@article{991, abstract = {Synaptotagmin 7 (Syt7) was originally identified as a slow Ca2+ sensor for lysosome fusion, but its function at fast synapses is controversial. The paper by Luo and Südhof (2017) in this issue of Neuron shows that at the calyx of Held in the auditory brainstem Syt7 triggers asynchronous release during stimulus trains, resulting in reliable and temporally precise high-frequency transmission. Thus, a slow Ca2+ sensor contributes to the fast signaling properties of the calyx synapse.}, author = {Chen, Chong and Jonas, Peter M}, issn = {08966273}, journal = {Neuron}, number = {4}, pages = {694 -- 696}, publisher = {Elsevier}, title = {{Synaptotagmins: That’s why so many}}, doi = {10.1016/j.neuron.2017.05.011}, volume = {94}, year = {2017}, } @article{800, abstract = {Gamma oscillations (30–150 Hz) in neuronal networks are associated with the processing and recall of information. We measured local field potentials in the dentate gyrus of freely moving mice and found that gamma activity occurs in bursts, which are highly heterogeneous in their spatial extensions, ranging from focal to global coherent events. Synaptic communication among perisomatic-inhibitory interneurons (PIIs) is thought to play an important role in the generation of hippocampal gamma patterns. However, how neuronal circuits can generate synchronous oscillations at different spatial scales is unknown. We analyzed paired recordings in dentate gyrus slices and show that synaptic signaling at interneuron-interneuron synapses is distance dependent. Synaptic strength declines whereas the duration of inhibitory signals increases with axonal distance among interconnected PIIs. Using neuronal network modeling, we show that distance-dependent inhibition generates multiple highly synchronous focal gamma bursts allowing the network to process complex inputs in parallel in flexibly organized neuronal centers.}, author = {Strüber, Michael and Sauer, Jonas and Jonas, Peter M and Bartos, Marlene}, issn = {20411723}, journal = {Nature Communications}, number = {1}, publisher = {Nature Publishing Group}, title = {{Distance-dependent inhibition facilitates focality of gamma oscillations in the dentate gyrus}}, doi = {10.1038/s41467-017-00936-3}, volume = {8}, year = {2017}, } @article{749, abstract = {Synaptotagmin 7 (Syt7) is thought to be a Ca2+ sensor that mediates asynchronous transmitter release and facilitation at synapses. However, Syt7 is strongly expressed in fast-spiking, parvalbumin-expressing GABAergic interneurons, and the output synapses of these neurons produce only minimal asynchronous release and show depression rather than facilitation. To resolve this apparent contradiction, we examined the effects of genetic elimination of Syt7 on synaptic transmission at the GABAergic basket cell (BC)-Purkinje cell (PC) synapse in cerebellum. Our results indicate that at the BC-PC synapse, Syt7 contributes to asynchronous release, pool replenishment, and facilitation. In combination, these three effects ensure efficient transmitter release during high-frequency activity and guarantee frequency independence of inhibition. Our results identify a distinct function of Syt7: ensuring the efficiency of high-frequency inhibitory synaptic transmission}, author = {Chen, Chong and Satterfield, Rachel and Young, Samuel and Jonas, Peter M}, issn = {22111247}, journal = {Cell Reports}, number = {8}, pages = {2082 -- 2089}, publisher = {Cell Press}, title = {{Triple function of Synaptotagmin 7 ensures efficiency of high-frequency transmission at central GABAergic synapses}}, doi = {10.1016/j.celrep.2017.10.122}, volume = {21}, year = {2017}, } @article{1142, abstract = {Hemolysis drives susceptibility to bacterial infections and predicts poor outcome from sepsis. These detrimental effects are commonly considered to be a consequence of heme-iron serving as a nutrient for bacteria. We employed a Gram-negative sepsis model and found that elevated heme levels impaired the control of bacterial proliferation independently of heme-iron acquisition by pathogens. Heme strongly inhibited phagocytosis and the migration of human and mouse phagocytes by disrupting actin cytoskeletal dynamics via activation of the GTP-binding Rho family protein Cdc42 by the guanine nucleotide exchange factor DOCK8. A chemical screening approach revealed that quinine effectively prevented heme effects on the cytoskeleton, restored phagocytosis and improved survival in sepsis. These mechanistic insights provide potential therapeutic targets for patients with sepsis or hemolytic disorders.}, author = {Martins, Rui and Maier, Julia and Gorki, Anna and Huber, Kilian and Sharif, Omar and Starkl, Philipp and Saluzzo, Simona and Quattrone, Federica and Gawish, Riem and Lakovits, Karin and Aichinger, Michael and Radic Sarikas, Branka and Lardeau, Charles and Hladik, Anastasiya and Korosec, Ana and Brown, Markus and Vaahtomeri, Kari and Duggan, Michelle and Kerjaschki, Dontscho and Esterbauer, Harald and Colinge, Jacques and Eisenbarth, Stephanie and Decker, Thomas and Bennett, Keiryn and Kubicek, Stefan and Sixt, Michael K and Superti Furga, Giulio and Knapp, Sylvia}, journal = {Nature Immunology}, number = {12}, pages = {1361 -- 1372}, publisher = {Nature Publishing Group}, title = {{Heme drives hemolysis-induced susceptibility to infection via disruption of phagocyte functions}}, doi = {10.1038/ni.3590}, volume = {17}, year = {2016}, } @article{1323, abstract = {Mossy fiber synapses on CA3 pyramidal cells are 'conditional detonators' that reliably discharge postsynaptic targets. The 'conditional' nature implies that burst activity in dentate gyrus granule cells is required for detonation. Whether single unitary excitatory postsynaptic potentials (EPSPs) trigger spikes in CA3 neurons remains unknown. Mossy fiber synapses exhibit both pronounced short-term facilitation and uniquely large post-tetanic potentiation (PTP). We tested whether PTP could convert mossy fiber synapses from subdetonator into detonator mode, using a recently developed method to selectively and noninvasively stimulate individual presynaptic terminals in rat brain slices. Unitary EPSPs failed to initiate a spike in CA3 neurons under control conditions, but reliably discharged them after induction of presynaptic short-term plasticity. Remarkably, PTP switched mossy fiber synapses into full detonators for tens of seconds. Plasticity-dependent detonation may be critical for efficient coding, storage, and recall of information in the granule cell–CA3 cell network.}, author = {Vyleta, Nicholas and Borges Merjane, Carolina and Jonas, Peter M}, journal = {eLife}, publisher = {eLife Sciences Publications}, title = {{Plasticity-dependent, full detonation at hippocampal mossy fiber–CA3 pyramidal neuron synapses}}, doi = {10.7554/eLife.17977}, volume = {5}, year = {2016}, } @article{1350, abstract = {The hippocampal CA3 region plays a key role in learning and memory. Recurrent CA3–CA3 synapses are thought to be the subcellular substrate of pattern completion. However, the synaptic mechanisms of this network computation remain enigmatic. To investigate these mechanisms, we combined functional connectivity analysis with network modeling. Simultaneous recording fromup to eight CA3 pyramidal neurons revealed that connectivity was sparse, spatially uniform, and highly enriched in disynaptic motifs (reciprocal, convergence,divergence, and chain motifs). Unitary connections were composed of one or two synaptic contacts, suggesting efficient use of postsynaptic space. Real-size modeling indicated that CA3 networks with sparse connectivity, disynaptic motifs, and single-contact connections robustly generated pattern completion.Thus, macro- and microconnectivity contribute to efficient memory storage and retrieval in hippocampal networks.}, author = {Guzmán, José and Schlögl, Alois and Frotscher, Michael and Jonas, Peter M}, journal = {Science}, number = {6304}, pages = {1117 -- 1123}, publisher = {American Association for the Advancement of Science}, title = {{Synaptic mechanisms of pattern completion in the hippocampal CA3 network}}, doi = {10.1126/science.aaf1836}, volume = {353}, year = {2016}, } @article{1435, abstract = {ATP released from neurons and astrocytes during neuronal activity or under pathophysiological circumstances is able to influence information flow in neuronal circuits by activation of ionotropic P2X and metabotropic P2Y receptors and subsequent modulation of cellular excitability, synaptic strength, and plasticity. In the present paper we review cellular and network effects of P2Y receptors in the brain. We show that P2Y receptors inhibit the release of neurotransmitters, modulate voltage- and ligand-gated ion channels, and differentially influence the induction of synaptic plasticity in the prefrontal cortex, hippocampus, and cerebellum. The findings discussed here may explain how P2Y1 receptor activation during brain injury, hypoxia, inflammation, schizophrenia, or Alzheimer's disease leads to an impairment of cognitive processes. Hence, it is suggested that the blockade of P2Y1 receptors may have therapeutic potential against cognitive disturbances in these states.}, author = {Guzmán, José and Gerevich, Zoltan}, journal = {Neural Plasticity}, publisher = {Hindawi Publishing Corporation}, title = {{P2Y receptors in synaptic transmission and plasticity: Therapeutic potential in cognitive dysfunction}}, doi = {10.1155/2016/1207393}, volume = {2016}, year = {2016}, } @inproceedings{12903, author = {Schlögl, Alois and Stadlbauer, Stephan}, booktitle = {AHPC16 - Austrian HPC Meeting 2016}, location = {Grundlsee, Austria}, pages = {37}, publisher = {VSC - Vienna Scientific Cluster}, title = {{High performance computing at IST Austria: Modelling the human hippocampus}}, year = {2016}, } @article{1432, abstract = {CA3–CA3 recurrent excitatory synapses are thought to play a key role in memory storage and pattern completion. Whether the plasticity properties of these synapses are consistent with their proposed network functions remains unclear. Here, we examine the properties of spike timing-dependent plasticity (STDP) at CA3–CA3 synapses. Low-frequency pairing of excitatory postsynaptic potentials (EPSPs) and action potentials (APs) induces long-term potentiation (LTP), independent of temporal order. The STDP curve is symmetric and broad (half-width ~150 ms). Consistent with these STDP induction properties, AP–EPSP sequences lead to supralinear summation of spine [Ca2+] transients. Furthermore, afterdepolarizations (ADPs) following APs efficiently propagate into dendrites of CA3 pyramidal neurons, and EPSPs summate with dendritic ADPs. In autoassociative network models, storage and recall are more robust with symmetric than with asymmetric STDP rules. Thus, a specialized STDP induction rule allows reliable storage and recall of information in the hippocampal CA3 network.}, author = {Mishra, Rajiv Kumar and Kim, Sooyun and Guzmán, José and Jonas, Peter M}, journal = {Nature Communications}, publisher = {Nature Publishing Group}, title = {{Symmetric spike timing-dependent plasticity at CA3–CA3 synapses optimizes storage and recall in autoassociative networks}}, doi = {10.1038/ncomms11552}, volume = {7}, year = {2016}, } @phdthesis{1396, abstract = {CA3 pyramidal neurons are thought to pay a key role in memory storage and pattern completion by activity-dependent synaptic plasticity between CA3-CA3 recurrent excitatory synapses. To examine the induction rules of synaptic plasticity at CA3-CA3 synapses, we performed whole-cell patch-clamp recordings in acute hippocampal slices from rats (postnatal 21-24 days) at room temperature. Compound excitatory postsynaptic potentials (ESPSs) were recorded by tract stimulation in stratum oriens in the presence of 10 µM gabazine. High-frequency stimulation (HFS) induced N-methyl-D-aspartate (NMDA) receptor-dependent long-term potentiation (LTP). Although LTP by HFS did not requier postsynaptic spikes, it was blocked by Na+-channel blockers suggesting that local active processes (e.g.) dendritic spikes) may contribute to LTP induction without requirement of a somatic action potential (AP). We next examined the properties of spike timing-dependent plasticity (STDP) at CA3-CA3 synapses. Unexpectedly, low-frequency pairing of EPSPs and backpropagated action potentialy (bAPs) induced LTP, independent of temporal order. The STDP curve was symmetric and broad, with a half-width of ~150 ms. Consistent with these specific STDP induction properties, post-presynaptic sequences led to a supralinear summation of spine [Ca2+] transients. Furthermore, in autoassociative network models, storage and recall was substantially more robust with symmetric than with asymmetric STDP rules. In conclusion, we found associative forms of LTP at CA3-CA3 recurrent collateral synapses with distinct induction rules. LTP induced by HFS may be associated with dendritic spikes. In contrast, low frequency pairing of pre- and postsynaptic activity induced LTP only if EPSP-AP were temporally very close. Together, these induction mechanisms of synaptiic plasticity may contribute to memory storage in the CA3-CA3 microcircuit at different ranges of activity.}, author = {Mishra, Rajiv Kumar}, issn = {2663-337X}, pages = {83}, publisher = {Institute of Science and Technology Austria}, title = {{Synaptic plasticity rules at CA3-CA3 recurrent synapses in hippocampus}}, year = {2016}, }