@article{399,
abstract = {Following an earlier calculation in 3D, we calculate the 2D critical temperature of a dilute, translation-invariant Bose gas using a variational formulation of the Bogoliubov approximation introduced by Critchley and Solomon in 1976. This provides the first analytical calculation of the Kosterlitz-Thouless transition temperature that includes the constant in the logarithm.},
author = {Napiórkowski, Marcin M and Reuvers, Robin and Solovej, Jan},
journal = {EPL},
number = {1},
publisher = {IOP Publishing Ltd.},
title = {{Calculation of the critical temperature of a dilute Bose gas in the Bogoliubov approximation}},
doi = {10.1209/0295-5075/121/10007},
volume = {121},
year = {2018},
}
@article{400,
abstract = {We consider the two-dimensional BCS functional with a radial pair interaction. We show that the translational symmetry is not broken in a certain temperature interval below the critical temperature. In the case of vanishing angular momentum, our results carry over to the three-dimensional case.},
author = {Deuchert, Andreas and Geisinge, Alissa and Hainzl, Christian and Loss, Michael},
journal = {Annales Henri Poincare},
number = {5},
pages = {1507 -- 1527},
publisher = {Springer},
title = {{Persistence of translational symmetry in the BCS model with radial pair interaction}},
doi = {10.1007/s00023-018-0665-7},
volume = {19},
year = {2018},
}
@article{446,
abstract = {We prove that in Thomas–Fermi–Dirac–von Weizsäcker theory, a nucleus of charge Z > 0 can bind at most Z + C electrons, where C is a universal constant. This result is obtained through a comparison with Thomas-Fermi theory which, as a by-product, gives bounds on the screened nuclear potential and the radius of the minimizer. A key ingredient of the proof is a novel technique to control the particles in the exterior region, which also applies to the liquid drop model with a nuclear background potential.},
author = {Frank, Rupert and Phan Thanh, Nam and Van Den Bosch, Hanne},
journal = {Communications on Pure and Applied Mathematics},
number = {3},
pages = {577 -- 614},
publisher = {Wiley-Blackwell},
title = {{The ionization conjecture in Thomas–Fermi–Dirac–von Weizsäcker theory}},
doi = {10.1002/cpa.21717},
volume = {71},
year = {2018},
}
@article{455,
abstract = {The derivation of effective evolution equations is central to the study of non-stationary quantum many-body systems, and widely used in contexts such as superconductivity, nuclear physics, Bose–Einstein condensation and quantum chemistry. We reformulate the Dirac–Frenkel approximation principle in terms of reduced density matrices and apply it to fermionic and bosonic many-body systems. We obtain the Bogoliubov–de Gennes and Hartree–Fock–Bogoliubov equations, respectively. While we do not prove quantitative error estimates, our formulation does show that the approximation is optimal within the class of quasifree states. Furthermore, we prove well-posedness of the Bogoliubov–de Gennes equations in energy space and discuss conserved quantities},
author = {Benedikter, Niels P and Sok, Jérémy and Solovej, Jan},
journal = {Annales Henri Poincare},
number = {4},
pages = {1167 -- 1214},
publisher = {Birkhäuser},
title = {{The Dirac–Frenkel principle for reduced density matrices and the Bogoliubov–de Gennes equations}},
doi = {10.1007/s00023-018-0644-z},
volume = {19},
year = {2018},
}
@article{739,
abstract = {We study the norm approximation to the Schrödinger dynamics of N bosons in with an interaction potential of the form . Assuming that in the initial state the particles outside of the condensate form a quasi-free state with finite kinetic energy, we show that in the large N limit, the fluctuations around the condensate can be effectively described using Bogoliubov approximation for all . The range of β is expected to be optimal for this large class of initial states.},
author = {Nam, Phan and Napiórkowski, Marcin M},
issn = {00217824},
journal = {Journal de Mathématiques Pures et Appliquées},
number = {5},
pages = {662 -- 688},
publisher = {Elsevier},
title = {{A note on the validity of Bogoliubov correction to mean field dynamics}},
doi = {10.1016/j.matpur.2017.05.013},
volume = {108},
year = {2017},
}
@article{741,
abstract = {We prove that a system of N fermions interacting with an additional particle via point interactions is stable if the ratio of the mass of the additional particle to the one of the fermions is larger than some critical m*. The value of m* is independent of N and turns out to be less than 1. This fact has important implications for the stability of the unitary Fermi gas. We also characterize the domain of the Hamiltonian of this model, and establish the validity of the Tan relations for all wave functions in the domain.},
author = {Moser, Thomas and Seiringer, Robert},
issn = {00103616},
journal = {Communications in Mathematical Physics},
number = {1},
pages = {329 -- 355},
publisher = {Springer},
title = {{Stability of a fermionic N+1 particle system with point interactions}},
doi = {10.1007/s00220-017-2980-0},
volume = {356},
year = {2017},
}
@article{484,
abstract = {We consider the dynamics of a large quantum system of N identical bosons in 3D interacting via a two-body potential of the form N3β-1w(Nβ(x - y)). For fixed 0 = β < 1/3 and large N, we obtain a norm approximation to the many-body evolution in the Nparticle Hilbert space. The leading order behaviour of the dynamics is determined by Hartree theory while the second order is given by Bogoliubov theory.},
author = {Nam, Phan and Napiórkowski, Marcin M},
issn = {10950761},
journal = {Advances in Theoretical and Mathematical Physics},
number = {3},
pages = {683 -- 738},
publisher = {International Press},
title = {{Bogoliubov correction to the mean-field dynamics of interacting bosons}},
doi = {10.4310/ATMP.2017.v21.n3.a4},
volume = {21},
year = {2017},
}
@article{632,
abstract = {We consider a 2D quantum system of N bosons in a trapping potential |x|s, interacting via a pair potential of the form N2β−1 w(Nβ x). We show that for all 0 < β < (s + 1)/(s + 2), the leading order behavior of ground states of the many-body system is described in the large N limit by the corresponding cubic nonlinear Schrödinger energy functional. Our result covers the focusing case (w < 0) where even the stability of the many-body system is not obvious. This answers an open question mentioned by X. Chen and J. Holmer for harmonic traps (s = 2). Together with the BBGKY hierarchy approach used by these authors, our result implies the convergence of the many-body quantum dynamics to the focusing NLS equation with harmonic trap for all 0 < β < 3/4. },
author = {Lewin, Mathieu and Nam, Phan and Rougerie, Nicolas},
journal = {Proceedings of the American Mathematical Society},
number = {6},
pages = {2441 -- 2454},
publisher = {American Mathematical Society},
title = {{A note on 2D focusing many boson systems}},
doi = {10.1090/proc/13468},
volume = {145},
year = {2017},
}
@article{1079,
abstract = {We study the ionization problem in the Thomas-Fermi-Dirac-von Weizsäcker theory for atoms and molecules. We prove the nonexistence of minimizers for the energy functional when the number of electrons is large and the total nuclear charge is small. This nonexistence result also applies to external potentials decaying faster than the Coulomb potential. In the case of arbitrary nuclear charges, we obtain the nonexistence of stable minimizers and radial minimizers.},
author = {Nam, Phan and Van Den Bosch, Hanne},
issn = {13850172},
journal = {Mathematical Physics, Analysis and Geometry},
number = {2},
publisher = {Springer},
title = {{Nonexistence in Thomas Fermi-Dirac-von Weizsäcker theory with small nuclear charges}},
doi = {10.1007/s11040-017-9238-0},
volume = {20},
year = {2017},
}
@article{1120,
abstract = {The existence of a self-localization transition in the polaron problem has been under an active debate ever since Landau suggested it 83 years ago. Here we reveal the self-localization transition for the rotational analogue of the polaron -- the angulon quasiparticle. We show that, unlike for the polarons, self-localization of angulons occurs at finite impurity-bath coupling already at the mean-field level. The transition is accompanied by the spherical-symmetry breaking of the angulon ground state and a discontinuity in the first derivative of the ground-state energy. Moreover, the type of the symmetry breaking is dictated by the symmetry of the microscopic impurity-bath interaction, which leads to a number of distinct self-localized states. The predicted effects can potentially be addressed in experiments on cold molecules trapped in superfluid helium droplets and ultracold quantum gases, as well as on electronic excitations in solids and Bose-Einstein condensates. },
author = {Li, Xiang and Seiringer, Robert and Lemeshko, Mikhail},
issn = {24699926},
journal = {Physical Review A},
number = {3},
publisher = {American Physical Society},
title = {{Angular self-localization of impurities rotating in a bosonic bath}},
doi = {10.1103/PhysRevA.95.033608},
volume = {95},
year = {2017},
}