nam, Phan Thành
AU - Porta, Marcello
AU - Schlein, Benjamin
AU - Seiringer, Robert
ID - 6649
JF - Communications in Mathematical Physics
SN - 0010-3616
TI - Optimal upper bound for the correlation energy of a Fermi gas in the mean-field regime
VL - 374
ER -
TY - JOUR
AB - We consider an interacting, dilute Bose gas trapped in a harmonic potential at a positive temperature. The system is analyzed in a combination of a thermodynamic and a Gross–Pitaevskii (GP) limit where the trap frequency ω, the temperature T, and the particle number N are related by N∼ (T/ ω) 3→ ∞ while the scattering length is so small that the interaction energy per particle around the center of the trap is of the same order of magnitude as the spectral gap in the trap. We prove that the difference between the canonical free energy of the interacting gas and the one of the noninteracting system can be obtained by minimizing the GP energy functional. We also prove Bose–Einstein condensation in the following sense: The one-particle density matrix of any approximate minimizer of the canonical free energy functional is to leading order given by that of the noninteracting gas but with the free condensate wavefunction replaced by the GP minimizer.
AU - Deuchert, Andreas
AU - Seiringer, Robert
AU - Yngvason, Jakob
ID - 80
IS - 2
JF - Communications in Mathematical Physics
TI - Bose–Einstein condensation in a dilute, trapped gas at positive temperature
VL - 368
ER -
TY - JOUR
AU - Jaksic, Vojkan
AU - Seiringer, Robert
ID - 7226
IS - 12
JF - Journal of Mathematical Physics
SN - 00222488
TI - Introduction to the Special Collection: International Congress on Mathematical Physics (ICMP) 2018
VL - 60
ER -
TY - JOUR
AB - We consider Bose gases consisting of N particles trapped in a box with volume one and interacting through a repulsive potential with scattering length of order N−1 (Gross–Pitaevskii regime). We determine the ground state energy and the low-energy excitation spectrum, up to errors vanishing as N→∞. Our results confirm Bogoliubov’s predictions.
AU - Boccato, Chiara
AU - Brennecke, Christian
AU - Cenatiempo, Serena
AU - Schlein, Benjamin
ID - 7413
IS - 2
JF - Acta Mathematica
SN - 0001-5962
TI - Bogoliubov theory in the Gross–Pitaevskii limit
VL - 222
ER -