@article{5983, abstract = {We study a quantum impurity possessing both translational and internal rotational degrees of freedom interacting with a bosonic bath. Such a system corresponds to a “rotating polaron,” which can be used to model, e.g., a rotating molecule immersed in an ultracold Bose gas or superfluid helium. We derive the Hamiltonian of the rotating polaron and study its spectrum in the weak- and strong-coupling regimes using a combination of variational, diagrammatic, and mean-field approaches. We reveal how the coupling between linear and angular momenta affects stable quasiparticle states, and demonstrate that internal rotation leads to an enhanced self-localization in the translational degrees of freedom.}, author = {Yakaboylu, Enderalp and Midya, Bikashkali and Deuchert, Andreas and Leopold, Nikolai K and Lemeshko, Mikhail}, issn = {2469-9969}, journal = {Physical Review B}, number = {22}, publisher = {American Physical Society}, title = {{Theory of the rotating polaron: Spectrum and self-localization}}, doi = {10.1103/physrevb.98.224506}, volume = {98}, year = {2018}, } @article{6002, abstract = {The Bogoliubov free energy functional is analysed. The functional serves as a model of a translation-invariant Bose gas at positive temperature. We prove the existence of minimizers in the case of repulsive interactions given by a sufficiently regular two-body potential. Furthermore, we prove the existence of a phase transition in this model and provide its phase diagram.}, author = {Napiórkowski, Marcin M and Reuvers, Robin and Solovej, Jan Philip}, issn = {1432-0673}, journal = {Archive for Rational Mechanics and Analysis}, number = {3}, pages = {1037--1090}, publisher = {Springer Nature}, title = {{The Bogoliubov free energy functional I: Existence of minimizers and phase diagram}}, doi = {10.1007/s00205-018-1232-6}, volume = {229}, year = {2018}, } @phdthesis{52, abstract = {In this thesis we will discuss systems of point interacting fermions, their stability and other spectral properties. Whereas for bosons a point interacting system is always unstable this ques- tion is more subtle for a gas of two species of fermions. In particular the answer depends on the mass ratio between these two species. Most of this work will be focused on the N + M model which consists of two species of fermions with N, M particles respectively which interact via point interactions. We will introduce this model using a formal limit and discuss the N + 1 system in more detail. In particular, we will show that for mass ratios above a critical one, which does not depend on the particle number, the N + 1 system is stable. In the context of this model we will prove rigorous versions of Tan relations which relate various quantities of the point-interacting model. By restricting the N + 1 system to a box we define a finite density model with point in- teractions. In the context of this system we will discuss the energy change when introducing a point-interacting impurity into a system of non-interacting fermions. We will see that this change in energy is bounded independently of the particle number and in particular the bound only depends on the density and the scattering length. As another special case of the N + M model we will show stability of the 2 + 2 model for mass ratios in an interval around one. Further we will investigate a different model of point interactions which was discussed before in the literature and which is, contrary to the N + M model, not given by a limiting procedure but is based on a Dirichlet form. We will show that this system behaves trivially in the thermodynamic limit, i.e. the free energy per particle is the same as the one of the non-interacting system.}, author = {Moser, Thomas}, issn = {2663-337X}, pages = {115}, publisher = {Institute of Science and Technology Austria}, title = {{Point interactions in systems of fermions}}, doi = {10.15479/AT:ISTA:th_1043}, year = {2018}, } @article{180, abstract = {In this paper we define and study the classical Uniform Electron Gas (UEG), a system of infinitely many electrons whose density is constant everywhere in space. The UEG is defined differently from Jellium, which has a positive constant background but no constraint on the density. We prove that the UEG arises in Density Functional Theory in the limit of a slowly varying density, minimizing the indirect Coulomb energy. We also construct the quantum UEG and compare it to the classical UEG at low density.}, author = {Lewi, Mathieu and Lieb, Élliott and Seiringer, Robert}, issn = {2270-518X}, journal = {Journal de l'Ecole Polytechnique - Mathematiques}, pages = {79 -- 116}, publisher = {Ecole Polytechnique}, title = {{Statistical mechanics of the uniform electron gas}}, doi = {10.5802/jep.64}, volume = {5}, year = {2018}, } @article{484, abstract = {We consider the dynamics of a large quantum system of N identical bosons in 3D interacting via a two-body potential of the form N3β-1w(Nβ(x - y)). For fixed 0 = β < 1/3 and large N, we obtain a norm approximation to the many-body evolution in the Nparticle Hilbert space. The leading order behaviour of the dynamics is determined by Hartree theory while the second order is given by Bogoliubov theory.}, author = {Nam, Phan and Napiórkowski, Marcin M}, issn = {10950761}, journal = {Advances in Theoretical and Mathematical Physics}, number = {3}, pages = {683 -- 738}, publisher = {International Press}, title = {{Bogoliubov correction to the mean-field dynamics of interacting bosons}}, doi = {10.4310/ATMP.2017.v21.n3.a4}, volume = {21}, year = {2017}, } @article{632, abstract = {We consider a 2D quantum system of N bosons in a trapping potential |x|s, interacting via a pair potential of the form N2β−1 w(Nβ x). We show that for all 0 < β < (s + 1)/(s + 2), the leading order behavior of ground states of the many-body system is described in the large N limit by the corresponding cubic nonlinear Schrödinger energy functional. Our result covers the focusing case (w < 0) where even the stability of the many-body system is not obvious. This answers an open question mentioned by X. Chen and J. Holmer for harmonic traps (s = 2). Together with the BBGKY hierarchy approach used by these authors, our result implies the convergence of the many-body quantum dynamics to the focusing NLS equation with harmonic trap for all 0 < β < 3/4. }, author = {Lewin, Mathieu and Nam, Phan and Rougerie, Nicolas}, journal = {Proceedings of the American Mathematical Society}, number = {6}, pages = {2441 -- 2454}, publisher = {American Mathematical Society}, title = {{A note on 2D focusing many boson systems}}, doi = {10.1090/proc/13468}, volume = {145}, year = {2017}, } @article{1198, abstract = {We consider a model of fermions interacting via point interactions, defined via a certain weighted Dirichlet form. While for two particles the interaction corresponds to infinite scattering length, the presence of further particles effectively decreases the interaction strength. We show that the model becomes trivial in the thermodynamic limit, in the sense that the free energy density at any given particle density and temperature agrees with the corresponding expression for non-interacting particles.}, author = {Moser, Thomas and Seiringer, Robert}, issn = {03779017}, journal = {Letters in Mathematical Physics}, number = {3}, pages = { 533 -- 552}, publisher = {Springer}, title = {{Triviality of a model of particles with point interactions in the thermodynamic limit}}, doi = {10.1007/s11005-016-0915-x}, volume = {107}, year = {2017}, } @article{1120, abstract = {The existence of a self-localization transition in the polaron problem has been under an active debate ever since Landau suggested it 83 years ago. Here we reveal the self-localization transition for the rotational analogue of the polaron -- the angulon quasiparticle. We show that, unlike for the polarons, self-localization of angulons occurs at finite impurity-bath coupling already at the mean-field level. The transition is accompanied by the spherical-symmetry breaking of the angulon ground state and a discontinuity in the first derivative of the ground-state energy. Moreover, the type of the symmetry breaking is dictated by the symmetry of the microscopic impurity-bath interaction, which leads to a number of distinct self-localized states. The predicted effects can potentially be addressed in experiments on cold molecules trapped in superfluid helium droplets and ultracold quantum gases, as well as on electronic excitations in solids and Bose-Einstein condensates. }, author = {Li, Xiang and Seiringer, Robert and Lemeshko, Mikhail}, issn = {24699926}, journal = {Physical Review A}, number = {3}, publisher = {American Physical Society}, title = {{Angular self-localization of impurities rotating in a bosonic bath}}, doi = {10.1103/PhysRevA.95.033608}, volume = {95}, year = {2017}, } @article{1079, abstract = {We study the ionization problem in the Thomas-Fermi-Dirac-von Weizsäcker theory for atoms and molecules. We prove the nonexistence of minimizers for the energy functional when the number of electrons is large and the total nuclear charge is small. This nonexistence result also applies to external potentials decaying faster than the Coulomb potential. In the case of arbitrary nuclear charges, we obtain the nonexistence of stable minimizers and radial minimizers.}, author = {Nam, Phan and Van Den Bosch, Hanne}, issn = {13850172}, journal = {Mathematical Physics, Analysis and Geometry}, number = {2}, publisher = {Springer}, title = {{Nonexistence in Thomas Fermi-Dirac-von Weizsäcker theory with small nuclear charges}}, doi = {10.1007/s11040-017-9238-0}, volume = {20}, year = {2017}, } @article{741, abstract = {We prove that a system of N fermions interacting with an additional particle via point interactions is stable if the ratio of the mass of the additional particle to the one of the fermions is larger than some critical m*. The value of m* is independent of N and turns out to be less than 1. This fact has important implications for the stability of the unitary Fermi gas. We also characterize the domain of the Hamiltonian of this model, and establish the validity of the Tan relations for all wave functions in the domain.}, author = {Moser, Thomas and Seiringer, Robert}, issn = {00103616}, journal = {Communications in Mathematical Physics}, number = {1}, pages = {329 -- 355}, publisher = {Springer}, title = {{Stability of a fermionic N+1 particle system with point interactions}}, doi = {10.1007/s00220-017-2980-0}, volume = {356}, year = {2017}, }