TY - JOUR
AB - We consider systems of bosons trapped in a box, in the Gross–Pitaevskii regime. We show that low-energy states exhibit complete Bose–Einstein condensation with an optimal bound on the number of orthogonal excitations. This extends recent results obtained in Boccato et al. (Commun Math Phys 359(3):975–1026, 2018), removing the assumption of small interaction potential.
AU - Boccato, Chiara
AU - Brennecke, Christian
AU - Cenatiempo, Serena
AU - Schlein, Benjamin
ID - 6906
JF - Communications in Mathematical Physics
SN - 0010-3616
TI - Optimal rate for Bose-Einstein condensation in the Gross-Pitaevskii regime
ER -
TY - JOUR
AB - We modify the "floating crystal" trial state for the classical homogeneous electron gas (also known as jellium), in order to suppress the boundary charge fluctuations that are known to lead to a macroscopic increase of the energy. The argument is to melt a thin layer of the crystal close to the boundary and consequently replace it by an incompressible fluid. With the aid of this trial state we show that three different definitions of the ground-state energy of jellium coincide. In the first point of view the electrons are placed in a neutralizing uniform background. In the second definition there is no background but the electrons are submitted to the constraint that their density is constant, as is appropriate in density functional theory. Finally, in the third system each electron interacts with a periodic image of itself; that is, periodic boundary conditions are imposed on the interaction potential.
AU - Lewin, Mathieu
AU - Lieb, Elliott H.
AU - Seiringer, Robert
ID - 7015
IS - 3
JF - Physical Review B
SN - 2469-9950
TI - Floating Wigner crystal with no boundary charge fluctuations
VL - 100
ER -
TY - JOUR
AB - We present microscopic derivations of the defocusing two-dimensional cubic nonlinear Schrödinger equation and the Gross–Pitaevskii equation starting froman interacting N-particle system of bosons. We consider the interaction potential to be given either by Wβ(x)=N−1+2βW(Nβx), for any β>0, or to be given by VN(x)=e2NV(eNx), for some spherical symmetric, nonnegative and compactly supported W,V∈L∞(R2,R). In both cases we prove the convergence of the reduced density corresponding to the exact time evolution to the projector onto the solution of the corresponding nonlinear Schrödinger equation in trace norm. For the latter potential VN we show that it is crucial to take the microscopic structure of the condensate into account in order to obtain the correct dynamics.
AU - Jeblick, Maximilian
AU - Leopold, Nikolai K
AU - Pickl, Peter
ID - 7100
IS - 1
JF - Communications in Mathematical Physics
SN - 0010-3616
TI - Derivation of the time dependent Gross–Pitaevskii equation in two dimensions
VL - 372
ER -
TY - JOUR
AB - We consider an interacting, dilute Bose gas trapped in a harmonic potential at a positive temperature. The system is analyzed in a combination of a thermodynamic and a Gross–Pitaevskii (GP) limit where the trap frequency ω, the temperature T, and the particle number N are related by N∼ (T/ ω) 3→ ∞ while the scattering length is so small that the interaction energy per particle around the center of the trap is of the same order of magnitude as the spectral gap in the trap. We prove that the difference between the canonical free energy of the interacting gas and the one of the noninteracting system can be obtained by minimizing the GP energy functional. We also prove Bose–Einstein condensation in the following sense: The one-particle density matrix of any approximate minimizer of the canonical free energy functional is to leading order given by that of the noninteracting gas but with the free condensate wavefunction replaced by the GP minimizer.
AU - Deuchert, Andreas
AU - Seiringer, Robert
AU - Yngvason, Jakob
ID - 80
IS - 2
JF - Communications in Mathematical Physics
TI - Bose–Einstein condensation in a dilute, trapped gas at positive temperature
VL - 368
ER -
TY - JOUR
AB - Following an earlier calculation in 3D, we calculate the 2D critical temperature of a dilute, translation-invariant Bose gas using a variational formulation of the Bogoliubov approximation introduced by Critchley and Solomon in 1976. This provides the first analytical calculation of the Kosterlitz-Thouless transition temperature that includes the constant in the logarithm.
AU - Napiórkowski, Marcin M
AU - Reuvers, Robin
AU - Solovej, Jan
ID - 399
IS - 1
JF - EPL
TI - Calculation of the critical temperature of a dilute Bose gas in the Bogoliubov approximation
VL - 121
ER -
TY - JOUR
AB - We consider the two-dimensional BCS functional with a radial pair interaction. We show that the translational symmetry is not broken in a certain temperature interval below the critical temperature. In the case of vanishing angular momentum, our results carry over to the three-dimensional case.
AU - Deuchert, Andreas
AU - Geisinge, Alissa
AU - Hainzl, Christian
AU - Loss, Michael
ID - 400
IS - 5
JF - Annales Henri Poincare
TI - Persistence of translational symmetry in the BCS model with radial pair interaction
VL - 19
ER -
TY - JOUR
AB - We prove that in Thomas–Fermi–Dirac–von Weizsäcker theory, a nucleus of charge Z > 0 can bind at most Z + C electrons, where C is a universal constant. This result is obtained through a comparison with Thomas-Fermi theory which, as a by-product, gives bounds on the screened nuclear potential and the radius of the minimizer. A key ingredient of the proof is a novel technique to control the particles in the exterior region, which also applies to the liquid drop model with a nuclear background potential.
AU - Frank, Rupert
AU - Phan Thanh, Nam
AU - Van Den Bosch, Hanne
ID - 446
IS - 3
JF - Communications on Pure and Applied Mathematics
TI - The ionization conjecture in Thomas–Fermi–Dirac–von Weizsäcker theory
VL - 71
ER -
TY - JOUR
AB - The derivation of effective evolution equations is central to the study of non-stationary quantum many-body systems, and widely used in contexts such as superconductivity, nuclear physics, Bose–Einstein condensation and quantum chemistry. We reformulate the Dirac–Frenkel approximation principle in terms of reduced density matrices and apply it to fermionic and bosonic many-body systems. We obtain the Bogoliubov–de Gennes and Hartree–Fock–Bogoliubov equations, respectively. While we do not prove quantitative error estimates, our formulation does show that the approximation is optimal within the class of quasifree states. Furthermore, we prove well-posedness of the Bogoliubov–de Gennes equations in energy space and discuss conserved quantities
AU - Benedikter, Niels P
AU - Sok, Jérémy
AU - Solovej, Jan
ID - 455
IS - 4
JF - Annales Henri Poincare
TI - The Dirac–Frenkel principle for reduced density matrices and the Bogoliubov–de Gennes equations
VL - 19
ER -
TY - THES
AB - In this thesis we will discuss systems of point interacting fermions, their stability and other spectral properties. Whereas for bosons a point interacting system is always unstable this ques- tion is more subtle for a gas of two species of fermions. In particular the answer depends on the mass ratio between these two species. Most of this work will be focused on the N + M model which consists of two species of fermions with N, M particles respectively which interact via point interactions. We will introduce this model using a formal limit and discuss the N + 1 system in more detail. In particular, we will show that for mass ratios above a critical one, which does not depend on the particle number, the N + 1 system is stable. In the context of this model we will prove rigorous versions of Tan relations which relate various quantities of the point-interacting model. By restricting the N + 1 system to a box we define a finite density model with point in- teractions. In the context of this system we will discuss the energy change when introducing a point-interacting impurity into a system of non-interacting fermions. We will see that this change in energy is bounded independently of the particle number and in particular the bound only depends on the density and the scattering length. As another special case of the N + M model we will show stability of the 2 + 2 model for mass ratios in an interval around one. Further we will investigate a different model of point interactions which was discussed before in the literature and which is, contrary to the N + M model, not given by a limiting procedure but is based on a Dirichlet form. We will show that this system behaves trivially in the thermodynamic limit, i.e. the free energy per particle is the same as the one of the non-interacting system.
AU - Moser, Thomas
ID - 52
TI - Point interactions in systems of fermions
ER -
TY - JOUR
AB - We analyse the canonical Bogoliubov free energy functional in three dimensions at low temperatures in the dilute limit. We prove existence of a first-order phase transition and, in the limit (Formula presented.), we determine the critical temperature to be (Formula presented.) to leading order. Here, (Formula presented.) is the critical temperature of the free Bose gas, ρ is the density of the gas and a is the scattering length of the pair-interaction potential V. We also prove asymptotic expansions for the free energy. In particular, we recover the Lee–Huang–Yang formula in the limit (Formula presented.).
AU - Napiórkowski, Marcin M
AU - Reuvers, Robin
AU - Solovej, Jan
ID - 554
IS - 1
JF - Communications in Mathematical Physics
SN - 00103616
TI - The Bogoliubov free energy functional II: The dilute Limit
VL - 360
ER -