@phdthesis{7514,
abstract = {We study the interacting homogeneous Bose gas in two spatial dimensions in the thermodynamic limit at fixed density. We shall be concerned with some mathematical aspects of this complicated problem in many-body quantum mechanics. More specifically, we consider the dilute limit where the scattering length of the interaction potential, which is a measure for the effective range of the potential, is small compared to the average distance between the particles. We are interested in a setting with positive (i.e., non-zero) temperature. After giving a survey of the relevant literature in the field, we provide some facts and examples to set expectations for the two-dimensional system. The crucial difference to the three-dimensional system is that there is no Bose–Einstein condensate at positive temperature due to the Hohenberg–Mermin–Wagner theorem. However, it turns out that an asymptotic formula for the free energy holds similarly to the three-dimensional case.
We motivate this formula by considering a toy model with δ interaction potential. By restricting this model Hamiltonian to certain trial states with a quasi-condensate we obtain an upper bound for the free energy that still has the quasi-condensate fraction as a free parameter. When minimizing over the quasi-condensate fraction, we obtain the Berezinskii–Kosterlitz–Thouless critical temperature for superfluidity, which plays an important role in our rigorous contribution. The mathematically rigorous result that we prove concerns the specific free energy in the dilute limit. We give upper and lower bounds on the free energy in terms of the free energy of the non-interacting system and a correction term coming from the interaction. Both bounds match and thus we obtain the leading term of an asymptotic approximation in the dilute limit, provided the thermal wavelength of the particles is of the same order (or larger) than the average distance between the particles. The remarkable feature of this result is its generality: the correction term depends on the interaction potential only through its scattering length and it holds for all nonnegative interaction potentials with finite scattering length that are measurable. In particular, this allows to model an interaction of hard disks.},
author = {Mayer, Simon},
issn = {2663-337X},
pages = {148},
publisher = {IST Austria},
title = {{The free energy of a dilute two-dimensional Bose gas}},
doi = {10.15479/AT:ISTA:7514},
year = {2020},
}
@article{7508,
abstract = {In this paper, we introduce a novel method for deriving higher order corrections to the mean-field description of the dynamics of interacting bosons. More precisely, we consider the dynamics of N d-dimensional bosons for large N. The bosons initially form a Bose–Einstein condensate and interact with each other via a pair potential of the form (N−1)−1Ndβv(Nβ·)forβ∈[0,14d). We derive a sequence of N-body functions which approximate the true many-body dynamics in L2(RdN)-norm to arbitrary precision in powers of N−1. The approximating functions are constructed as Duhamel expansions of finite order in terms of the first quantised analogue of a Bogoliubov time evolution.},
author = {Bossmann, Lea and Pavlović, Nataša and Pickl, Peter and Soffer, Avy},
issn = {1572-9613},
journal = {Journal of Statistical Physics},
publisher = {Springer Nature},
title = {{Higher order corrections to the mean-field description of the dynamics of interacting bosons}},
doi = {10.1007/s10955-020-02500-8},
year = {2020},
}
@article{7611,
abstract = {We consider a system of N bosons in the limit N→∞, interacting through singular potentials. For initial data exhibiting Bose–Einstein condensation, the many-body time evolution is well approximated through a quadratic fluctuation dynamics around a cubic nonlinear Schrödinger equation of the condensate wave function. We show that these fluctuations satisfy a (multi-variate) central limit theorem.},
author = {Rademacher, Simone Anna Elvira},
issn = {0377-9017},
journal = {Letters in Mathematical Physics},
publisher = {Springer Nature},
title = {{Central limit theorem for Bose gases interacting through singular potentials}},
doi = {10.1007/s11005-020-01286-w},
year = {2020},
}
@article{80,
abstract = {We consider an interacting, dilute Bose gas trapped in a harmonic potential at a positive temperature. The system is analyzed in a combination of a thermodynamic and a Gross–Pitaevskii (GP) limit where the trap frequency ω, the temperature T, and the particle number N are related by N∼ (T/ ω) 3→ ∞ while the scattering length is so small that the interaction energy per particle around the center of the trap is of the same order of magnitude as the spectral gap in the trap. We prove that the difference between the canonical free energy of the interacting gas and the one of the noninteracting system can be obtained by minimizing the GP energy functional. We also prove Bose–Einstein condensation in the following sense: The one-particle density matrix of any approximate minimizer of the canonical free energy functional is to leading order given by that of the noninteracting gas but with the free condensate wavefunction replaced by the GP minimizer.},
author = {Deuchert, Andreas and Seiringer, Robert and Yngvason, Jakob},
journal = {Communications in Mathematical Physics},
number = {2},
pages = {723--776},
publisher = {Springer},
title = {{Bose–Einstein condensation in a dilute, trapped gas at positive temperature}},
doi = {10.1007/s00220-018-3239-0},
volume = {368},
year = {2019},
}
@article{6840,
abstract = {We discuss thermodynamic properties of harmonically trapped
imperfect quantum gases. The spatial inhomogeneity of these systems imposes
a redefinition of the mean-field interparticle potential energy as compared
to the homogeneous case. In our approach, it takes the form a
2N2 ωd, where
N is the number of particles, ω—the harmonic trap frequency, d—system’s
dimensionality, and a is a parameter characterizing the interparticle interaction.
We provide arguments that this model corresponds to the limiting case of
a long-ranged interparticle potential of vanishingly small amplitude. This
conclusion is drawn from a computation similar to the well-known Kac scaling
procedure, which is presented here in a form adapted to the case of an isotropic
harmonic trap. We show that within the model, the imperfect gas of trapped
repulsive bosons undergoes the Bose–Einstein condensation provided d > 1.
The main result of our analysis is that in d = 1 the gas of attractive imperfect
fermions with a = −aF < 0 is thermodynamically equivalent to the gas of
repulsive bosons with a = aB > 0 provided the parameters aF and aB fulfill
the relation aB + aF = . This result supplements similar recent conclusion
about thermodynamic equivalence of two-dimensional (2D) uniform imperfect
repulsive Bose and attractive Fermi gases.},
author = {Mysliwy, Krzysztof and Napiórkowski, Marek},
issn = {1742-5468},
journal = {Journal of Statistical Mechanics: Theory and Experiment},
number = {6},
publisher = {IOP Publishing},
title = {{Thermodynamics of inhomogeneous imperfect quantum gases in harmonic traps}},
doi = {10.1088/1742-5468/ab190d},
volume = {2019},
year = {2019},
}