@article{1493,
abstract = {We introduce a new method for deriving the time-dependent Hartree or Hartree-Fock equations as an effective mean-field dynamics from the microscopic Schrödinger equation for fermionic many-particle systems in quantum mechanics. The method is an adaption of the method used in Pickl (Lett. Math. Phys. 97 (2) 151–164 2011) for bosonic systems to fermionic systems. It is based on a Gronwall type estimate for a suitable measure of distance between the microscopic solution and an antisymmetrized product state. We use this method to treat a new mean-field limit for fermions with long-range interactions in a large volume. Some of our results hold for singular attractive or repulsive interactions. We can also treat Coulomb interaction assuming either a mild singularity cutoff or certain regularity conditions on the solutions to the Hartree(-Fock) equations. In the considered limit, the kinetic and interaction energy are of the same order, while the average force is subleading. For some interactions, we prove that the Hartree(-Fock) dynamics is a more accurate approximation than a simpler dynamics that one would expect from the subleading force. With our method we also treat the mean-field limit coupled to a semiclassical limit, which was discussed in the literature before, and we recover some of the previous results. All results hold for initial data close (but not necessarily equal) to antisymmetrized product states and we always provide explicit rates of convergence.},
author = {Petrat, Sören P and Pickl, Peter},
journal = {Mathematical Physics, Analysis and Geometry},
number = {1},
publisher = {Springer},
title = {{A new method and a new scaling for deriving fermionic mean-field dynamics}},
doi = {10.1007/s11040-016-9204-2},
volume = {19},
year = {2016},
}
@article{1143,
abstract = {We study the ground state of a dilute Bose gas in a scaling limit where the Gross-Pitaevskii functional emerges. This is a repulsive nonlinear Schrödinger functional whose quartic term is proportional to the scattering length of the interparticle interaction potential. We propose a new derivation of this limit problem, with a method that bypasses some of the technical difficulties that previous derivations had to face. The new method is based on a combination of Dyson\'s lemma, the quantum de Finetti theorem and a second moment estimate for ground states of the effective Dyson Hamiltonian. It applies equally well to the case where magnetic fields or rotation are present.},
author = {Nam, Phan and Rougerie, Nicolas and Seiringer, Robert},
journal = {Analysis and PDE},
number = {2},
pages = {459 -- 485},
publisher = {Mathematical Sciences Publishers},
title = {{Ground states of large bosonic systems: The gross Pitaevskii limit revisited}},
doi = {10.2140/apde.2016.9.459},
volume = {9},
year = {2016},
}
@article{2085,
abstract = {We study the spectrum of a large system of N identical bosons interacting via a two-body potential with strength 1/N. In this mean-field regime, Bogoliubov's theory predicts that the spectrum of the N-particle Hamiltonian can be approximated by that of an effective quadratic Hamiltonian acting on Fock space, which describes the fluctuations around a condensed state. Recently, Bogoliubov's theory has been justified rigorously in the case that the low-energy eigenvectors of the N-particle Hamiltonian display complete condensation in the unique minimizer of the corresponding Hartree functional. In this paper, we shall justify Bogoliubov's theory for the high-energy part of the spectrum of the N-particle Hamiltonian corresponding to (non-linear) excited states of the Hartree functional. Moreover, we shall extend the existing results on the excitation spectrum to the case of non-uniqueness and/or degeneracy of the Hartree minimizer. In particular, the latter covers the case of rotating Bose gases, when the rotation speed is large enough to break the symmetry and to produce multiple quantized vortices in the Hartree minimizer. },
author = {Nam, Phan and Seiringer, Robert},
journal = {Archive for Rational Mechanics and Analysis},
number = {2},
pages = {381 -- 417},
publisher = {Springer},
title = {{Collective excitations of Bose gases in the mean-field regime}},
doi = {10.1007/s00205-014-0781-6},
volume = {215},
year = {2015},
}
@article{473,
abstract = {We prove that nonlinear Gibbs measures can be obtained from the corresponding many-body, grand-canonical, quantum Gibbs states, in a mean-field limit where the temperature T diverges and the interaction strength behaves as 1/T. We proceed by characterizing the interacting Gibbs state as minimizing a functional counting the free-energy relatively to the non-interacting case. We then perform an infinite-dimensional analogue of phase-space semiclassical analysis, using fine properties of the quantum relative entropy, the link between quantum de Finetti measures and upper/lower symbols in a coherent state basis, as well as Berezin-Lieb type inequalities. Our results cover the measure built on the defocusing nonlinear Schrödinger functional on a finite interval, as well as smoother interactions in dimensions d 2.},
author = {Lewin, Mathieu and Phan Thanh, Nam and Rougerie, Nicolas},
journal = {Journal de l'Ecole Polytechnique - Mathematiques},
pages = {65 -- 115},
publisher = {Ecole Polytechnique},
title = {{Derivation of nonlinear gibbs measures from many-body quantum mechanics}},
doi = {10.5802/jep.18},
volume = {2},
year = {2015},
}
@article{1572,
abstract = {We consider the quantum ferromagnetic Heisenberg model in three dimensions, for all spins S ≥ 1/2. We rigorously prove the validity of the spin-wave approximation for the excitation spectrum, at the level of the first non-trivial contribution to the free energy at low temperatures. Our proof comes with explicit, constructive upper and lower bounds on the error term. It uses in an essential way the bosonic formulation of the model in terms of the Holstein-Primakoff representation. In this language, the model describes interacting bosons with a hard-core on-site repulsion and a nearest-neighbor attraction. This attractive interaction makes the lower bound on the free energy particularly tricky: the key idea there is to prove a differential inequality for the two-particle density, which is thereby shown to be smaller than the probability density of a suitably weighted two-particle random process on the lattice.
},
author = {Correggi, Michele and Giuliani, Alessandro and Seiringer, Robert},
journal = {Communications in Mathematical Physics},
number = {1},
pages = {279 -- 307},
publisher = {Springer},
title = {{Validity of the spin-wave approximation for the free energy of the Heisenberg ferromagnet}},
doi = {10.1007/s00220-015-2402-0},
volume = {339},
year = {2015},
}