TY - JOUR
AB - Following an earlier calculation in 3D, we calculate the 2D critical temperature of a dilute, translation-invariant Bose gas using a variational formulation of the Bogoliubov approximation introduced by Critchley and Solomon in 1976. This provides the first analytical calculation of the Kosterlitz-Thouless transition temperature that includes the constant in the logarithm.
AU - Napiórkowski, Marcin M
AU - Reuvers, Robin
AU - Solovej, Jan
ID - 399
IS - 1
JF - EPL
TI - Calculation of the critical temperature of a dilute Bose gas in the Bogoliubov approximation
VL - 121
ER -
TY - JOUR
AB - We consider the two-dimensional BCS functional with a radial pair interaction. We show that the translational symmetry is not broken in a certain temperature interval below the critical temperature. In the case of vanishing angular momentum, our results carry over to the three-dimensional case.
AU - Deuchert, Andreas
AU - Geisinge, Alissa
AU - Hainzl, Christian
AU - Loss, Michael
ID - 400
IS - 5
JF - Annales Henri Poincare
TI - Persistence of translational symmetry in the BCS model with radial pair interaction
VL - 19
ER -
TY - JOUR
AB - We prove that in Thomas–Fermi–Dirac–von Weizsäcker theory, a nucleus of charge Z > 0 can bind at most Z + C electrons, where C is a universal constant. This result is obtained through a comparison with Thomas-Fermi theory which, as a by-product, gives bounds on the screened nuclear potential and the radius of the minimizer. A key ingredient of the proof is a novel technique to control the particles in the exterior region, which also applies to the liquid drop model with a nuclear background potential.
AU - Frank, Rupert
AU - Phan Thanh, Nam
AU - Van Den Bosch, Hanne
ID - 446
IS - 3
JF - Communications on Pure and Applied Mathematics
TI - The ionization conjecture in Thomas–Fermi–Dirac–von Weizsäcker theory
VL - 71
ER -
TY - JOUR
AB - The derivation of effective evolution equations is central to the study of non-stationary quantum many-body systems, and widely used in contexts such as superconductivity, nuclear physics, Bose–Einstein condensation and quantum chemistry. We reformulate the Dirac–Frenkel approximation principle in terms of reduced density matrices and apply it to fermionic and bosonic many-body systems. We obtain the Bogoliubov–de Gennes and Hartree–Fock–Bogoliubov equations, respectively. While we do not prove quantitative error estimates, our formulation does show that the approximation is optimal within the class of quasifree states. Furthermore, we prove well-posedness of the Bogoliubov–de Gennes equations in energy space and discuss conserved quantities
AU - Benedikter, Niels P
AU - Sok, Jérémy
AU - Solovej, Jan
ID - 455
IS - 4
JF - Annales Henri Poincare
TI - The Dirac–Frenkel principle for reduced density matrices and the Bogoliubov–de Gennes equations
VL - 19
ER -
TY - JOUR
AB - We study the norm approximation to the Schrödinger dynamics of N bosons in with an interaction potential of the form . Assuming that in the initial state the particles outside of the condensate form a quasi-free state with finite kinetic energy, we show that in the large N limit, the fluctuations around the condensate can be effectively described using Bogoliubov approximation for all . The range of β is expected to be optimal for this large class of initial states.
AU - Nam, Phan
AU - Napiórkowski, Marcin M
ID - 739
IS - 5
JF - Journal de Mathématiques Pures et Appliquées
SN - 00217824
TI - A note on the validity of Bogoliubov correction to mean field dynamics
VL - 108
ER -
TY - JOUR
AB - We prove that a system of N fermions interacting with an additional particle via point interactions is stable if the ratio of the mass of the additional particle to the one of the fermions is larger than some critical m*. The value of m* is independent of N and turns out to be less than 1. This fact has important implications for the stability of the unitary Fermi gas. We also characterize the domain of the Hamiltonian of this model, and establish the validity of the Tan relations for all wave functions in the domain.
AU - Moser, Thomas
AU - Seiringer, Robert
ID - 741
IS - 1
JF - Communications in Mathematical Physics
SN - 00103616
TI - Stability of a fermionic N+1 particle system with point interactions
VL - 356
ER -
TY - JOUR
AB - We consider the dynamics of a large quantum system of N identical bosons in 3D interacting via a two-body potential of the form N3β-1w(Nβ(x - y)). For fixed 0 = β < 1/3 and large N, we obtain a norm approximation to the many-body evolution in the Nparticle Hilbert space. The leading order behaviour of the dynamics is determined by Hartree theory while the second order is given by Bogoliubov theory.
AU - Nam, Phan
AU - Napiórkowski, Marcin M
ID - 484
IS - 3
JF - Advances in Theoretical and Mathematical Physics
SN - 10950761
TI - Bogoliubov correction to the mean-field dynamics of interacting bosons
VL - 21
ER -
TY - JOUR
AB - We consider a 2D quantum system of N bosons in a trapping potential |x|s, interacting via a pair potential of the form N2β−1 w(Nβ x). We show that for all 0 < β < (s + 1)/(s + 2), the leading order behavior of ground states of the many-body system is described in the large N limit by the corresponding cubic nonlinear Schrödinger energy functional. Our result covers the focusing case (w < 0) where even the stability of the many-body system is not obvious. This answers an open question mentioned by X. Chen and J. Holmer for harmonic traps (s = 2). Together with the BBGKY hierarchy approach used by these authors, our result implies the convergence of the many-body quantum dynamics to the focusing NLS equation with harmonic trap for all 0 < β < 3/4.
AU - Lewin, Mathieu
AU - Nam, Phan
AU - Rougerie, Nicolas
ID - 632
IS - 6
JF - Proceedings of the American Mathematical Society
TI - A note on 2D focusing many boson systems
VL - 145
ER -
TY - JOUR
AB - We study the ionization problem in the Thomas-Fermi-Dirac-von Weizsäcker theory for atoms and molecules. We prove the nonexistence of minimizers for the energy functional when the number of electrons is large and the total nuclear charge is small. This nonexistence result also applies to external potentials decaying faster than the Coulomb potential. In the case of arbitrary nuclear charges, we obtain the nonexistence of stable minimizers and radial minimizers.
AU - Nam, Phan
AU - Van Den Bosch, Hanne
ID - 1079
IS - 2
JF - Mathematical Physics, Analysis and Geometry
SN - 13850172
TI - Nonexistence in Thomas Fermi-Dirac-von Weizsäcker theory with small nuclear charges
VL - 20
ER -
TY - JOUR
AB - The existence of a self-localization transition in the polaron problem has been under an active debate ever since Landau suggested it 83 years ago. Here we reveal the self-localization transition for the rotational analogue of the polaron -- the angulon quasiparticle. We show that, unlike for the polarons, self-localization of angulons occurs at finite impurity-bath coupling already at the mean-field level. The transition is accompanied by the spherical-symmetry breaking of the angulon ground state and a discontinuity in the first derivative of the ground-state energy. Moreover, the type of the symmetry breaking is dictated by the symmetry of the microscopic impurity-bath interaction, which leads to a number of distinct self-localized states. The predicted effects can potentially be addressed in experiments on cold molecules trapped in superfluid helium droplets and ultracold quantum gases, as well as on electronic excitations in solids and Bose-Einstein condensates.
AU - Li, Xiang
AU - Seiringer, Robert
AU - Lemeshko, Mikhail
ID - 1120
IS - 3
JF - Physical Review A
SN - 24699926
TI - Angular self-localization of impurities rotating in a bosonic bath
VL - 95
ER -