@article{741,
abstract = {We prove that a system of N fermions interacting with an additional particle via point interactions is stable if the ratio of the mass of the additional particle to the one of the fermions is larger than some critical m*. The value of m* is independent of N and turns out to be less than 1. This fact has important implications for the stability of the unitary Fermi gas. We also characterize the domain of the Hamiltonian of this model, and establish the validity of the Tan relations for all wave functions in the domain.},
author = {Moser, Thomas and Seiringer, Robert},
issn = {00103616},
journal = {Communications in Mathematical Physics},
number = {1},
pages = {329 -- 355},
publisher = {Springer},
title = {{Stability of a fermionic N+1 particle system with point interactions}},
doi = {10.1007/s00220-017-2980-0},
volume = {356},
year = {2017},
}
@article{484,
abstract = {We consider the dynamics of a large quantum system of N identical bosons in 3D interacting via a two-body potential of the form N3β-1w(Nβ(x - y)). For fixed 0 = β < 1/3 and large N, we obtain a norm approximation to the many-body evolution in the Nparticle Hilbert space. The leading order behaviour of the dynamics is determined by Hartree theory while the second order is given by Bogoliubov theory.},
author = {Nam, Phan and Napiórkowski, Marcin M},
issn = {10950761},
journal = {Advances in Theoretical and Mathematical Physics},
number = {3},
pages = {683 -- 738},
publisher = {International Press},
title = {{Bogoliubov correction to the mean-field dynamics of interacting bosons}},
doi = {10.4310/ATMP.2017.v21.n3.a4},
volume = {21},
year = {2017},
}
@article{632,
abstract = {We consider a 2D quantum system of N bosons in a trapping potential |x|s, interacting via a pair potential of the form N2β−1 w(Nβ x). We show that for all 0 < β < (s + 1)/(s + 2), the leading order behavior of ground states of the many-body system is described in the large N limit by the corresponding cubic nonlinear Schrödinger energy functional. Our result covers the focusing case (w < 0) where even the stability of the many-body system is not obvious. This answers an open question mentioned by X. Chen and J. Holmer for harmonic traps (s = 2). Together with the BBGKY hierarchy approach used by these authors, our result implies the convergence of the many-body quantum dynamics to the focusing NLS equation with harmonic trap for all 0 < β < 3/4. },
author = {Lewin, Mathieu and Nam, Phan and Rougerie, Nicolas},
journal = {Proceedings of the American Mathematical Society},
number = {6},
pages = {2441 -- 2454},
publisher = {American Mathematical Society},
title = {{A note on 2D focusing many boson systems}},
doi = {10.1090/proc/13468},
volume = {145},
year = {2017},
}
@article{912,
abstract = {We consider a many-body system of fermionic atoms interacting via a local pair potential and subject to an external potential within the framework of Bardeen-Cooper-Schrieffer (BCS) theory. We measure the free energy of the whole sample with respect to the free energy of a reference state which allows us to define a BCS functional with boundary conditions at infinity. Our main result is a lower bound for this energy functional in terms of expressions that typically appear in Ginzburg-Landau functionals.
},
author = {Deuchert, Andreas},
issn = {00222488},
journal = { Journal of Mathematical Physics},
number = {8},
publisher = {AIP},
title = {{A lower bound for the BCS functional with boundary conditions at infinity}},
doi = {10.1063/1.4996580},
volume = {58},
year = {2017},
}
@article{997,
abstract = {Recently it was shown that molecules rotating in superfluid helium can be described in terms of the angulon quasiparticles (Phys. Rev. Lett. 118, 095301 (2017)). Here we demonstrate that in the experimentally realized regime the angulon can be seen as a point charge on a 2-sphere interacting with a gauge field of a non-abelian magnetic monopole. Unlike in several other settings, the gauge fields of the angulon problem emerge in the real coordinate space, as opposed to the momentum space or some effective parameter space. Furthermore, we find a topological transition associated with making the monopole abelian, which takes place in the vicinity of the previously reported angulon instabilities. These results pave the way for studying topological phenomena in experiments on molecules trapped in superfluid helium nanodroplets, as well as on other realizations of orbital impurity problems.},
author = {Yakaboylu, Enderalp and Deuchert, Andreas and Lemeshko, Mikhail},
issn = {00319007},
journal = {APS Physics, Physical Review Letters},
number = {23},
publisher = {American Physiological Society},
title = {{Emergence of non-abelian magnetic monopoles in a quantum impurity problem}},
doi = {10.1103/PhysRevLett.119.235301},
volume = {119},
year = {2017},
}
@article{1198,
abstract = {We consider a model of fermions interacting via point interactions, defined via a certain weighted Dirichlet form. While for two particles the interaction corresponds to infinite scattering length, the presence of further particles effectively decreases the interaction strength. We show that the model becomes trivial in the thermodynamic limit, in the sense that the free energy density at any given particle density and temperature agrees with the corresponding expression for non-interacting particles.},
author = {Moser, Thomas and Seiringer, Robert},
issn = {03779017},
journal = {Letters in Mathematical Physics},
number = {3},
pages = { 533 -- 552},
publisher = {Springer},
title = {{Triviality of a model of particles with point interactions in the thermodynamic limit}},
doi = {10.1007/s11005-016-0915-x},
volume = {107},
year = {2017},
}
@article{1079,
abstract = {We study the ionization problem in the Thomas-Fermi-Dirac-von Weizsäcker theory for atoms and molecules. We prove the nonexistence of minimizers for the energy functional when the number of electrons is large and the total nuclear charge is small. This nonexistence result also applies to external potentials decaying faster than the Coulomb potential. In the case of arbitrary nuclear charges, we obtain the nonexistence of stable minimizers and radial minimizers.},
author = {Nam, Phan and Van Den Bosch, Hanne},
issn = {13850172},
journal = {Mathematical Physics, Analysis and Geometry},
number = {2},
publisher = {Springer},
title = {{Nonexistence in Thomas Fermi-Dirac-von Weizsäcker theory with small nuclear charges}},
doi = {10.1007/s11040-017-9238-0},
volume = {20},
year = {2017},
}
@article{1120,
abstract = {The existence of a self-localization transition in the polaron problem has been under an active debate ever since Landau suggested it 83 years ago. Here we reveal the self-localization transition for the rotational analogue of the polaron -- the angulon quasiparticle. We show that, unlike for the polarons, self-localization of angulons occurs at finite impurity-bath coupling already at the mean-field level. The transition is accompanied by the spherical-symmetry breaking of the angulon ground state and a discontinuity in the first derivative of the ground-state energy. Moreover, the type of the symmetry breaking is dictated by the symmetry of the microscopic impurity-bath interaction, which leads to a number of distinct self-localized states. The predicted effects can potentially be addressed in experiments on cold molecules trapped in superfluid helium droplets and ultracold quantum gases, as well as on electronic excitations in solids and Bose-Einstein condensates. },
author = {Li, Xiang and Seiringer, Robert and Lemeshko, Mikhail},
issn = {24699926},
journal = {Physical Review A},
number = {3},
publisher = {American Physical Society},
title = {{Angular self-localization of impurities rotating in a bosonic bath}},
doi = {10.1103/PhysRevA.95.033608},
volume = {95},
year = {2017},
}
@article{1545,
abstract = {We provide general conditions for which bosonic quadratic Hamiltonians on Fock spaces can be diagonalized by Bogoliubov transformations. Our results cover the case when quantum systems have infinite degrees of freedom and the associated one-body kinetic and paring operators are unbounded. Our sufficient conditions are optimal in the sense that they become necessary when the relevant one-body operators commute.},
author = {Nam, Phan and Napiórkowski, Marcin M and Solovej, Jan},
journal = {Journal of Functional Analysis},
number = {11},
pages = {4340 -- 4368},
publisher = {Academic Press},
title = {{Diagonalization of bosonic quadratic Hamiltonians by Bogoliubov transformations}},
doi = {10.1016/j.jfa.2015.12.007},
volume = {270},
year = {2016},
}
@article{1620,
abstract = {We consider the Bardeen–Cooper–Schrieffer free energy functional for particles interacting via a two-body potential on a microscopic scale and in the presence of weak external fields varying on a macroscopic scale. We study the influence of the external fields on the critical temperature. We show that in the limit where the ratio between the microscopic and macroscopic scale tends to zero, the next to leading order of the critical temperature is determined by the lowest eigenvalue of the linearization of the Ginzburg–Landau equation.},
author = {Frank, Rupert and Hainzl, Christian and Seiringer, Robert and Solovej, Jan},
journal = {Communications in Mathematical Physics},
number = {1},
pages = {189 -- 216},
publisher = {Springer},
title = {{The external field dependence of the BCS critical temperature}},
doi = {10.1007/s00220-015-2526-2},
volume = {342},
year = {2016},
}