TY - JOUR
AB - In this paper we define and study the classical Uniform Electron Gas (UEG), a system of infinitely many electrons whose density is constant everywhere in space. The UEG is defined differently from Jellium, which has a positive constant background but no constraint on the density. We prove that the UEG arises in Density Functional Theory in the limit of a slowly varying density, minimizing the indirect Coulomb energy. We also construct the quantum UEG and compare it to the classical UEG at low density.
AU - Lewi, Mathieu
AU - Lieb, Élliott
AU - Seiringer, Robert
ID - 180
JF - Journal de l'Ecole Polytechnique - Mathematiques
TI - Statistical mechanics of the uniform electron gas
VL - 5
ER -
TY - JOUR
AB - We prove upper and lower bounds on the ground-state energy of the ideal two-dimensional anyon gas. Our bounds are extensive in the particle number, as for fermions, and linear in the statistics parameter (Formula presented.). The lower bounds extend to Lieb–Thirring inequalities for all anyons except bosons.
AU - Lundholm, Douglas
AU - Seiringer, Robert
ID - 295
IS - 11
JF - Letters in Mathematical Physics
TI - Fermionic behavior of ideal anyons
VL - 108
ER -
TY - JOUR
AB - The derivation of effective evolution equations is central to the study of non-stationary quantum many-body systems, and widely used in contexts such as superconductivity, nuclear physics, Bose–Einstein condensation and quantum chemistry. We reformulate the Dirac–Frenkel approximation principle in terms of reduced density matrices and apply it to fermionic and bosonic many-body systems. We obtain the Bogoliubov–de Gennes and Hartree–Fock–Bogoliubov equations, respectively. While we do not prove quantitative error estimates, our formulation does show that the approximation is optimal within the class of quasifree states. Furthermore, we prove well-posedness of the Bogoliubov–de Gennes equations in energy space and discuss conserved quantities
AU - Benedikter, Niels P
AU - Sok, Jérémy
AU - Solovej, Jan
ID - 455
IS - 4
JF - Annales Henri Poincare
TI - The Dirac–Frenkel principle for reduced density matrices and the Bogoliubov–de Gennes equations
VL - 19
ER -
TY - JOUR
AB - Following an earlier calculation in 3D, we calculate the 2D critical temperature of a dilute, translation-invariant Bose gas using a variational formulation of the Bogoliubov approximation introduced by Critchley and Solomon in 1976. This provides the first analytical calculation of the Kosterlitz-Thouless transition temperature that includes the constant in the logarithm.
AU - Napiórkowski, Marcin M
AU - Reuvers, Robin
AU - Solovej, Jan
ID - 399
IS - 1
JF - EPL
TI - Calculation of the critical temperature of a dilute Bose gas in the Bogoliubov approximation
VL - 121
ER -
TY - JOUR
AB - We consider the two-dimensional BCS functional with a radial pair interaction. We show that the translational symmetry is not broken in a certain temperature interval below the critical temperature. In the case of vanishing angular momentum, our results carry over to the three-dimensional case.
AU - Deuchert, Andreas
AU - Geisinge, Alissa
AU - Hainzl, Christian
AU - Loss, Michael
ID - 400
IS - 5
JF - Annales Henri Poincare
TI - Persistence of translational symmetry in the BCS model with radial pair interaction
VL - 19
ER -
TY - JOUR
AB - We prove that in Thomas–Fermi–Dirac–von Weizsäcker theory, a nucleus of charge Z > 0 can bind at most Z + C electrons, where C is a universal constant. This result is obtained through a comparison with Thomas-Fermi theory which, as a by-product, gives bounds on the screened nuclear potential and the radius of the minimizer. A key ingredient of the proof is a novel technique to control the particles in the exterior region, which also applies to the liquid drop model with a nuclear background potential.
AU - Frank, Rupert
AU - Phan Thanh, Nam
AU - Van Den Bosch, Hanne
ID - 446
IS - 3
JF - Communications on Pure and Applied Mathematics
TI - The ionization conjecture in Thomas–Fermi–Dirac–von Weizsäcker theory
VL - 71
ER -
TY - JOUR
AB - We give a lower bound on the ground state energy of a system of two fermions of one species interacting with two fermions of another species via point interactions. We show that there is a critical mass ratio m2 ≈ 0.58 such that the system is stable, i.e., the energy is bounded from below, for m∈[m2,m2−1]. So far it was not known whether this 2 + 2 system exhibits a stable region at all or whether the formation of four-body bound states causes an unbounded spectrum for all mass ratios, similar to the Thomas effect. Our result gives further evidence for the stability of the more general N + M system.
AU - Moser, Thomas
AU - Seiringer, Robert
ID - 154
IS - 3
JF - Mathematical Physics Analysis and Geometry
SN - 13850172
TI - Stability of the 2+2 fermionic system with point interactions
VL - 21
ER -
TY - JOUR
AB - We analyse the canonical Bogoliubov free energy functional in three dimensions at low temperatures in the dilute limit. We prove existence of a first-order phase transition and, in the limit (Formula presented.), we determine the critical temperature to be (Formula presented.) to leading order. Here, (Formula presented.) is the critical temperature of the free Bose gas, ρ is the density of the gas and a is the scattering length of the pair-interaction potential V. We also prove asymptotic expansions for the free energy. In particular, we recover the Lee–Huang–Yang formula in the limit (Formula presented.).
AU - Napiórkowski, Marcin M
AU - Reuvers, Robin
AU - Solovej, Jan
ID - 554
IS - 1
JF - Communications in Mathematical Physics
SN - 00103616
TI - The Bogoliubov free energy functional II: The dilute Limit
VL - 360
ER -
TY - JOUR
AB - We study a quantum impurity possessing both translational and internal rotational degrees of freedom interacting with a bosonic bath. Such a system corresponds to a “rotating polaron,” which can be used to model, e.g., a rotating molecule immersed in an ultracold Bose gas or superfluid helium. We derive the Hamiltonian of the rotating polaron and study its spectrum in the weak- and strong-coupling regimes using a combination of variational, diagrammatic, and mean-field approaches. We reveal how the coupling between linear and angular momenta affects stable quasiparticle states, and demonstrate that internal rotation leads to an enhanced self-localization in the translational degrees of freedom.
AU - Yakaboylu, Enderalp
AU - Midya, Bikashkali
AU - Deuchert, Andreas
AU - Leopold, Nikolai K
AU - Lemeshko, Mikhail
ID - 5983
IS - 22
JF - Physical Review B
SN - 2469-9950
TI - Theory of the rotating polaron: Spectrum and self-localization
VL - 98
ER -
TY - JOUR
AB - The Bogoliubov free energy functional is analysed. The functional serves as a model of a translation-invariant Bose gas at positive temperature. We prove the existence of minimizers in the case of repulsive interactions given by a sufficiently regular two-body potential. Furthermore, we prove the existence of a phase transition in this model and provide its phase diagram.
AU - Napiórkowski, Marcin M
AU - Reuvers, Robin
AU - Solovej, Jan Philip
ID - 6002
IS - 3
JF - Archive for Rational Mechanics and Analysis
SN - 0003-9527
TI - The Bogoliubov free energy functional I: Existence of minimizers and phase diagram
VL - 229
ER -