@article{15084, abstract = {GABAB receptor (GBR) activation inhibits neurotransmitter release in axon terminals in the brain, except in medial habenula (MHb) terminals, which show robust potentiation. However, mechanisms underlying this enigmatic potentiation remain elusive. Here, we report that GBR activation on MHb terminals induces an activity-dependent transition from a facilitating, tonic to a depressing, phasic neurotransmitter release mode. This transition is accompanied by a 4.1-fold increase in readily releasable vesicle pool (RRP) size and a 3.5-fold increase of docked synaptic vesicles (SVs) at the presynaptic active zone (AZ). Strikingly, the depressing phasic release exhibits looser coupling distance than the tonic release. Furthermore, the tonic and phasic release are selectively affected by deletion of synaptoporin (SPO) and Ca 2+ -dependent activator protein for secretion 2 (CAPS2), respectively. SPO modulates augmentation, the short-term plasticity associated with tonic release, and CAPS2 retains the increased RRP for initial responses in phasic response trains. The cytosolic protein CAPS2 showed a SV-associated distribution similar to the vesicular transmembrane protein SPO, and they were colocalized in the same terminals. We developed the “Flash and Freeze-fracture” method, and revealed the release of SPO-associated vesicles in both tonic and phasic modes and activity-dependent recruitment of CAPS2 to the AZ during phasic release, which lasted several minutes. Overall, these results indicate that GBR activation translocates CAPS2 to the AZ along with the fusion of CAPS2-associated SVs, contributing to persistency of the RRP increase. Thus, we identified structural and molecular mechanisms underlying tonic and phasic neurotransmitter release and their transition by GBR activation in MHb terminals.}, author = {Koppensteiner, Peter and Bhandari, Pradeep and Önal, Hüseyin C and Borges Merjane, Carolina and Le Monnier, Elodie and Roy, Utsa and Nakamura, Yukihiro and Sadakata, Tetsushi and Sanbo, Makoto and Hirabayashi, Masumi and Rhee, JeongSeop and Brose, Nils and Jonas, Peter M and Shigemoto, Ryuichi}, issn = {1091-6490}, journal = {Proceedings of the National Academy of Sciences}, number = {8}, publisher = {Proceedings of the National Academy of Sciences}, title = {{GABAB receptors induce phasic release from medial habenula terminals through activity-dependent recruitment of release-ready vesicles}}, doi = {10.1073/pnas.2301449121}, volume = {121}, year = {2024}, } @article{14843, abstract = {The coupling between Ca2+ channels and release sensors is a key factor defining the signaling properties of a synapse. However, the coupling nanotopography at many synapses remains unknown, and it is unclear how it changes during development. To address these questions, we examined coupling at the cerebellar inhibitory basket cell (BC)-Purkinje cell (PC) synapse. Biophysical analysis of transmission by paired recording and intracellular pipette perfusion revealed that the effects of exogenous Ca2+ chelators decreased during development, despite constant reliance of release on P/Q-type Ca2+ channels. Structural analysis by freeze-fracture replica labeling (FRL) and transmission electron microscopy (EM) indicated that presynaptic P/Q-type Ca2+ channels formed nanoclusters throughout development, whereas docked vesicles were only clustered at later developmental stages. Modeling suggested a developmental transformation from a more random to a more clustered coupling nanotopography. Thus, presynaptic signaling developmentally approaches a point-to-point configuration, optimizing speed, reliability, and energy efficiency of synaptic transmission.}, author = {Chen, JingJing and Kaufmann, Walter and Chen, Chong and Arai, Itaru and Kim, Olena and Shigemoto, Ryuichi and Jonas, Peter M}, issn = {1097-4199}, journal = {Neuron}, publisher = {Elsevier}, title = {{Developmental transformation of Ca2+ channel-vesicle nanotopography at a central GABAergic synapse}}, doi = {10.1016/j.neuron.2023.12.002}, year = {2024}, } @phdthesis{15101, author = {Chen, JingJing}, issn = {2663 - 337X}, pages = {84}, publisher = {Institute of Science and Technology Austria}, title = {{Developmental transformation of nanodomain coupling between Ca2+ channels and release sensors at a central GABAergic synapse}}, doi = {10.15479/at:ista:15101}, year = {2024}, } @article{15117, abstract = {The hippocampal mossy fiber synapse, formed between axons of dentate gyrus granule cells and dendrites of CA3 pyramidal neurons, is a key synapse in the trisynaptic circuitry of the hippocampus. Because of its comparatively large size, this synapse is accessible to direct presynaptic recording, allowing a rigorous investigation of the biophysical mechanisms of synaptic transmission and plasticity. Furthermore, because of its placement in the very center of the hippocampal memory circuit, this synapse seems to be critically involved in several higher network functions, such as learning, memory, pattern separation, and pattern completion. Recent work based on new technologies in both nanoanatomy and nanophysiology, including presynaptic patch-clamp recording, paired recording, super-resolution light microscopy, and freeze-fracture and “flash-and-freeze” electron microscopy, has provided new insights into the structure, biophysics, and network function of this intriguing synapse. This brings us one step closer to answering a fundamental question in neuroscience: how basic synaptic properties shape higher network computations.}, author = {Vandael, David H and Jonas, Peter M}, issn = {1095-9203}, journal = {Science}, number = {6687}, pages = {eadg6757}, publisher = {AAAS}, title = {{Structure, biophysics, and circuit function of a "giant" cortical presynaptic terminal}}, doi = {10.1126/science.adg6757}, volume = {383}, year = {2024}, } @inbook{12720, abstract = {Here we describe the in vivo DNA assembly approach, where molecular cloning procedures are performed using an E. coli recA-independent recombination pathway, which assembles linear fragments of DNA with short homologous termini. This pathway is present in all standard laboratory E. coli strains and, by bypassing the need for in vitro DNA assembly, allows simplified molecular cloning to be performed without the plasmid instability issues associated with specialized recombination-cloning bacterial strains. The methodology requires specific primer design and can perform all standard plasmid modifications (insertions, deletions, mutagenesis, and sub-cloning) in a rapid, simple, and cost-efficient manner, as it does not require commercial kits or specialized bacterial strains. Additionally, this approach can be used to perform complex procedures such as multiple modifications to a plasmid, as up to 6 linear fragments can be assembled in vivo by this recombination pathway. Procedures generally require less than 3 h, involving PCR amplification, DpnI digestion of template DNA, and transformation, upon which circular plasmids are assembled. In this chapter we describe the requirements, procedure, and potential pitfalls when using this technique, as well as protocol variations to overcome the most common issues.}, author = {Arroyo-Urea, Sandra and Watson, Jake and García-Nafría, Javier}, booktitle = {DNA Manipulation and Analysis}, editor = {Scarlett, Garry}, isbn = {978-1-0716-3003-7}, issn = {1940-6029}, pages = {33--44}, publisher = {Springer Nature}, title = {{Molecular Cloning Using In Vivo DNA Assembly}}, doi = {10.1007/978-1-0716-3004-4_3}, volume = {2633}, year = {2023}, }