@article{5983,
abstract = {We study a quantum impurity possessing both translational and internal rotational degrees of freedom interacting with a bosonic bath. Such a system corresponds to a “rotating polaron,” which can be used to model, e.g., a rotating molecule immersed in an ultracold Bose gas or superfluid helium. We derive the Hamiltonian of the rotating polaron and study its spectrum in the weak- and strong-coupling regimes using a combination of variational, diagrammatic, and mean-field approaches. We reveal how the coupling between linear and angular momenta affects stable quasiparticle states, and demonstrate that internal rotation leads to an enhanced self-localization in the translational degrees of freedom.},
author = {Yakaboylu, Enderalp and Midya, Bikashkali and Deuchert, Andreas and Leopold, Nikolai K and Lemeshko, Mikhail},
issn = {2469-9950},
journal = {Physical Review B},
number = {22},
publisher = {American Physical Society},
title = {{Theory of the rotating polaron: Spectrum and self-localization}},
doi = {10.1103/physrevb.98.224506},
volume = {98},
year = {2018},
}
@article{6002,
abstract = {The Bogoliubov free energy functional is analysed. The functional serves as a model of a translation-invariant Bose gas at positive temperature. We prove the existence of minimizers in the case of repulsive interactions given by a sufficiently regular two-body potential. Furthermore, we prove the existence of a phase transition in this model and provide its phase diagram.},
author = {Napiórkowski, Marcin M and Reuvers, Robin and Solovej, Jan Philip},
issn = {0003-9527},
journal = {Archive for Rational Mechanics and Analysis},
number = {3},
pages = {1037--1090},
publisher = {Springer Nature},
title = {{The Bogoliubov free energy functional I: Existence of minimizers and phase diagram}},
doi = {10.1007/s00205-018-1232-6},
volume = {229},
year = {2018},
}
@article{154,
abstract = {We give a lower bound on the ground state energy of a system of two fermions of one species interacting with two fermions of another species via point interactions. We show that there is a critical mass ratio m2 ≈ 0.58 such that the system is stable, i.e., the energy is bounded from below, for m∈[m2,m2−1]. So far it was not known whether this 2 + 2 system exhibits a stable region at all or whether the formation of four-body bound states causes an unbounded spectrum for all mass ratios, similar to the Thomas effect. Our result gives further evidence for the stability of the more general N + M system.},
author = {Moser, Thomas and Seiringer, Robert},
issn = {15729656},
journal = {Mathematical Physics Analysis and Geometry},
number = {3},
publisher = {Springer},
title = {{Stability of the 2+2 fermionic system with point interactions}},
doi = {10.1007/s11040-018-9275-3},
volume = {21},
year = {2018},
}
@inproceedings{11,
abstract = {We report on a novel strategy to derive mean-field limits of quantum mechanical systems in which a large number of particles weakly couple to a second-quantized radiation field. The technique combines the method of counting and the coherent state approach to study the growth of the correlations among the particles and in the radiation field. As an instructional example, we derive the Schrödinger–Klein–Gordon system of equations from the Nelson model with ultraviolet cutoff and possibly massless scalar field. In particular, we prove the convergence of the reduced density matrices (of the nonrelativistic particles and the field bosons) associated with the exact time evolution to the projectors onto the solutions of the Schrödinger–Klein–Gordon equations in trace norm. Furthermore, we derive explicit bounds on the rate of convergence of the one-particle reduced density matrix of the nonrelativistic particles in Sobolev norm.},
author = {Leopold, Nikolai K and Pickl, Peter},
location = {Munich, Germany},
pages = {185 -- 214},
publisher = {Springer},
title = {{Mean-field limits of particles in interaction with quantised radiation fields}},
doi = {10.1007/978-3-030-01602-9_9},
volume = {270},
year = {2018},
}
@article{399,
abstract = {Following an earlier calculation in 3D, we calculate the 2D critical temperature of a dilute, translation-invariant Bose gas using a variational formulation of the Bogoliubov approximation introduced by Critchley and Solomon in 1976. This provides the first analytical calculation of the Kosterlitz-Thouless transition temperature that includes the constant in the logarithm.},
author = {Napiórkowski, Marcin M and Reuvers, Robin and Solovej, Jan},
journal = {EPL},
number = {1},
publisher = {IOP Publishing Ltd.},
title = {{Calculation of the critical temperature of a dilute Bose gas in the Bogoliubov approximation}},
doi = {10.1209/0295-5075/121/10007},
volume = {121},
year = {2018},
}
@article{400,
abstract = {We consider the two-dimensional BCS functional with a radial pair interaction. We show that the translational symmetry is not broken in a certain temperature interval below the critical temperature. In the case of vanishing angular momentum, our results carry over to the three-dimensional case.},
author = {Deuchert, Andreas and Geisinge, Alissa and Hainzl, Christian and Loss, Michael},
journal = {Annales Henri Poincare},
number = {5},
pages = {1507 -- 1527},
publisher = {Springer},
title = {{Persistence of translational symmetry in the BCS model with radial pair interaction}},
doi = {10.1007/s00023-018-0665-7},
volume = {19},
year = {2018},
}
@article{446,
abstract = {We prove that in Thomas–Fermi–Dirac–von Weizsäcker theory, a nucleus of charge Z > 0 can bind at most Z + C electrons, where C is a universal constant. This result is obtained through a comparison with Thomas-Fermi theory which, as a by-product, gives bounds on the screened nuclear potential and the radius of the minimizer. A key ingredient of the proof is a novel technique to control the particles in the exterior region, which also applies to the liquid drop model with a nuclear background potential.},
author = {Frank, Rupert and Phan Thanh, Nam and Van Den Bosch, Hanne},
journal = {Communications on Pure and Applied Mathematics},
number = {3},
pages = {577 -- 614},
publisher = {Wiley-Blackwell},
title = {{The ionization conjecture in Thomas–Fermi–Dirac–von Weizsäcker theory}},
doi = {10.1002/cpa.21717},
volume = {71},
year = {2018},
}
@article{455,
abstract = {The derivation of effective evolution equations is central to the study of non-stationary quantum many-body systems, and widely used in contexts such as superconductivity, nuclear physics, Bose–Einstein condensation and quantum chemistry. We reformulate the Dirac–Frenkel approximation principle in terms of reduced density matrices and apply it to fermionic and bosonic many-body systems. We obtain the Bogoliubov–de Gennes and Hartree–Fock–Bogoliubov equations, respectively. While we do not prove quantitative error estimates, our formulation does show that the approximation is optimal within the class of quasifree states. Furthermore, we prove well-posedness of the Bogoliubov–de Gennes equations in energy space and discuss conserved quantities},
author = {Benedikter, Niels P and Sok, Jérémy and Solovej, Jan},
journal = {Annales Henri Poincare},
number = {4},
pages = {1167 -- 1214},
publisher = {Birkhäuser},
title = {{The Dirac–Frenkel principle for reduced density matrices and the Bogoliubov–de Gennes equations}},
doi = {10.1007/s00023-018-0644-z},
volume = {19},
year = {2018},
}
@article{739,
abstract = {We study the norm approximation to the Schrödinger dynamics of N bosons in with an interaction potential of the form . Assuming that in the initial state the particles outside of the condensate form a quasi-free state with finite kinetic energy, we show that in the large N limit, the fluctuations around the condensate can be effectively described using Bogoliubov approximation for all . The range of β is expected to be optimal for this large class of initial states.},
author = {Nam, Phan and Napiórkowski, Marcin M},
issn = {00217824},
journal = {Journal de Mathématiques Pures et Appliquées},
number = {5},
pages = {662 -- 688},
publisher = {Elsevier},
title = {{A note on the validity of Bogoliubov correction to mean field dynamics}},
doi = {10.1016/j.matpur.2017.05.013},
volume = {108},
year = {2017},
}
@article{741,
abstract = {We prove that a system of N fermions interacting with an additional particle via point interactions is stable if the ratio of the mass of the additional particle to the one of the fermions is larger than some critical m*. The value of m* is independent of N and turns out to be less than 1. This fact has important implications for the stability of the unitary Fermi gas. We also characterize the domain of the Hamiltonian of this model, and establish the validity of the Tan relations for all wave functions in the domain.},
author = {Moser, Thomas and Seiringer, Robert},
issn = {00103616},
journal = {Communications in Mathematical Physics},
number = {1},
pages = {329 -- 355},
publisher = {Springer},
title = {{Stability of a fermionic N+1 particle system with point interactions}},
doi = {10.1007/s00220-017-2980-0},
volume = {356},
year = {2017},
}
@article{484,
abstract = {We consider the dynamics of a large quantum system of N identical bosons in 3D interacting via a two-body potential of the form N3β-1w(Nβ(x - y)). For fixed 0 = β < 1/3 and large N, we obtain a norm approximation to the many-body evolution in the Nparticle Hilbert space. The leading order behaviour of the dynamics is determined by Hartree theory while the second order is given by Bogoliubov theory.},
author = {Nam, Phan and Napiórkowski, Marcin M},
issn = {10950761},
journal = {Advances in Theoretical and Mathematical Physics},
number = {3},
pages = {683 -- 738},
publisher = {International Press},
title = {{Bogoliubov correction to the mean-field dynamics of interacting bosons}},
doi = {10.4310/ATMP.2017.v21.n3.a4},
volume = {21},
year = {2017},
}
@article{632,
abstract = {We consider a 2D quantum system of N bosons in a trapping potential |x|s, interacting via a pair potential of the form N2β−1 w(Nβ x). We show that for all 0 < β < (s + 1)/(s + 2), the leading order behavior of ground states of the many-body system is described in the large N limit by the corresponding cubic nonlinear Schrödinger energy functional. Our result covers the focusing case (w < 0) where even the stability of the many-body system is not obvious. This answers an open question mentioned by X. Chen and J. Holmer for harmonic traps (s = 2). Together with the BBGKY hierarchy approach used by these authors, our result implies the convergence of the many-body quantum dynamics to the focusing NLS equation with harmonic trap for all 0 < β < 3/4. },
author = {Lewin, Mathieu and Nam, Phan and Rougerie, Nicolas},
journal = {Proceedings of the American Mathematical Society},
number = {6},
pages = {2441 -- 2454},
publisher = {American Mathematical Society},
title = {{A note on 2D focusing many boson systems}},
doi = {10.1090/proc/13468},
volume = {145},
year = {2017},
}
@article{1079,
abstract = {We study the ionization problem in the Thomas-Fermi-Dirac-von Weizsäcker theory for atoms and molecules. We prove the nonexistence of minimizers for the energy functional when the number of electrons is large and the total nuclear charge is small. This nonexistence result also applies to external potentials decaying faster than the Coulomb potential. In the case of arbitrary nuclear charges, we obtain the nonexistence of stable minimizers and radial minimizers.},
author = {Nam, Phan and Van Den Bosch, Hanne},
issn = {13850172},
journal = {Mathematical Physics, Analysis and Geometry},
number = {2},
publisher = {Springer},
title = {{Nonexistence in Thomas Fermi-Dirac-von Weizsäcker theory with small nuclear charges}},
doi = {10.1007/s11040-017-9238-0},
volume = {20},
year = {2017},
}
@article{1120,
abstract = {The existence of a self-localization transition in the polaron problem has been under an active debate ever since Landau suggested it 83 years ago. Here we reveal the self-localization transition for the rotational analogue of the polaron -- the angulon quasiparticle. We show that, unlike for the polarons, self-localization of angulons occurs at finite impurity-bath coupling already at the mean-field level. The transition is accompanied by the spherical-symmetry breaking of the angulon ground state and a discontinuity in the first derivative of the ground-state energy. Moreover, the type of the symmetry breaking is dictated by the symmetry of the microscopic impurity-bath interaction, which leads to a number of distinct self-localized states. The predicted effects can potentially be addressed in experiments on cold molecules trapped in superfluid helium droplets and ultracold quantum gases, as well as on electronic excitations in solids and Bose-Einstein condensates. },
author = {Li, Xiang and Seiringer, Robert and Lemeshko, Mikhail},
issn = {24699926},
journal = {Physical Review A},
number = {3},
publisher = {American Physical Society},
title = {{Angular self-localization of impurities rotating in a bosonic bath}},
doi = {10.1103/PhysRevA.95.033608},
volume = {95},
year = {2017},
}
@article{1198,
abstract = {We consider a model of fermions interacting via point interactions, defined via a certain weighted Dirichlet form. While for two particles the interaction corresponds to infinite scattering length, the presence of further particles effectively decreases the interaction strength. We show that the model becomes trivial in the thermodynamic limit, in the sense that the free energy density at any given particle density and temperature agrees with the corresponding expression for non-interacting particles.},
author = {Moser, Thomas and Seiringer, Robert},
issn = {03779017},
journal = {Letters in Mathematical Physics},
number = {3},
pages = { 533 -- 552},
publisher = {Springer},
title = {{Triviality of a model of particles with point interactions in the thermodynamic limit}},
doi = {10.1007/s11005-016-0915-x},
volume = {107},
year = {2017},
}
@article{912,
abstract = {We consider a many-body system of fermionic atoms interacting via a local pair potential and subject to an external potential within the framework of Bardeen-Cooper-Schrieffer (BCS) theory. We measure the free energy of the whole sample with respect to the free energy of a reference state which allows us to define a BCS functional with boundary conditions at infinity. Our main result is a lower bound for this energy functional in terms of expressions that typically appear in Ginzburg-Landau functionals.
},
author = {Deuchert, Andreas},
issn = {00222488},
journal = { Journal of Mathematical Physics},
number = {8},
publisher = {AIP},
title = {{A lower bound for the BCS functional with boundary conditions at infinity}},
doi = {10.1063/1.4996580},
volume = {58},
year = {2017},
}
@article{997,
abstract = {Recently it was shown that molecules rotating in superfluid helium can be described in terms of the angulon quasiparticles (Phys. Rev. Lett. 118, 095301 (2017)). Here we demonstrate that in the experimentally realized regime the angulon can be seen as a point charge on a 2-sphere interacting with a gauge field of a non-abelian magnetic monopole. Unlike in several other settings, the gauge fields of the angulon problem emerge in the real coordinate space, as opposed to the momentum space or some effective parameter space. Furthermore, we find a topological transition associated with making the monopole abelian, which takes place in the vicinity of the previously reported angulon instabilities. These results pave the way for studying topological phenomena in experiments on molecules trapped in superfluid helium nanodroplets, as well as on other realizations of orbital impurity problems.},
author = {Yakaboylu, Enderalp and Deuchert, Andreas and Lemeshko, Mikhail},
issn = {00319007},
journal = {APS Physics, Physical Review Letters},
number = {23},
publisher = {American Physiological Society},
title = {{Emergence of non-abelian magnetic monopoles in a quantum impurity problem}},
doi = {10.1103/PhysRevLett.119.235301},
volume = {119},
year = {2017},
}
@article{1291,
abstract = {We consider Ising models in two and three dimensions, with short range ferromagnetic and long range, power-law decaying, antiferromagnetic interactions. We let J be the ratio between the strength of the ferromagnetic to antiferromagnetic interactions. The competition between these two kinds of interactions induces the system to form domains of minus spins in a background of plus spins, or vice versa. If the decay exponent p of the long range interaction is larger than dÂ +Â 1, with d the space dimension, this happens for all values of J smaller than a critical value Jc(p), beyond which the ground state is homogeneous. In this paper, we give a characterization of the infinite volume ground states of the system, for pÂ >Â 2d and J in a left neighborhood of Jc(p). In particular, we prove that the quasi-one-dimensional states consisting of infinite stripes (dÂ =Â 2) or slabs (dÂ =Â 3), all of the same optimal width and orientation, and alternating magnetization, are infinite volume ground states. Our proof is based on localization bounds combined with reflection positivity.},
author = {Giuliani, Alessandro and Seiringer, Robert},
journal = {Communications in Mathematical Physics},
number = {3},
pages = {983 -- 1007},
publisher = {Springer},
title = {{Periodic striped ground states in Ising models with competing interactions}},
doi = {10.1007/s00220-016-2665-0},
volume = {347},
year = {2016},
}
@article{1422,
abstract = {We study the time-dependent Bogoliubov–de-Gennes equations for generic translation-invariant fermionic many-body systems. For initial states that are close to thermal equilibrium states at temperatures near the critical temperature, we show that the magnitude of the order parameter stays approximately constant in time and, in particular, does not follow a time-dependent Ginzburg–Landau equation, which is often employed as a phenomenological description and predicts a decay of the order parameter in time. The full non-linear structure of the equations is necessary to understand this behavior.},
author = {Frank, Rupert and Hainzl, Christian and Schlein, Benjamin and Seiringer, Robert},
journal = {Letters in Mathematical Physics},
number = {7},
pages = {913 -- 923},
publisher = {Springer},
title = {{Incompatibility of time-dependent Bogoliubov–de-Gennes and Ginzburg–Landau equations}},
doi = {10.1007/s11005-016-0847-5},
volume = {106},
year = {2016},
}
@inproceedings{1428,
abstract = {We report on a mathematically rigorous analysis of the superfluid properties of a Bose- Einstein condensate in the many-body ground state of a one-dimensional model of interacting bosons in a random potential.},
author = {Könenberg, Martin and Moser, Thomas and Seiringer, Robert and Yngvason, Jakob},
booktitle = {Journal of Physics: Conference Series},
location = {Shanghai, China},
number = {1},
publisher = {IOP Publishing Ltd.},
title = {{Superfluidity and BEC in a Model of Interacting Bosons in a Random Potential}},
doi = {10.1088/1742-6596/691/1/012016},
volume = {691},
year = {2016},
}