@unpublished{9792, abstract = {This paper establishes new connections between many-body quantum systems, One-body Reduced Density Matrices Functional Theory (1RDMFT) and Optimal Transport (OT), by interpreting the problem of computing the ground-state energy of a finite dimensional composite quantum system at positive temperature as a non-commutative entropy regularized Optimal Transport problem. We develop a new approach to fully characterize the dual-primal solutions in such non-commutative setting. The mathematical formalism is particularly relevant in quantum chemistry: numerical realizations of the many-electron ground state energy can be computed via a non-commutative version of Sinkhorn algorithm. Our approach allows to prove convergence and robustness of this algorithm, which, to our best knowledge, were unknown even in the two marginal case. Our methods are based on careful a priori estimates in the dual problem, which we believe to be of independent interest. Finally, the above results are extended in 1RDMFT setting, where bosonic or fermionic symmetry conditions are enforced on the problem.}, author = {Feliciangeli, Dario and Gerolin, Augusto and Portinale, Lorenzo}, booktitle = {arXiv}, title = {{A non-commutative entropic optimal transport approach to quantum composite systems at positive temperature}}, doi = {10.48550/arXiv.2106.11217}, year = {2021}, } @article{14889, abstract = {We consider the Fröhlich Hamiltonian with large coupling constant α. For initial data of Pekar product form with coherent phonon field and with the electron minimizing the corresponding energy, we provide a norm approximation of the evolution, valid up to times of order α2. The approximation is given in terms of a Pekar product state, evolved through the Landau-Pekar equations, corrected by a Bogoliubov dynamics taking quantum fluctuations into account. This allows us to show that the Landau-Pekar equations approximately describe the evolution of the electron- and one-phonon reduced density matrices under the Fröhlich dynamics up to times of order α2.}, author = {Leopold, Nikolai K and Mitrouskas, David Johannes and Rademacher, Simone Anna Elvira and Schlein, Benjamin and Seiringer, Robert}, issn = {2578-5885}, journal = {Pure and Applied Analysis}, number = {4}, pages = {653--676}, publisher = {Mathematical Sciences Publishers}, title = {{Landau–Pekar equations and quantum fluctuations for the dynamics of a strongly coupled polaron}}, doi = {10.2140/paa.2021.3.653}, volume = {3}, year = {2021}, } @article{14890, abstract = {We consider a system of N interacting bosons in the mean-field scaling regime and construct corrections to the Bogoliubov dynamics that approximate the true N-body dynamics in norm to arbitrary precision. The N-independent corrections are given in terms of the solutions of the Bogoliubov and Hartree equations and satisfy a generalized form of Wick's theorem. We determine the n-point correlation functions of the excitations around the condensate, as well as the reduced densities of the N-body system, to arbitrary accuracy, given only the knowledge of the two-point functions of a quasi-free state and the solution of the Hartree equation. In this way, the complex problem of computing all n-point correlation functions for an interacting N-body system is essentially reduced to the problem of solving the Hartree equation and the PDEs for the Bogoliubov two-point functions.}, author = {Bossmann, Lea and Petrat, Sören P and Pickl, Peter and Soffer, Avy}, issn = {2578-5885}, journal = {Pure and Applied Analysis}, number = {4}, pages = {677--726}, publisher = {Mathematical Sciences Publishers}, title = {{Beyond Bogoliubov dynamics}}, doi = {10.2140/paa.2021.3.677}, volume = {3}, year = {2021}, } @phdthesis{9733, abstract = {This thesis is the result of the research carried out by the author during his PhD at IST Austria between 2017 and 2021. It mainly focuses on the Fröhlich polaron model, specifically to its regime of strong coupling. This model, which is rigorously introduced and discussed in the introduction, has been of great interest in condensed matter physics and field theory for more than eighty years. It is used to describe an electron interacting with the atoms of a solid material (the strength of this interaction is modeled by the presence of a coupling constant α in the Hamiltonian of the system). The particular regime examined here, which is mathematically described by considering the limit α →∞, displays many interesting features related to the emergence of classical behavior, which allows for a simplified effective description of the system under analysis. The properties, the range of validity and a quantitative analysis of the precision of such classical approximations are the main object of the present work. We specify our investigation to the study of the ground state energy of the system, its dynamics and its effective mass. For each of these problems, we provide in the introduction an overview of the previously known results and a detailed account of the original contributions by the author.}, author = {Feliciangeli, Dario}, issn = {2663-337X}, pages = {180}, publisher = {Institute of Science and Technology Austria}, title = {{The polaron at strong coupling}}, doi = {10.15479/at:ista:9733}, year = {2021}, } @unpublished{9791, abstract = {We provide a definition of the effective mass for the classical polaron described by the Landau-Pekar equations. It is based on a novel variational principle, minimizing the energy functional over states with given (initial) velocity. The resulting formula for the polaron's effective mass agrees with the prediction by Landau and Pekar.}, author = {Feliciangeli, Dario and Rademacher, Simone Anna Elvira and Seiringer, Robert}, booktitle = {arXiv}, title = {{The effective mass problem for the Landau-Pekar equations}}, year = {2021}, }