@article{6002,
abstract = {The Bogoliubov free energy functional is analysed. The functional serves as a model of a translation-invariant Bose gas at positive temperature. We prove the existence of minimizers in the case of repulsive interactions given by a sufficiently regular two-body potential. Furthermore, we prove the existence of a phase transition in this model and provide its phase diagram.},
author = {Napiórkowski, Marcin M and Reuvers, Robin and Solovej, Jan Philip},
issn = {0003-9527},
journal = {Archive for Rational Mechanics and Analysis},
number = {3},
pages = {1037--1090},
publisher = {Springer Nature},
title = {{The Bogoliubov free energy functional I: Existence of minimizers and phase diagram}},
doi = {10.1007/s00205-018-1232-6},
volume = {229},
year = {2018},
}
@article{154,
abstract = {We give a lower bound on the ground state energy of a system of two fermions of one species interacting with two fermions of another species via point interactions. We show that there is a critical mass ratio m2 ≈ 0.58 such that the system is stable, i.e., the energy is bounded from below, for m∈[m2,m2−1]. So far it was not known whether this 2 + 2 system exhibits a stable region at all or whether the formation of four-body bound states causes an unbounded spectrum for all mass ratios, similar to the Thomas effect. Our result gives further evidence for the stability of the more general N + M system.},
author = {Moser, Thomas and Seiringer, Robert},
issn = {15729656},
journal = {Mathematical Physics Analysis and Geometry},
number = {3},
publisher = {Springer},
title = {{Stability of the 2+2 fermionic system with point interactions}},
doi = {10.1007/s11040-018-9275-3},
volume = {21},
year = {2018},
}
@inproceedings{11,
abstract = {We report on a novel strategy to derive mean-field limits of quantum mechanical systems in which a large number of particles weakly couple to a second-quantized radiation field. The technique combines the method of counting and the coherent state approach to study the growth of the correlations among the particles and in the radiation field. As an instructional example, we derive the Schrödinger–Klein–Gordon system of equations from the Nelson model with ultraviolet cutoff and possibly massless scalar field. In particular, we prove the convergence of the reduced density matrices (of the nonrelativistic particles and the field bosons) associated with the exact time evolution to the projectors onto the solutions of the Schrödinger–Klein–Gordon equations in trace norm. Furthermore, we derive explicit bounds on the rate of convergence of the one-particle reduced density matrix of the nonrelativistic particles in Sobolev norm.},
author = {Leopold, Nikolai K and Pickl, Peter},
location = {Munich, Germany},
pages = {185 -- 214},
publisher = {Springer},
title = {{Mean-field limits of particles in interaction with quantised radiation fields}},
doi = {10.1007/978-3-030-01602-9_9},
volume = {270},
year = {2018},
}
@article{399,
abstract = {Following an earlier calculation in 3D, we calculate the 2D critical temperature of a dilute, translation-invariant Bose gas using a variational formulation of the Bogoliubov approximation introduced by Critchley and Solomon in 1976. This provides the first analytical calculation of the Kosterlitz-Thouless transition temperature that includes the constant in the logarithm.},
author = {Napiórkowski, Marcin M and Reuvers, Robin and Solovej, Jan},
journal = {EPL},
number = {1},
publisher = {IOP Publishing Ltd.},
title = {{Calculation of the critical temperature of a dilute Bose gas in the Bogoliubov approximation}},
doi = {10.1209/0295-5075/121/10007},
volume = {121},
year = {2018},
}
@article{400,
abstract = {We consider the two-dimensional BCS functional with a radial pair interaction. We show that the translational symmetry is not broken in a certain temperature interval below the critical temperature. In the case of vanishing angular momentum, our results carry over to the three-dimensional case.},
author = {Deuchert, Andreas and Geisinge, Alissa and Hainzl, Christian and Loss, Michael},
journal = {Annales Henri Poincare},
number = {5},
pages = {1507 -- 1527},
publisher = {Springer},
title = {{Persistence of translational symmetry in the BCS model with radial pair interaction}},
doi = {10.1007/s00023-018-0665-7},
volume = {19},
year = {2018},
}