--- _id: '6858' article_processing_charge: No article_type: review author: - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 citation: ama: Barton NH. Is speciation driven by cycles of mixing and isolation? National Science Review. 2019;6(2):291-292. doi:10.1093/nsr/nwy113 apa: Barton, N. H. (2019). Is speciation driven by cycles of mixing and isolation? National Science Review. Oxford University Press. https://doi.org/10.1093/nsr/nwy113 chicago: Barton, Nicholas H. “Is Speciation Driven by Cycles of Mixing and Isolation?” National Science Review. Oxford University Press, 2019. https://doi.org/10.1093/nsr/nwy113. ieee: N. H. Barton, “Is speciation driven by cycles of mixing and isolation?,” National Science Review, vol. 6, no. 2. Oxford University Press, pp. 291–292, 2019. ista: Barton NH. 2019. Is speciation driven by cycles of mixing and isolation? National Science Review. 6(2), 291–292. mla: Barton, Nicholas H. “Is Speciation Driven by Cycles of Mixing and Isolation?” National Science Review, vol. 6, no. 2, Oxford University Press, 2019, pp. 291–92, doi:10.1093/nsr/nwy113. short: N.H. Barton, National Science Review 6 (2019) 291–292. date_created: 2019-09-07T14:43:02Z date_published: 2019-03-01T00:00:00Z date_updated: 2023-08-29T07:51:09Z day: '01' ddc: - '570' department: - _id: NiBa doi: 10.1093/nsr/nwy113 external_id: isi: - '000467957400025' file: - access_level: open_access checksum: 571d60fa21a568607d1fd04e119da88c content_type: application/pdf creator: dernst date_created: 2020-10-02T09:16:44Z date_updated: 2020-10-02T09:16:44Z file_id: '8595' file_name: 2019_NSR_Barton.pdf file_size: 106463 relation: main_file success: 1 file_date_updated: 2020-10-02T09:16:44Z has_accepted_license: '1' intvolume: ' 6' isi: 1 issue: '2' language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '03' oa: 1 oa_version: Published Version page: 291-292 publication: National Science Review publication_identifier: eissn: - 2053-714X issn: - 2095-5138 publication_status: published publisher: Oxford University Press quality_controlled: '1' scopus_import: '1' status: public title: Is speciation driven by cycles of mixing and isolation? tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 6 year: '2019' ... --- _id: '6857' abstract: - lang: eng text: "Gene Drives are regarded as future tools with a high potential for population control. Due to their inherent ability to overcome the rules of Mendelian inheritance, gene drives (GD) may spread genes rapidly through populations of sexually reproducing organisms. A release of organisms carrying a GD would constitute a paradigm shift in the handling of genetically modified organisms because gene drive organisms (GDO) are designed to drive their transgenes into wild populations and thereby increase the number of GDOs. The rapid development in this field and its focus on wild populations demand a prospective risk assessment with a focus on exposure related aspects. Presently, it is unclear how adequate risk management could be guaranteed to limit the spread of GDs in time and space, in order to avoid potential adverse effects in socio‐ecological systems.\r\n\r\nThe recent workshop on the “Evaluation of Spatial and Temporal Control of Gene Drives” hosted by the Institute of Safety/Security and Risk Sciences (ISR) in Vienna aimed at gaining some insight into the potential population dynamic behavior of GDs and appropriate measures of control. Scientists from France, Germany, England, and the USA discussed both topics in this meeting on April 4–5, 2019. This article summarizes results of the workshop." article_number: '1900151' article_processing_charge: No article_type: original author: - first_name: B full_name: Giese, B last_name: Giese - first_name: J L full_name: Friess, J L last_name: Friess - first_name: 'M F ' full_name: 'Schetelig, M F ' last_name: Schetelig - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 - first_name: Philip full_name: Messer, Philip last_name: Messer - first_name: Florence full_name: Debarre, Florence last_name: Debarre - first_name: H full_name: Meimberg, H last_name: Meimberg - first_name: N full_name: Windbichler, N last_name: Windbichler - first_name: C full_name: Boete, C last_name: Boete citation: ama: 'Giese B, Friess JL, Schetelig MF, et al. Gene Drives: Dynamics and regulatory matters – A report from the workshop “Evaluation of spatial and temporal control of Gene Drives”, 4 – 5 April 2019, Vienna. BioEssays. 2019;41(11). doi:10.1002/bies.201900151' apa: 'Giese, B., Friess, J. L., Schetelig, M. F., Barton, N. H., Messer, P., Debarre, F., … Boete, C. (2019). Gene Drives: Dynamics and regulatory matters – A report from the workshop “Evaluation of spatial and temporal control of Gene Drives”, 4 – 5 April 2019, Vienna. BioEssays. Wiley. https://doi.org/10.1002/bies.201900151' chicago: 'Giese, B, J L Friess, M F Schetelig, Nicholas H Barton, Philip Messer, Florence Debarre, H Meimberg, N Windbichler, and C Boete. “Gene Drives: Dynamics and Regulatory Matters – A Report from the Workshop ‘Evaluation of Spatial and Temporal Control of Gene Drives’, 4 – 5 April 2019, Vienna.” BioEssays. Wiley, 2019. https://doi.org/10.1002/bies.201900151.' ieee: 'B. Giese et al., “Gene Drives: Dynamics and regulatory matters – A report from the workshop ‘Evaluation of spatial and temporal control of Gene Drives’, 4 – 5 April 2019, Vienna,” BioEssays, vol. 41, no. 11. Wiley, 2019.' ista: 'Giese B, Friess JL, Schetelig MF, Barton NH, Messer P, Debarre F, Meimberg H, Windbichler N, Boete C. 2019. Gene Drives: Dynamics and regulatory matters – A report from the workshop “Evaluation of spatial and temporal control of Gene Drives”, 4 – 5 April 2019, Vienna. BioEssays. 41(11), 1900151.' mla: 'Giese, B., et al. “Gene Drives: Dynamics and Regulatory Matters – A Report from the Workshop ‘Evaluation of Spatial and Temporal Control of Gene Drives’, 4 – 5 April 2019, Vienna.” BioEssays, vol. 41, no. 11, 1900151, Wiley, 2019, doi:10.1002/bies.201900151.' short: B. Giese, J.L. Friess, M.F. Schetelig, N.H. Barton, P. Messer, F. Debarre, H. Meimberg, N. Windbichler, C. Boete, BioEssays 41 (2019). date_created: 2019-09-07T14:40:03Z date_published: 2019-11-01T00:00:00Z date_updated: 2023-08-30T06:56:26Z day: '01' ddc: - '570' department: - _id: NiBa doi: 10.1002/bies.201900151 external_id: isi: - '000489502000001' file: - access_level: open_access checksum: 8cc7551bff70b2658f8d5630f228ee12 content_type: application/pdf creator: dernst date_created: 2019-10-11T06:59:26Z date_updated: 2020-07-14T12:47:42Z file_id: '6939' file_name: 2019_BioEssays_Giese.pdf file_size: 193248 relation: main_file file_date_updated: 2020-07-14T12:47:42Z has_accepted_license: '1' intvolume: ' 41' isi: 1 issue: '11' language: - iso: eng month: '11' oa: 1 oa_version: Published Version publication: BioEssays publication_identifier: eissn: - 1521-1878 publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: 'Gene Drives: Dynamics and regulatory matters – A report from the workshop “Evaluation of spatial and temporal control of Gene Drives”, 4 – 5 April 2019, Vienna' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 41 year: '2019' ... --- _id: '13067' abstract: - lang: eng text: Genetic incompatibilities contribute to reproductive isolation between many diverging populations, but it is still unclear to what extent they play a role if divergence happens with gene flow. In contact zones between the "Crab" and "Wave" ecotypes of the snail Littorina saxatilis divergent selection forms strong barriers to gene flow, while the role of postzygotic barriers due to selection against hybrids remains unclear. High embryo abortion rates in this species could indicate the presence of such barriers. Postzygotic barriers might include genetic incompatibilities (e.g. Dobzhansky-Muller incompatibilities) but also maladaptation, both expected to be most pronounced in contact zones. In addition, embryo abortion might reflect physiological stress on females and embryos independent of any genetic stress. We examined all embryos of >500 females sampled outside and inside contact zones of three populations in Sweden. Females' clutch size ranged from 0 to 1011 embryos (mean 130±123) and abortion rates varied between 0 and100% (mean 12%). We described female genotypes by using a hybrid index based on hundreds of SNPs differentiated between ecotypes with which we characterised female genotypes. We also calculated female SNP heterozygosity and inversion karyotype. Clutch size did not vary with female hybrid index and abortion rates were only weakly related to hybrid index in two sites but not at all in a third site. No additional variation in abortion rate was explained by female SNP heterozygosity, but increased female inversion heterozygosity added slightly to increased abortion. Our results show only weak and probably biologically insignificant postzygotic barriers contributing to ecotype divergence and the high and variable abortion rates were marginally, if at all, explained by hybrid index of females. article_processing_charge: No author: - first_name: Kerstin full_name: Johannesson, Kerstin last_name: Johannesson - first_name: Zuzanna full_name: Zagrodzka, Zuzanna last_name: Zagrodzka - first_name: Rui full_name: Faria, Rui last_name: Faria - first_name: Anja M full_name: Westram, Anja M id: 3C147470-F248-11E8-B48F-1D18A9856A87 last_name: Westram orcid: 0000-0003-1050-4969 - first_name: Roger full_name: Butlin, Roger last_name: Butlin citation: ama: 'Johannesson K, Zagrodzka Z, Faria R, Westram AM, Butlin R. Data from: Is embryo abortion a postzygotic barrier to gene flow between Littorina ecotypes? 2019. doi:10.5061/DRYAD.TB2RBNZWK' apa: 'Johannesson, K., Zagrodzka, Z., Faria, R., Westram, A. M., & Butlin, R. (2019). Data from: Is embryo abortion a postzygotic barrier to gene flow between Littorina ecotypes? Dryad. https://doi.org/10.5061/DRYAD.TB2RBNZWK' chicago: 'Johannesson, Kerstin, Zuzanna Zagrodzka, Rui Faria, Anja M Westram, and Roger Butlin. “Data from: Is Embryo Abortion a Postzygotic Barrier to Gene Flow between Littorina Ecotypes?” Dryad, 2019. https://doi.org/10.5061/DRYAD.TB2RBNZWK.' ieee: 'K. Johannesson, Z. Zagrodzka, R. Faria, A. M. Westram, and R. Butlin, “Data from: Is embryo abortion a postzygotic barrier to gene flow between Littorina ecotypes?” Dryad, 2019.' ista: 'Johannesson K, Zagrodzka Z, Faria R, Westram AM, Butlin R. 2019. Data from: Is embryo abortion a postzygotic barrier to gene flow between Littorina ecotypes?, Dryad, 10.5061/DRYAD.TB2RBNZWK.' mla: 'Johannesson, Kerstin, et al. Data from: Is Embryo Abortion a Postzygotic Barrier to Gene Flow between Littorina Ecotypes? Dryad, 2019, doi:10.5061/DRYAD.TB2RBNZWK.' short: K. Johannesson, Z. Zagrodzka, R. Faria, A.M. Westram, R. Butlin, (2019). date_created: 2023-05-23T16:36:27Z date_published: 2019-12-02T00:00:00Z date_updated: 2023-09-06T14:48:57Z day: '02' ddc: - '570' department: - _id: NiBa doi: 10.5061/DRYAD.TB2RBNZWK license: https://creativecommons.org/publicdomain/zero/1.0/ main_file_link: - open_access: '1' url: https://doi.org/10.5061/dryad.tb2rbnzwk month: '12' oa: 1 oa_version: Published Version publisher: Dryad related_material: record: - id: '7205' relation: used_in_publication status: public status: public title: 'Data from: Is embryo abortion a postzygotic barrier to gene flow between Littorina ecotypes?' tmp: image: /images/cc_0.png legal_code_url: https://creativecommons.org/publicdomain/zero/1.0/legalcode name: Creative Commons Public Domain Dedication (CC0 1.0) short: CC0 (1.0) type: research_data_reference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2019' ... --- _id: '7393' abstract: - lang: eng text: The study of parallel ecological divergence provides important clues to the operation of natural selection. Parallel divergence often occurs in heterogeneous environments with different kinds of environmental gradients in different locations, but the genomic basis underlying this process is unknown. We investigated the genomics of rapid parallel adaptation in the marine snail Littorina saxatilis in response to two independent environmental axes (crab-predation versus wave-action and low-shore versus high-shore). Using pooled whole-genome resequencing, we show that sharing of genomic regions of high differentiation between environments is generally low but increases at smaller spatial scales. We identify different shared genomic regions of divergence for each environmental axis and show that most of these regions overlap with candidate chromosomal inversions. Several inversion regions are divergent and polymorphic across many localities. We argue that chromosomal inversions could store shared variation that fuels rapid parallel adaptation to heterogeneous environments, possibly as balanced polymorphism shared by adaptive gene flow. article_number: eaav9963 article_processing_charge: No article_type: original author: - first_name: Hernán E. full_name: Morales, Hernán E. last_name: Morales - first_name: Rui full_name: Faria, Rui last_name: Faria - first_name: Kerstin full_name: Johannesson, Kerstin last_name: Johannesson - first_name: Tomas full_name: Larsson, Tomas last_name: Larsson - first_name: Marina full_name: Panova, Marina last_name: Panova - first_name: Anja M full_name: Westram, Anja M id: 3C147470-F248-11E8-B48F-1D18A9856A87 last_name: Westram orcid: 0000-0003-1050-4969 - first_name: Roger K. full_name: Butlin, Roger K. last_name: Butlin citation: ama: 'Morales HE, Faria R, Johannesson K, et al. Genomic architecture of parallel ecological divergence: Beyond a single environmental contrast. Science Advances. 2019;5(12). doi:10.1126/sciadv.aav9963' apa: 'Morales, H. E., Faria, R., Johannesson, K., Larsson, T., Panova, M., Westram, A. M., & Butlin, R. K. (2019). Genomic architecture of parallel ecological divergence: Beyond a single environmental contrast. Science Advances. AAAS. https://doi.org/10.1126/sciadv.aav9963' chicago: 'Morales, Hernán E., Rui Faria, Kerstin Johannesson, Tomas Larsson, Marina Panova, Anja M Westram, and Roger K. Butlin. “Genomic Architecture of Parallel Ecological Divergence: Beyond a Single Environmental Contrast.” Science Advances. AAAS, 2019. https://doi.org/10.1126/sciadv.aav9963.' ieee: 'H. E. Morales et al., “Genomic architecture of parallel ecological divergence: Beyond a single environmental contrast,” Science Advances, vol. 5, no. 12. AAAS, 2019.' ista: 'Morales HE, Faria R, Johannesson K, Larsson T, Panova M, Westram AM, Butlin RK. 2019. Genomic architecture of parallel ecological divergence: Beyond a single environmental contrast. Science Advances. 5(12), eaav9963.' mla: 'Morales, Hernán E., et al. “Genomic Architecture of Parallel Ecological Divergence: Beyond a Single Environmental Contrast.” Science Advances, vol. 5, no. 12, eaav9963, AAAS, 2019, doi:10.1126/sciadv.aav9963.' short: H.E. Morales, R. Faria, K. Johannesson, T. Larsson, M. Panova, A.M. Westram, R.K. Butlin, Science Advances 5 (2019). date_created: 2020-01-29T15:58:27Z date_published: 2019-12-04T00:00:00Z date_updated: 2023-09-06T15:35:56Z day: '04' ddc: - '570' department: - _id: NiBa doi: 10.1126/sciadv.aav9963 ec_funded: 1 external_id: isi: - '000505069600008' pmid: - '31840052' file: - access_level: open_access checksum: af99a5dcdc66c6d6102051faf3be48d8 content_type: application/pdf creator: dernst date_created: 2020-02-03T13:33:25Z date_updated: 2020-07-14T12:47:57Z file_id: '7442' file_name: 2019_ScienceAdvances_Morales.pdf file_size: 1869449 relation: main_file file_date_updated: 2020-07-14T12:47:57Z has_accepted_license: '1' intvolume: ' 5' isi: 1 issue: '12' language: - iso: eng month: '12' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: 265B41B8-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '797747' name: Theoretical and empirical approaches to understanding Parallel Adaptation publication: Science Advances publication_identifier: issn: - 2375-2548 publication_status: published publisher: AAAS quality_controlled: '1' scopus_import: '1' status: public title: 'Genomic architecture of parallel ecological divergence: Beyond a single environmental contrast' tmp: image: /images/cc_by_nc.png legal_code_url: https://creativecommons.org/licenses/by-nc/4.0/legalcode name: Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) short: CC BY-NC (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 5 year: '2019' ... --- _id: '8281' abstract: - lang: eng text: We review the history of population genetics, starting with its origins a century ago from the synthesis between Mendel and Darwin's ideas, through to the recent development of sophisticated schemes of inference from sequence data, based on the coalescent. We explain the close relation between the coalescent and a diffusion process, which we illustrate by their application to understand spatial structure. We summarise the powerful methods available for analysis of multiple loci, when linkage equilibrium can be assumed, and then discuss approaches to the more challenging case, where associations between alleles require that we follow genotype, rather than allele, frequencies. Though we can hardly cover the whole of population genetics, we give an overview of the current state of the subject, and future challenges to it. article_processing_charge: No author: - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 - first_name: Alison full_name: Etheridge, Alison last_name: Etheridge citation: ama: 'Barton NH, Etheridge A. Mathematical models in population genetics. In: Balding D, Moltke I, Marioni J, eds. Handbook of Statistical Genomics. 4th ed. Wiley; 2019:115-144. doi:10.1002/9781119487845.ch4' apa: Barton, N. H., & Etheridge, A. (2019). Mathematical models in population genetics. In D. Balding, I. Moltke, & J. Marioni (Eds.), Handbook of statistical genomics (4th ed., pp. 115–144). Wiley. https://doi.org/10.1002/9781119487845.ch4 chicago: Barton, Nicholas H, and Alison Etheridge. “Mathematical Models in Population Genetics.” In Handbook of Statistical Genomics, edited by David Balding, Ida Moltke, and John Marioni, 4th ed., 115–44. Wiley, 2019. https://doi.org/10.1002/9781119487845.ch4. ieee: N. H. Barton and A. Etheridge, “Mathematical models in population genetics,” in Handbook of statistical genomics, 4th ed., D. Balding, I. Moltke, and J. Marioni, Eds. Wiley, 2019, pp. 115–144. ista: 'Barton NH, Etheridge A. 2019.Mathematical models in population genetics. In: Handbook of statistical genomics. , 115–144.' mla: Barton, Nicholas H., and Alison Etheridge. “Mathematical Models in Population Genetics.” Handbook of Statistical Genomics, edited by David Balding et al., 4th ed., Wiley, 2019, pp. 115–44, doi:10.1002/9781119487845.ch4. short: N.H. Barton, A. Etheridge, in:, D. Balding, I. Moltke, J. Marioni (Eds.), Handbook of Statistical Genomics, 4th ed., Wiley, 2019, pp. 115–144. date_created: 2020-08-21T04:25:39Z date_published: 2019-07-29T00:00:00Z date_updated: 2023-09-08T11:24:15Z day: '29' ddc: - '576' department: - _id: NiBa doi: 10.1002/9781119487845.ch4 edition: '4' editor: - first_name: David full_name: Balding, David last_name: Balding - first_name: Ida full_name: Moltke, Ida last_name: Moltke - first_name: John full_name: Marioni, John last_name: Marioni external_id: isi: - '000261343000003' isi: 1 language: - iso: eng month: '07' oa_version: None page: 115-144 publication: Handbook of statistical genomics publication_identifier: isbn: - '9781119429142' publication_status: published publisher: Wiley quality_controlled: '1' status: public title: Mathematical models in population genetics type: book_chapter user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2019' ... --- _id: '9805' abstract: - lang: eng text: The spread of adaptive alleles is fundamental to evolution, and in theory, this process is well‐understood. However, only rarely can we follow this process—whether it originates from the spread of a new mutation, or by introgression from another population. In this issue of Molecular Ecology, Hanemaaijer et al. (2018) report on a 25‐year long study of the mosquitoes Anopheles gambiae (Figure 1) and Anopheles coluzzi in Mali, based on genotypes at 15 single‐nucleotide polymorphism (SNP). The species are usually reproductively isolated from each other, but in 2002 and 2006, bursts of hybridization were observed, when F1 hybrids became abundant. Alleles backcrossed from A. gambiae into A. coluzzi, but after the first event, these declined over the following years. In contrast, after 2006, an insecticide resistance allele that had established in A. gambiae spread into A. coluzzi, and rose to high frequency there, over 6 years (~75 generations). Whole genome sequences of 74 individuals showed that A. gambiae SNP from across the genome had become common in the A. coluzzi population, but that most of these were clustered in 34 genes around the resistance locus. A new set of SNP from 25 of these genes were assayed over time; over the 4 years since near‐fixation of the resistance allele; some remained common, whereas others declined. What do these patterns tell us about this introgression event? article_processing_charge: No author: - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 citation: ama: 'Barton NH. Data from: The consequences of an introgression event. 2019. doi:10.5061/dryad.2kb6fh4' apa: 'Barton, N. H. (2019). Data from: The consequences of an introgression event. Dryad. https://doi.org/10.5061/dryad.2kb6fh4' chicago: 'Barton, Nicholas H. “Data from: The Consequences of an Introgression Event.” Dryad, 2019. https://doi.org/10.5061/dryad.2kb6fh4.' ieee: 'N. H. Barton, “Data from: The consequences of an introgression event.” Dryad, 2019.' ista: 'Barton NH. 2019. Data from: The consequences of an introgression event, Dryad, 10.5061/dryad.2kb6fh4.' mla: 'Barton, Nicholas H. Data from: The Consequences of an Introgression Event. Dryad, 2019, doi:10.5061/dryad.2kb6fh4.' short: N.H. Barton, (2019). date_created: 2021-08-06T12:03:50Z date_published: 2019-01-09T00:00:00Z date_updated: 2023-09-19T10:06:07Z day: '09' department: - _id: NiBa doi: 10.5061/dryad.2kb6fh4 main_file_link: - open_access: '1' url: https://doi.org/10.5061/dryad.2kb6fh4 month: '01' oa: 1 oa_version: Published Version publisher: Dryad related_material: record: - id: '40' relation: used_in_publication status: public status: public title: 'Data from: The consequences of an introgression event' type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2019' ... --- _id: '6071' abstract: - lang: eng text: 'Transcription factors, by binding to specific sequences on the DNA, control the precise spatio-temporal expression of genes inside a cell. However, this specificity is limited, leading to frequent incorrect binding of transcription factors that might have deleterious consequences on the cell. By constructing a biophysical model of TF-DNA binding in the context of gene regulation, I will first explore how regulatory constraints can strongly shape the distribution of a population in sequence space. Then, by directly linking this to a picture of multiple types of transcription factors performing their functions simultaneously inside the cell, I will explore the extent of regulatory crosstalk -- incorrect binding interactions between transcription factors and binding sites that lead to erroneous regulatory states -- and understand the constraints this places on the design of regulatory systems. I will then develop a generic theoretical framework to investigate the coevolution of multiple transcription factors and multiple binding sites, in the context of a gene regulatory network that performs a certain function. As a particular tractable version of this problem, I will consider the evolution of two transcription factors when they transmit upstream signals to downstream target genes. Specifically, I will describe the evolutionary steady states and the evolutionary pathways involved, along with their timescales, of a system that initially undergoes a transcription factor duplication event. To connect this important theoretical model to the prominent biological event of transcription factor duplication giving rise to paralogous families, I will then describe a bioinformatics analysis of C2H2 Zn-finger transcription factors, a major family in humans, and focus on the patterns of evolution that paralogs have undergone in their various protein domains in the recent past. ' alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Roshan full_name: Prizak, Roshan id: 4456104E-F248-11E8-B48F-1D18A9856A87 last_name: Prizak citation: ama: Prizak R. Coevolution of transcription factors and their binding sites in sequence space. 2019. doi:10.15479/at:ista:th6071 apa: Prizak, R. (2019). Coevolution of transcription factors and their binding sites in sequence space. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:th6071 chicago: Prizak, Roshan. “Coevolution of Transcription Factors and Their Binding Sites in Sequence Space.” Institute of Science and Technology Austria, 2019. https://doi.org/10.15479/at:ista:th6071. ieee: R. Prizak, “Coevolution of transcription factors and their binding sites in sequence space,” Institute of Science and Technology Austria, 2019. ista: Prizak R. 2019. Coevolution of transcription factors and their binding sites in sequence space. Institute of Science and Technology Austria. mla: Prizak, Roshan. Coevolution of Transcription Factors and Their Binding Sites in Sequence Space. Institute of Science and Technology Austria, 2019, doi:10.15479/at:ista:th6071. short: R. Prizak, Coevolution of Transcription Factors and Their Binding Sites in Sequence Space, Institute of Science and Technology Austria, 2019. date_created: 2019-03-06T16:16:10Z date_published: 2019-03-11T00:00:00Z date_updated: 2023-09-22T10:00:48Z day: '11' ddc: - '576' degree_awarded: PhD department: - _id: GaTk - _id: NiBa doi: 10.15479/at:ista:th6071 file: - access_level: open_access checksum: e60a72de35d270b31f1a23d50f224ec0 content_type: application/pdf creator: rprizak date_created: 2019-03-06T16:05:07Z date_updated: 2020-07-14T12:47:18Z file_id: '6072' file_name: Thesis_final_PDFA_RoshanPrizak.pdf file_size: 20995465 relation: main_file - access_level: closed checksum: 67c2630333d05ebafef5f018863a8465 content_type: application/zip creator: rprizak date_created: 2019-03-06T16:09:39Z date_updated: 2020-07-14T12:47:18Z file_id: '6073' file_name: thesis_v2_merge.zip file_size: 85705272 relation: source_file title: Latex files file_date_updated: 2020-07-14T12:47:18Z has_accepted_license: '1' language: - iso: eng month: '03' oa: 1 oa_version: Published Version page: '189' project: - _id: 254E9036-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P28844-B27 name: Biophysics of information processing in gene regulation publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '1358' relation: part_of_dissertation status: public - id: '955' relation: part_of_dissertation status: public status: public supervisor: - first_name: Gašper full_name: Tkačik, Gašper id: 3D494DCA-F248-11E8-B48F-1D18A9856A87 last_name: Tkačik orcid: 0000-0002-6699-1455 title: Coevolution of transcription factors and their binding sites in sequence space type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2019' ... --- _id: '6856' abstract: - lang: eng text: 'Plant mating systems play a key role in structuring genetic variation both within and between species. In hybrid zones, the outcomes and dynamics of hybridization are usually interpreted as the balance between gene flow and selection against hybrids. Yet, mating systems can introduce selective forces that alter these expectations; with diverse outcomes for the level and direction of gene flow depending on variation in outcrossing and whether the mating systems of the species pair are the same or divergent. We present a survey of hybridization in 133 species pairs from 41 plant families and examine how patterns of hybridization vary with mating system. We examine if hybrid zone mode, level of gene flow, asymmetries in gene flow and the frequency of reproductive isolating barriers vary in relation to mating system/s of the species pair. We combine these results with a simulation model and examples from the literature to address two general themes: (i) the two‐way interaction between introgression and the evolution of reproductive systems, and (ii) how mating system can facilitate or restrict interspecific gene flow. We conclude that examining mating system with hybridization provides unique opportunities to understand divergence and the processes underlying reproductive isolation.' article_processing_charge: No article_type: original author: - first_name: Melinda full_name: Pickup, Melinda id: 2C78037E-F248-11E8-B48F-1D18A9856A87 last_name: Pickup orcid: 0000-0001-6118-0541 - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 - first_name: Yaniv full_name: Brandvain, Yaniv last_name: Brandvain - first_name: Christelle full_name: Fraisse, Christelle id: 32DF5794-F248-11E8-B48F-1D18A9856A87 last_name: Fraisse orcid: 0000-0001-8441-5075 - first_name: Sarah full_name: Yakimowski, Sarah last_name: Yakimowski - first_name: Tanmay full_name: Dixit, Tanmay last_name: Dixit - first_name: Christian full_name: Lexer, Christian last_name: Lexer - first_name: Eva full_name: Cereghetti, Eva id: 71AA91B4-05ED-11EA-8BEB-F5833E63BD63 last_name: Cereghetti - first_name: David full_name: Field, David id: 419049E2-F248-11E8-B48F-1D18A9856A87 last_name: Field orcid: 0000-0002-4014-8478 citation: ama: 'Pickup M, Barton NH, Brandvain Y, et al. Mating system variation in hybrid zones: Facilitation, barriers and asymmetries to gene flow. New Phytologist. 2019;224(3):1035-1047. doi:10.1111/nph.16180' apa: 'Pickup, M., Barton, N. H., Brandvain, Y., Fraisse, C., Yakimowski, S., Dixit, T., … Field, D. (2019). Mating system variation in hybrid zones: Facilitation, barriers and asymmetries to gene flow. New Phytologist. Wiley. https://doi.org/10.1111/nph.16180' chicago: 'Pickup, Melinda, Nicholas H Barton, Yaniv Brandvain, Christelle Fraisse, Sarah Yakimowski, Tanmay Dixit, Christian Lexer, Eva Cereghetti, and David Field. “Mating System Variation in Hybrid Zones: Facilitation, Barriers and Asymmetries to Gene Flow.” New Phytologist. Wiley, 2019. https://doi.org/10.1111/nph.16180.' ieee: 'M. Pickup et al., “Mating system variation in hybrid zones: Facilitation, barriers and asymmetries to gene flow,” New Phytologist, vol. 224, no. 3. Wiley, pp. 1035–1047, 2019.' ista: 'Pickup M, Barton NH, Brandvain Y, Fraisse C, Yakimowski S, Dixit T, Lexer C, Cereghetti E, Field D. 2019. Mating system variation in hybrid zones: Facilitation, barriers and asymmetries to gene flow. New Phytologist. 224(3), 1035–1047.' mla: 'Pickup, Melinda, et al. “Mating System Variation in Hybrid Zones: Facilitation, Barriers and Asymmetries to Gene Flow.” New Phytologist, vol. 224, no. 3, Wiley, 2019, pp. 1035–47, doi:10.1111/nph.16180.' short: M. Pickup, N.H. Barton, Y. Brandvain, C. Fraisse, S. Yakimowski, T. Dixit, C. Lexer, E. Cereghetti, D. Field, New Phytologist 224 (2019) 1035–1047. date_created: 2019-09-07T14:35:40Z date_published: 2019-11-01T00:00:00Z date_updated: 2023-10-18T08:47:08Z day: '01' ddc: - '570' department: - _id: NiBa doi: 10.1111/nph.16180 ec_funded: 1 external_id: pmid: - '31505037' file: - access_level: open_access checksum: 21e4c95599bbcaf7c483b89954658672 content_type: application/pdf creator: dernst date_created: 2019-11-13T08:15:05Z date_updated: 2020-07-14T12:47:42Z file_id: '7011' file_name: 2019_NewPhytologist_Pickup.pdf file_size: 1511958 relation: main_file file_date_updated: 2020-07-14T12:47:42Z has_accepted_license: '1' intvolume: ' 224' issue: '3' language: - iso: eng month: '11' oa: 1 oa_version: Published Version page: 1035-1047 pmid: 1 project: - _id: 25B36484-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '329960' name: Mating system and the evolutionary dynamics of hybrid zones - _id: 2662AADE-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M02463 name: Sex chromosomes and species barriers publication: New Phytologist publication_identifier: eissn: - 1469-8137 issn: - 0028-646X publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: 'Mating system variation in hybrid zones: Facilitation, barriers and asymmetries to gene flow' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 224 year: '2019' ... --- _id: '6089' abstract: - lang: eng text: Pleiotropy is the well-established idea that a single mutation affects multiple phenotypes. If a mutation has opposite effects on fitness when expressed in different contexts, then genetic conflict arises. Pleiotropic conflict is expected to reduce the efficacy of selection by limiting the fixation of beneficial mutations through adaptation, and the removal of deleterious mutations through purifying selection. Although this has been widely discussed, in particular in the context of a putative “gender load,” it has yet to be systematically quantified. In this work, we empirically estimate to which extent different pleiotropic regimes impede the efficacy of selection in Drosophila melanogaster. We use whole-genome polymorphism data from a single African population and divergence data from D. simulans to estimate the fraction of adaptive fixations (α), the rate of adaptation (ωA), and the direction of selection (DoS). After controlling for confounding covariates, we find that the different pleiotropic regimes have a relatively small, but significant, effect on selection efficacy. Specifically, our results suggest that pleiotropic sexual antagonism may restrict the efficacy of selection, but that this conflict can be resolved by limiting the expression of genes to the sex where they are beneficial. Intermediate levels of pleiotropy across tissues and life stages can also lead to maladaptation in D. melanogaster, due to inefficient purifying selection combined with low frequency of mutations that confer a selective advantage. Thus, our study highlights the need to consider the efficacy of selection in the context of antagonistic pleiotropy, and of genetic conflict in general. article_processing_charge: No author: - first_name: Christelle full_name: Fraisse, Christelle id: 32DF5794-F248-11E8-B48F-1D18A9856A87 last_name: Fraisse orcid: 0000-0001-8441-5075 - first_name: Gemma full_name: Puixeu Sala, Gemma id: 33AB266C-F248-11E8-B48F-1D18A9856A87 last_name: Puixeu Sala orcid: 0000-0001-8330-1754 - first_name: Beatriz full_name: Vicoso, Beatriz id: 49E1C5C6-F248-11E8-B48F-1D18A9856A87 last_name: Vicoso orcid: 0000-0002-4579-8306 citation: ama: Fraisse C, Puixeu Sala G, Vicoso B. Pleiotropy modulates the efficacy of selection in drosophila melanogaster. Molecular biology and evolution. 2019;36(3):500-515. doi:10.1093/molbev/msy246 apa: Fraisse, C., Puixeu Sala, G., & Vicoso, B. (2019). Pleiotropy modulates the efficacy of selection in drosophila melanogaster. Molecular Biology and Evolution. Oxford University Press. https://doi.org/10.1093/molbev/msy246 chicago: Fraisse, Christelle, Gemma Puixeu Sala, and Beatriz Vicoso. “Pleiotropy Modulates the Efficacy of Selection in Drosophila Melanogaster.” Molecular Biology and Evolution. Oxford University Press, 2019. https://doi.org/10.1093/molbev/msy246. ieee: C. Fraisse, G. Puixeu Sala, and B. Vicoso, “Pleiotropy modulates the efficacy of selection in drosophila melanogaster,” Molecular biology and evolution, vol. 36, no. 3. Oxford University Press, pp. 500–515, 2019. ista: Fraisse C, Puixeu Sala G, Vicoso B. 2019. Pleiotropy modulates the efficacy of selection in drosophila melanogaster. Molecular biology and evolution. 36(3), 500–515. mla: Fraisse, Christelle, et al. “Pleiotropy Modulates the Efficacy of Selection in Drosophila Melanogaster.” Molecular Biology and Evolution, vol. 36, no. 3, Oxford University Press, 2019, pp. 500–15, doi:10.1093/molbev/msy246. short: C. Fraisse, G. Puixeu Sala, B. Vicoso, Molecular Biology and Evolution 36 (2019) 500–515. date_created: 2019-03-10T22:59:19Z date_published: 2019-03-01T00:00:00Z date_updated: 2024-02-21T13:59:17Z day: '01' department: - _id: BeVi - _id: NiBa doi: 10.1093/molbev/msy246 external_id: isi: - '000462585100006' pmid: - '30590559' intvolume: ' 36' isi: 1 issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: https://www.ncbi.nlm.nih.gov/pubmed/30590559 month: '03' oa: 1 oa_version: Submitted Version page: 500-515 pmid: 1 project: - _id: 250ED89C-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P28842-B22 name: Sex chromosome evolution under male- and female- heterogamety publication: Molecular biology and evolution publication_identifier: eissn: - 1537-1719 issn: - 0737-4038 publication_status: published publisher: Oxford University Press quality_controlled: '1' related_material: record: - id: '5757' relation: popular_science status: public scopus_import: '1' status: public title: Pleiotropy modulates the efficacy of selection in drosophila melanogaster type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 36 year: '2019' ... --- _id: '6090' abstract: - lang: eng text: Cells need to reliably sense external ligand concentrations to achieve various biological functions such as chemotaxis or signaling. The molecular recognition of ligands by surface receptors is degenerate in many systems, leading to crosstalk between ligand-receptor pairs. Crosstalk is often thought of as a deviation from optimal specific recognition, as the binding of noncognate ligands can interfere with the detection of the receptor's cognate ligand, possibly leading to a false triggering of a downstream signaling pathway. Here we quantify the optimal precision of sensing the concentrations of multiple ligands by a collection of promiscuous receptors. We demonstrate that crosstalk can improve precision in concentration sensing and discrimination tasks. To achieve superior precision, the additional information about ligand concentrations contained in short binding events of the noncognate ligand should be exploited. We present a proofreading scheme to realize an approximate estimation of multiple ligand concentrations that reaches a precision close to the derived optimal bounds. Our results help rationalize the observed ubiquity of receptor crosstalk in molecular sensing. article_number: '022423' article_processing_charge: No author: - first_name: Martín full_name: Carballo-Pacheco, Martín last_name: Carballo-Pacheco - first_name: Jonathan full_name: Desponds, Jonathan last_name: Desponds - first_name: Tatyana full_name: Gavrilchenko, Tatyana last_name: Gavrilchenko - first_name: Andreas full_name: Mayer, Andreas last_name: Mayer - first_name: Roshan full_name: Prizak, Roshan id: 4456104E-F248-11E8-B48F-1D18A9856A87 last_name: Prizak - first_name: Gautam full_name: Reddy, Gautam last_name: Reddy - first_name: Ilya full_name: Nemenman, Ilya last_name: Nemenman - first_name: Thierry full_name: Mora, Thierry last_name: Mora citation: ama: Carballo-Pacheco M, Desponds J, Gavrilchenko T, et al. Receptor crosstalk improves concentration sensing of multiple ligands. Physical Review E. 2019;99(2). doi:10.1103/PhysRevE.99.022423 apa: Carballo-Pacheco, M., Desponds, J., Gavrilchenko, T., Mayer, A., Prizak, R., Reddy, G., … Mora, T. (2019). Receptor crosstalk improves concentration sensing of multiple ligands. Physical Review E. American Physical Society. https://doi.org/10.1103/PhysRevE.99.022423 chicago: Carballo-Pacheco, Martín, Jonathan Desponds, Tatyana Gavrilchenko, Andreas Mayer, Roshan Prizak, Gautam Reddy, Ilya Nemenman, and Thierry Mora. “Receptor Crosstalk Improves Concentration Sensing of Multiple Ligands.” Physical Review E. American Physical Society, 2019. https://doi.org/10.1103/PhysRevE.99.022423. ieee: M. Carballo-Pacheco et al., “Receptor crosstalk improves concentration sensing of multiple ligands,” Physical Review E, vol. 99, no. 2. American Physical Society, 2019. ista: Carballo-Pacheco M, Desponds J, Gavrilchenko T, Mayer A, Prizak R, Reddy G, Nemenman I, Mora T. 2019. Receptor crosstalk improves concentration sensing of multiple ligands. Physical Review E. 99(2), 022423. mla: Carballo-Pacheco, Martín, et al. “Receptor Crosstalk Improves Concentration Sensing of Multiple Ligands.” Physical Review E, vol. 99, no. 2, 022423, American Physical Society, 2019, doi:10.1103/PhysRevE.99.022423. short: M. Carballo-Pacheco, J. Desponds, T. Gavrilchenko, A. Mayer, R. Prizak, G. Reddy, I. Nemenman, T. Mora, Physical Review E 99 (2019). date_created: 2019-03-10T22:59:20Z date_published: 2019-02-26T00:00:00Z date_updated: 2024-02-28T13:12:06Z day: '26' department: - _id: NiBa - _id: GaTk doi: 10.1103/PhysRevE.99.022423 external_id: isi: - '000459916500007' intvolume: ' 99' isi: 1 issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://www.biorxiv.org/content/10.1101/448118v1.abstract month: '02' oa: 1 oa_version: Preprint publication: Physical Review E publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Receptor crosstalk improves concentration sensing of multiple ligands type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 99 year: '2019' ... --- _id: '6713' abstract: - lang: eng text: Evolutionary studies are often limited by missing data that are critical to understanding the history of selection. Selection experiments, which reproduce rapid evolution under controlled conditions, are excellent tools to study how genomes evolve under selection. Here we present a genomic dissection of the Longshanks selection experiment, in which mice were selectively bred over 20 generations for longer tibiae relative to body mass, resulting in 13% longer tibiae in two replicates. We synthesized evolutionary theory, genome sequences and molecular genetics to understand the selection response and found that it involved both polygenic adaptation and discrete loci of major effect, with the strongest loci tending to be selected in parallel between replicates. We show that selection may favor de-repression of bone growth through inactivating two limb enhancers of an inhibitor, Nkx3-2. Our integrative genomic analyses thus show that it is possible to connect individual base-pair changes to the overall selection response. article_number: e42014 article_processing_charge: No author: - first_name: João Pl full_name: Castro, João Pl last_name: Castro - first_name: Michelle N. full_name: Yancoskie, Michelle N. last_name: Yancoskie - first_name: Marta full_name: Marchini, Marta last_name: Marchini - first_name: Stefanie full_name: Belohlavy, Stefanie id: 43FE426A-F248-11E8-B48F-1D18A9856A87 last_name: Belohlavy orcid: 0000-0002-9849-498X - first_name: Layla full_name: Hiramatsu, Layla last_name: Hiramatsu - first_name: Marek full_name: Kučka, Marek last_name: Kučka - first_name: William H. full_name: Beluch, William H. last_name: Beluch - first_name: Ronald full_name: Naumann, Ronald last_name: Naumann - first_name: Isabella full_name: Skuplik, Isabella last_name: Skuplik - first_name: John full_name: Cobb, John last_name: Cobb - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 - first_name: Campbell full_name: Rolian, Campbell last_name: Rolian - first_name: Yingguang Frank full_name: Chan, Yingguang Frank last_name: Chan citation: ama: Castro JP, Yancoskie MN, Marchini M, et al. An integrative genomic analysis of the Longshanks selection experiment for longer limbs in mice. eLife. 2019;8. doi:10.7554/eLife.42014 apa: Castro, J. P., Yancoskie, M. N., Marchini, M., Belohlavy, S., Hiramatsu, L., Kučka, M., … Chan, Y. F. (2019). An integrative genomic analysis of the Longshanks selection experiment for longer limbs in mice. ELife. eLife Sciences Publications. https://doi.org/10.7554/eLife.42014 chicago: Castro, João Pl, Michelle N. Yancoskie, Marta Marchini, Stefanie Belohlavy, Layla Hiramatsu, Marek Kučka, William H. Beluch, et al. “An Integrative Genomic Analysis of the Longshanks Selection Experiment for Longer Limbs in Mice.” ELife. eLife Sciences Publications, 2019. https://doi.org/10.7554/eLife.42014. ieee: J. P. Castro et al., “An integrative genomic analysis of the Longshanks selection experiment for longer limbs in mice,” eLife, vol. 8. eLife Sciences Publications, 2019. ista: Castro JP, Yancoskie MN, Marchini M, Belohlavy S, Hiramatsu L, Kučka M, Beluch WH, Naumann R, Skuplik I, Cobb J, Barton NH, Rolian C, Chan YF. 2019. An integrative genomic analysis of the Longshanks selection experiment for longer limbs in mice. eLife. 8, e42014. mla: Castro, João Pl, et al. “An Integrative Genomic Analysis of the Longshanks Selection Experiment for Longer Limbs in Mice.” ELife, vol. 8, e42014, eLife Sciences Publications, 2019, doi:10.7554/eLife.42014. short: J.P. Castro, M.N. Yancoskie, M. Marchini, S. Belohlavy, L. Hiramatsu, M. Kučka, W.H. Beluch, R. Naumann, I. Skuplik, J. Cobb, N.H. Barton, C. Rolian, Y.F. Chan, ELife 8 (2019). date_created: 2019-07-28T21:59:17Z date_published: 2019-06-06T00:00:00Z date_updated: 2024-03-27T23:30:22Z day: '06' ddc: - '576' department: - _id: NiBa doi: 10.7554/eLife.42014 external_id: isi: - '000473588700001' pmid: - '31169497' file: - access_level: open_access checksum: fa0936fe58f0d9e3f8e75038570e5a17 content_type: application/pdf creator: apreinsp date_created: 2019-07-29T07:41:18Z date_updated: 2020-07-14T12:47:38Z file_id: '6721' file_name: 2019_eLife_Castro.pdf file_size: 6748249 relation: main_file file_date_updated: 2020-07-14T12:47:38Z has_accepted_license: '1' intvolume: ' 8' isi: 1 language: - iso: eng month: '06' oa: 1 oa_version: Published Version pmid: 1 publication: eLife publication_status: published publisher: eLife Sciences Publications quality_controlled: '1' related_material: record: - id: '9804' relation: research_data status: public - id: '11388' relation: dissertation_contains status: public scopus_import: '1' status: public title: An integrative genomic analysis of the Longshanks selection experiment for longer limbs in mice tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 8 year: '2019' ... --- _id: '315' abstract: - lang: eng text: 'More than 100 years after Grigg’s influential analysis of species’ borders, the causes of limits to species’ ranges still represent a puzzle that has never been understood with clarity. The topic has become especially important recently as many scientists have become interested in the potential for species’ ranges to shift in response to climate change—and yet nearly all of those studies fail to recognise or incorporate evolutionary genetics in a way that relates to theoretical developments. I show that range margins can be understood based on just two measurable parameters: (i) the fitness cost of dispersal—a measure of environmental heterogeneity—and (ii) the strength of genetic drift, which reduces genetic diversity. Together, these two parameters define an ‘expansion threshold’: adaptation fails when genetic drift reduces genetic diversity below that required for adaptation to a heterogeneous environment. When the key parameters drop below this expansion threshold locally, a sharp range margin forms. When they drop below this threshold throughout the species’ range, adaptation collapses everywhere, resulting in either extinction or formation of a fragmented metapopulation. Because the effects of dispersal differ fundamentally with dimension, the second parameter—the strength of genetic drift—is qualitatively different compared to a linear habitat. In two-dimensional habitats, genetic drift becomes effectively independent of selection. It decreases with ‘neighbourhood size’—the number of individuals accessible by dispersal within one generation. Moreover, in contrast to earlier predictions, which neglected evolution of genetic variance and/or stochasticity in two dimensions, dispersal into small marginal populations aids adaptation. This is because the reduction of both genetic and demographic stochasticity has a stronger effect than the cost of dispersal through increased maladaptation. The expansion threshold thus provides a novel, theoretically justified, and testable prediction for formation of the range margin and collapse of the species’ range.' article_number: e2005372 author: - first_name: Jitka full_name: Polechova, Jitka id: 3BBFB084-F248-11E8-B48F-1D18A9856A87 last_name: Polechova orcid: 0000-0003-0951-3112 citation: ama: Polechova J. Is the sky the limit? On the expansion threshold of a species’ range. PLoS Biology. 2018;16(6). doi:10.1371/journal.pbio.2005372 apa: Polechova, J. (2018). Is the sky the limit? On the expansion threshold of a species’ range. PLoS Biology. Public Library of Science. https://doi.org/10.1371/journal.pbio.2005372 chicago: Polechova, Jitka. “Is the Sky the Limit? On the Expansion Threshold of a Species’ Range.” PLoS Biology. Public Library of Science, 2018. https://doi.org/10.1371/journal.pbio.2005372. ieee: J. Polechova, “Is the sky the limit? On the expansion threshold of a species’ range,” PLoS Biology, vol. 16, no. 6. Public Library of Science, 2018. ista: Polechova J. 2018. Is the sky the limit? On the expansion threshold of a species’ range. PLoS Biology. 16(6), e2005372. mla: Polechova, Jitka. “Is the Sky the Limit? On the Expansion Threshold of a Species’ Range.” PLoS Biology, vol. 16, no. 6, e2005372, Public Library of Science, 2018, doi:10.1371/journal.pbio.2005372. short: J. Polechova, PLoS Biology 16 (2018). date_created: 2018-12-11T11:45:46Z date_published: 2018-06-15T00:00:00Z date_updated: 2023-02-23T14:10:16Z day: '15' ddc: - '576' department: - _id: NiBa doi: 10.1371/journal.pbio.2005372 file: - access_level: open_access checksum: 908c52751bba30c55ed36789e5e4c84d content_type: application/pdf creator: dernst date_created: 2019-01-22T08:30:03Z date_updated: 2020-07-14T12:46:01Z file_id: '5870' file_name: 2017_PLOS_Polechova.pdf file_size: 6968201 relation: main_file file_date_updated: 2020-07-14T12:46:01Z has_accepted_license: '1' intvolume: ' 16' issue: '6' language: - iso: eng month: '06' oa: 1 oa_version: Published Version publication: PLoS Biology publication_identifier: issn: - '15449173' publication_status: published publisher: Public Library of Science publist_id: '7550' quality_controlled: '1' related_material: record: - id: '9839' relation: research_data status: public scopus_import: 1 status: public title: Is the sky the limit? On the expansion threshold of a species’ range tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 16 year: '2018' ... --- _id: '9837' abstract: - lang: eng text: Both classical and recent studies suggest that chromosomal inversion polymorphisms are important in adaptation and speciation. However, biases in discovery and reporting of inversions make it difficult to assess their prevalence and biological importance. Here, we use an approach based on linkage disequilibrium among markers genotyped for samples collected across a transect between contrasting habitats to detect chromosomal rearrangements de novo. We report 17 polymorphic rearrangements in a single locality for the coastal marine snail, Littorina saxatilis. Patterns of diversity in the field and of recombination in controlled crosses provide strong evidence that at least the majority of these rearrangements are inversions. Most show clinal changes in frequency between habitats, suggestive of divergent selection, but only one appears to be fixed for different arrangements in the two habitats. Consistent with widespread evidence for balancing selection on inversion polymorphisms, we argue that a combination of heterosis and divergent selection can explain the observed patterns and should be considered in other systems spanning environmental gradients. article_processing_charge: No author: - first_name: Rui full_name: Faria, Rui last_name: Faria - first_name: Pragya full_name: Chaube, Pragya last_name: Chaube - first_name: Hernán E. full_name: Morales, Hernán E. last_name: Morales - first_name: Tomas full_name: Larsson, Tomas last_name: Larsson - first_name: Alan R. full_name: Lemmon, Alan R. last_name: Lemmon - first_name: Emily M. full_name: Lemmon, Emily M. last_name: Lemmon - first_name: Marina full_name: Rafajlović, Marina last_name: Rafajlović - first_name: Marina full_name: Panova, Marina last_name: Panova - first_name: Mark full_name: Ravinet, Mark last_name: Ravinet - first_name: Kerstin full_name: Johannesson, Kerstin last_name: Johannesson - first_name: Anja M full_name: Westram, Anja M id: 3C147470-F248-11E8-B48F-1D18A9856A87 last_name: Westram orcid: 0000-0003-1050-4969 - first_name: Roger K. full_name: Butlin, Roger K. last_name: Butlin citation: ama: 'Faria R, Chaube P, Morales HE, et al. Data from: Multiple chromosomal rearrangements in a hybrid zone between Littorina saxatilis ecotypes. 2018. doi:10.5061/dryad.72cg113' apa: 'Faria, R., Chaube, P., Morales, H. E., Larsson, T., Lemmon, A. R., Lemmon, E. M., … Butlin, R. K. (2018). Data from: Multiple chromosomal rearrangements in a hybrid zone between Littorina saxatilis ecotypes. Dryad. https://doi.org/10.5061/dryad.72cg113' chicago: 'Faria, Rui, Pragya Chaube, Hernán E. Morales, Tomas Larsson, Alan R. Lemmon, Emily M. Lemmon, Marina Rafajlović, et al. “Data from: Multiple Chromosomal Rearrangements in a Hybrid Zone between Littorina Saxatilis Ecotypes.” Dryad, 2018. https://doi.org/10.5061/dryad.72cg113.' ieee: 'R. Faria et al., “Data from: Multiple chromosomal rearrangements in a hybrid zone between Littorina saxatilis ecotypes.” Dryad, 2018.' ista: 'Faria R, Chaube P, Morales HE, Larsson T, Lemmon AR, Lemmon EM, Rafajlović M, Panova M, Ravinet M, Johannesson K, Westram AM, Butlin RK. 2018. Data from: Multiple chromosomal rearrangements in a hybrid zone between Littorina saxatilis ecotypes, Dryad, 10.5061/dryad.72cg113.' mla: 'Faria, Rui, et al. Data from: Multiple Chromosomal Rearrangements in a Hybrid Zone between Littorina Saxatilis Ecotypes. Dryad, 2018, doi:10.5061/dryad.72cg113.' short: R. Faria, P. Chaube, H.E. Morales, T. Larsson, A.R. Lemmon, E.M. Lemmon, M. Rafajlović, M. Panova, M. Ravinet, K. Johannesson, A.M. Westram, R.K. Butlin, (2018). date_created: 2021-08-09T12:46:39Z date_published: 2018-10-09T00:00:00Z date_updated: 2023-08-24T14:50:26Z day: '09' department: - _id: NiBa doi: 10.5061/dryad.72cg113 main_file_link: - open_access: '1' url: https://doi.org/10.5061/dryad.72cg113 month: '10' oa: 1 oa_version: Published Version publisher: Dryad related_material: record: - id: '6095' relation: used_in_publication status: public status: public title: 'Data from: Multiple chromosomal rearrangements in a hybrid zone between Littorina saxatilis ecotypes' type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2018' ... --- _id: '423' abstract: - lang: eng text: Herd immunity, a process in which resistant individuals limit the spread of a pathogen among susceptible hosts has been extensively studied in eukaryotes. Even though bacteria have evolved multiple immune systems against their phage pathogens, herd immunity in bacteria remains unexplored. Here we experimentally demonstrate that herd immunity arises during phage epidemics in structured and unstructured Escherichia coli populations consisting of differing frequencies of susceptible and resistant cells harboring CRISPR immunity. In addition, we develop a mathematical model that quantifies how herd immunity is affected by spatial population structure, bacterial growth rate, and phage replication rate. Using our model we infer a general epidemiological rule describing the relative speed of an epidemic in partially resistant spatially structured populations. Our experimental and theoretical findings indicate that herd immunity may be important in bacterial communities, allowing for stable coexistence of bacteria and their phages and the maintenance of polymorphism in bacterial immunity. acknowledgement: "We are grateful to Remy Chait for his help and assistance with establishing our experimental setups and to Tobias Bergmiller for valuable insights into some specific experimental details. We thank Luciano Marraffini for donating us the pCas9 plasmid used in this study. We also want to express our gratitude to Seth Barribeau, Andrea Betancourt, Călin Guet, Mato Lagator, Tiago Paixão and Maroš Pleška for valuable discussions on the manuscript. Finally, we would like to thank the \r\neditors and reviewers for their helpful comments and suggestions." article_number: e32035 article_processing_charge: No author: - first_name: Pavel full_name: Payne, Pavel id: 35F78294-F248-11E8-B48F-1D18A9856A87 last_name: Payne orcid: 0000-0002-2711-9453 - first_name: Lukas full_name: Geyrhofer, Lukas last_name: Geyrhofer - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 - first_name: Jonathan P full_name: Bollback, Jonathan P id: 2C6FA9CC-F248-11E8-B48F-1D18A9856A87 last_name: Bollback orcid: 0000-0002-4624-4612 citation: ama: Payne P, Geyrhofer L, Barton NH, Bollback JP. CRISPR-based herd immunity can limit phage epidemics in bacterial populations. eLife. 2018;7. doi:10.7554/eLife.32035 apa: Payne, P., Geyrhofer, L., Barton, N. H., & Bollback, J. P. (2018). CRISPR-based herd immunity can limit phage epidemics in bacterial populations. ELife. eLife Sciences Publications. https://doi.org/10.7554/eLife.32035 chicago: Payne, Pavel, Lukas Geyrhofer, Nicholas H Barton, and Jonathan P Bollback. “CRISPR-Based Herd Immunity Can Limit Phage Epidemics in Bacterial Populations.” ELife. eLife Sciences Publications, 2018. https://doi.org/10.7554/eLife.32035. ieee: P. Payne, L. Geyrhofer, N. H. Barton, and J. P. Bollback, “CRISPR-based herd immunity can limit phage epidemics in bacterial populations,” eLife, vol. 7. eLife Sciences Publications, 2018. ista: Payne P, Geyrhofer L, Barton NH, Bollback JP. 2018. CRISPR-based herd immunity can limit phage epidemics in bacterial populations. eLife. 7, e32035. mla: Payne, Pavel, et al. “CRISPR-Based Herd Immunity Can Limit Phage Epidemics in Bacterial Populations.” ELife, vol. 7, e32035, eLife Sciences Publications, 2018, doi:10.7554/eLife.32035. short: P. Payne, L. Geyrhofer, N.H. Barton, J.P. Bollback, ELife 7 (2018). date_created: 2018-12-11T11:46:23Z date_published: 2018-03-09T00:00:00Z date_updated: 2023-09-11T12:49:17Z day: '09' ddc: - '576' department: - _id: NiBa - _id: JoBo doi: 10.7554/eLife.32035 ec_funded: 1 external_id: isi: - '000431035800001' file: - access_level: open_access checksum: 447cf6e680bdc3c01062a8737d876569 content_type: application/pdf creator: dernst date_created: 2018-12-17T10:36:07Z date_updated: 2020-07-14T12:46:25Z file_id: '5689' file_name: 2018_eLife_Payne.pdf file_size: 3533881 relation: main_file file_date_updated: 2020-07-14T12:46:25Z has_accepted_license: '1' intvolume: ' 7' isi: 1 language: - iso: eng month: '03' oa: 1 oa_version: Published Version project: - _id: 2578D616-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '648440' name: Selective Barriers to Horizontal Gene Transfer publication: eLife publication_status: published publisher: eLife Sciences Publications publist_id: '7400' quality_controlled: '1' related_material: record: - id: '9840' relation: research_data status: public scopus_import: '1' status: public title: CRISPR-based herd immunity can limit phage epidemics in bacterial populations tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 7 year: '2018' ... --- _id: '9840' abstract: - lang: eng text: Herd immunity, a process in which resistant individuals limit the spread of a pathogen among susceptible hosts has been extensively studied in eukaryotes. Even though bacteria have evolved multiple immune systems against their phage pathogens, herd immunity in bacteria remains unexplored. Here we experimentally demonstrate that herd immunity arises during phage epidemics in structured and unstructured Escherichia coli populations consisting of differing frequencies of susceptible and resistant cells harboring CRISPR immunity. In addition, we develop a mathematical model that quantifies how herd immunity is affected by spatial population structure, bacterial growth rate, and phage replication rate. Using our model we infer a general epidemiological rule describing the relative speed of an epidemic in partially resistant spatially structured populations. Our experimental and theoretical findings indicate that herd immunity may be important in bacterial communities, allowing for stable coexistence of bacteria and their phages and the maintenance of polymorphism in bacterial immunity. article_processing_charge: No author: - first_name: Pavel full_name: Payne, Pavel id: 35F78294-F248-11E8-B48F-1D18A9856A87 last_name: Payne orcid: 0000-0002-2711-9453 - first_name: Lukas full_name: Geyrhofer, Lukas last_name: Geyrhofer - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 - first_name: Jonathan P full_name: Bollback, Jonathan P id: 2C6FA9CC-F248-11E8-B48F-1D18A9856A87 last_name: Bollback orcid: 0000-0002-4624-4612 citation: ama: 'Payne P, Geyrhofer L, Barton NH, Bollback JP. Data from: CRISPR-based herd immunity limits phage epidemics in bacterial populations. 2018. doi:10.5061/dryad.42n44' apa: 'Payne, P., Geyrhofer, L., Barton, N. H., & Bollback, J. P. (2018). Data from: CRISPR-based herd immunity limits phage epidemics in bacterial populations. Dryad. https://doi.org/10.5061/dryad.42n44' chicago: 'Payne, Pavel, Lukas Geyrhofer, Nicholas H Barton, and Jonathan P Bollback. “Data from: CRISPR-Based Herd Immunity Limits Phage Epidemics in Bacterial Populations.” Dryad, 2018. https://doi.org/10.5061/dryad.42n44.' ieee: 'P. Payne, L. Geyrhofer, N. H. Barton, and J. P. Bollback, “Data from: CRISPR-based herd immunity limits phage epidemics in bacterial populations.” Dryad, 2018.' ista: 'Payne P, Geyrhofer L, Barton NH, Bollback JP. 2018. Data from: CRISPR-based herd immunity limits phage epidemics in bacterial populations, Dryad, 10.5061/dryad.42n44.' mla: 'Payne, Pavel, et al. Data from: CRISPR-Based Herd Immunity Limits Phage Epidemics in Bacterial Populations. Dryad, 2018, doi:10.5061/dryad.42n44.' short: P. Payne, L. Geyrhofer, N.H. Barton, J.P. Bollback, (2018). date_created: 2021-08-09T13:10:02Z date_published: 2018-03-12T00:00:00Z date_updated: 2023-09-11T12:49:17Z day: '12' department: - _id: NiBa - _id: JoBo doi: 10.5061/dryad.42n44 main_file_link: - open_access: '1' url: https://doi.org/10.5061/dryad.42n44 month: '03' oa: 1 oa_version: Published Version publisher: Dryad related_material: record: - id: '423' relation: used_in_publication status: public status: public title: 'Data from: CRISPR-based herd immunity limits phage epidemics in bacterial populations' type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2018' ... --- _id: '564' abstract: - lang: eng text: "Maladapted individuals can only colonise a new habitat if they can evolve a\r\npositive growth rate fast enough to avoid extinction, a process known as evolutionary\r\nrescue. We treat log fitness at low density in the new habitat as a\r\nsingle polygenic trait and thus use the infinitesimal model to follow the evolution\r\nof the growth rate; this assumes that the trait values of offspring of a\r\nsexual union are normally distributed around the mean of the parents’ trait\r\nvalues, with variance that depends only on the parents’ relatedness. The\r\nprobability that a single migrant can establish depends on just two parameters:\r\nthe mean and genetic variance of the trait in the source population.\r\nThe chance of success becomes small if migrants come from a population\r\nwith mean growth rate in the new habitat more than a few standard deviations\r\nbelow zero; this chance depends roughly equally on the probability\r\nthat the initial founder is unusually fit, and on the subsequent increase in\r\ngrowth rate of its offspring as a result of selection. The loss of genetic variation\r\nduring the founding event is substantial, but highly variable. With\r\ncontinued migration at rate M, establishment is inevitable; when migration\r\nis rare, the expected time to establishment decreases inversely with M.\r\nHowever, above a threshold migration rate, the population may be trapped\r\nin a ‘sink’ state, in which adaptation is held back by gene flow; above this\r\nthreshold, the expected time to establishment increases exponentially with M. This threshold behaviour is captured by a deterministic approximation,\r\nwhich assumes a Gaussian distribution of the trait in the founder population\r\nwith mean and variance evolving deterministically. By assuming a constant\r\ngenetic variance, we also develop a diffusion approximation for the joint distribution\r\nof population size and trait mean, which extends to include stabilising\r\nselection and density regulation. Divergence of the population from its\r\nancestors causes partial reproductive isolation, which we measure through\r\nthe reproductive value of migrants into the newly established population." article_processing_charge: No article_type: original author: - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 - first_name: Alison full_name: Etheridge, Alison last_name: Etheridge citation: ama: Barton NH, Etheridge A. Establishment in a new habitat by polygenic adaptation. Theoretical Population Biology. 2018;122(7):110-127. doi:10.1016/j.tpb.2017.11.007 apa: Barton, N. H., & Etheridge, A. (2018). Establishment in a new habitat by polygenic adaptation. Theoretical Population Biology. Academic Press. https://doi.org/10.1016/j.tpb.2017.11.007 chicago: Barton, Nicholas H, and Alison Etheridge. “Establishment in a New Habitat by Polygenic Adaptation.” Theoretical Population Biology. Academic Press, 2018. https://doi.org/10.1016/j.tpb.2017.11.007. ieee: N. H. Barton and A. Etheridge, “Establishment in a new habitat by polygenic adaptation,” Theoretical Population Biology, vol. 122, no. 7. Academic Press, pp. 110–127, 2018. ista: Barton NH, Etheridge A. 2018. Establishment in a new habitat by polygenic adaptation. Theoretical Population Biology. 122(7), 110–127. mla: Barton, Nicholas H., and Alison Etheridge. “Establishment in a New Habitat by Polygenic Adaptation.” Theoretical Population Biology, vol. 122, no. 7, Academic Press, 2018, pp. 110–27, doi:10.1016/j.tpb.2017.11.007. short: N.H. Barton, A. Etheridge, Theoretical Population Biology 122 (2018) 110–127. date_created: 2018-12-11T11:47:12Z date_published: 2018-07-01T00:00:00Z date_updated: 2023-09-11T13:41:22Z day: '01' ddc: - '519' - '576' department: - _id: NiBa doi: 10.1016/j.tpb.2017.11.007 ec_funded: 1 external_id: isi: - '000440392900014' file: - access_level: open_access checksum: 0b96f6db47e3e91b5e7d103b847c239d content_type: application/pdf creator: nbarton date_created: 2019-12-21T09:36:39Z date_updated: 2020-07-14T12:47:09Z file_id: '7199' file_name: bartonetheridge.pdf file_size: 2287682 relation: main_file file_date_updated: 2020-07-14T12:47:09Z has_accepted_license: '1' intvolume: ' 122' isi: 1 issue: '7' language: - iso: eng month: '07' oa: 1 oa_version: Submitted Version page: 110-127 project: - _id: 25B07788-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '250152' name: Limits to selection in biology and in evolutionary computation publication: Theoretical Population Biology publication_status: published publisher: Academic Press publist_id: '7250' quality_controlled: '1' related_material: record: - id: '9842' relation: research_data status: public scopus_import: '1' status: public title: Establishment in a new habitat by polygenic adaptation tmp: image: /images/cc_by_nc.png legal_code_url: https://creativecommons.org/licenses/by-nc/4.0/legalcode name: Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) short: CC BY-NC (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 122 year: '2018' ... --- _id: '563' abstract: - lang: eng text: "In continuous populations with local migration, nearby pairs of individuals have on average more similar genotypes\r\nthan geographically well separated pairs. A barrier to gene flow distorts this classical pattern of isolation by distance. Genetic similarity is decreased for sample pairs on different sides of the barrier and increased for pairs on the same side near the barrier. Here, we introduce an inference scheme that utilizes this signal to detect and estimate the strength of a linear barrier to gene flow in two-dimensions. We use a diffusion approximation to model the effects of a barrier on the geographical spread of ancestry backwards in time. This approach allows us to calculate the chance of recent coalescence and probability of identity by descent. We introduce an inference scheme that fits these theoretical results to the geographical covariance structure of bialleleic genetic markers. It can estimate the strength of the barrier as well as several demographic parameters. We investigate the power of our inference scheme to detect barriers by applying it to a wide range of simulated data. We also showcase an example application to a Antirrhinum majus (snapdragon) flower color hybrid zone, where we do not detect any signal of a strong genome wide barrier to gene flow." article_processing_charge: No author: - first_name: Harald full_name: Ringbauer, Harald id: 417FCFF4-F248-11E8-B48F-1D18A9856A87 last_name: Ringbauer orcid: 0000-0002-4884-9682 - first_name: Alexander full_name: Kolesnikov, Alexander id: 2D157DB6-F248-11E8-B48F-1D18A9856A87 last_name: Kolesnikov - first_name: David full_name: Field, David last_name: Field - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 citation: ama: Ringbauer H, Kolesnikov A, Field D, Barton NH. Estimating barriers to gene flow from distorted isolation-by-distance patterns. Genetics. 2018;208(3):1231-1245. doi:10.1534/genetics.117.300638 apa: Ringbauer, H., Kolesnikov, A., Field, D., & Barton, N. H. (2018). Estimating barriers to gene flow from distorted isolation-by-distance patterns. Genetics. Genetics Society of America. https://doi.org/10.1534/genetics.117.300638 chicago: Ringbauer, Harald, Alexander Kolesnikov, David Field, and Nicholas H Barton. “Estimating Barriers to Gene Flow from Distorted Isolation-by-Distance Patterns.” Genetics. Genetics Society of America, 2018. https://doi.org/10.1534/genetics.117.300638. ieee: H. Ringbauer, A. Kolesnikov, D. Field, and N. H. Barton, “Estimating barriers to gene flow from distorted isolation-by-distance patterns,” Genetics, vol. 208, no. 3. Genetics Society of America, pp. 1231–1245, 2018. ista: Ringbauer H, Kolesnikov A, Field D, Barton NH. 2018. Estimating barriers to gene flow from distorted isolation-by-distance patterns. Genetics. 208(3), 1231–1245. mla: Ringbauer, Harald, et al. “Estimating Barriers to Gene Flow from Distorted Isolation-by-Distance Patterns.” Genetics, vol. 208, no. 3, Genetics Society of America, 2018, pp. 1231–45, doi:10.1534/genetics.117.300638. short: H. Ringbauer, A. Kolesnikov, D. Field, N.H. Barton, Genetics 208 (2018) 1231–1245. date_created: 2018-12-11T11:47:12Z date_published: 2018-03-01T00:00:00Z date_updated: 2023-09-11T13:42:38Z day: '01' department: - _id: NiBa - _id: ChLa doi: 10.1534/genetics.117.300638 external_id: isi: - '000426219600025' intvolume: ' 208' isi: 1 issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: https://www.biorxiv.org/content/10.1101/205484v1 month: '03' oa: 1 oa_version: Preprint page: 1231-1245 publication: Genetics publication_status: published publisher: Genetics Society of America publist_id: '7251' quality_controlled: '1' related_material: record: - id: '200' relation: dissertation_contains status: public scopus_import: '1' status: public title: Estimating barriers to gene flow from distorted isolation-by-distance patterns type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 208 year: '2018' ... --- _id: '316' abstract: - lang: eng text: 'Self-incompatibility (SI) is a genetically based recognition system that functions to prevent self-fertilization and mating among related plants. An enduring puzzle in SI is how the high diversity observed in nature arises and is maintained. Based on the underlying recognition mechanism, SI can be classified into two main groups: self- and non-self recognition. Most work has focused on diversification within self-recognition systems despite expected differences between the two groups in the evolutionary pathways and outcomes of diversification. Here, we use a deterministic population genetic model and stochastic simulations to investigate how novel S-haplotypes evolve in a gametophytic non-self recognition (SRNase/S Locus F-box (SLF)) SI system. For this model the pathways for diversification involve either the maintenance or breakdown of SI and can vary in the order of mutations of the female (SRNase) and male (SLF) components. We show analytically that diversification can occur with high inbreeding depression and self-pollination, but this varies with evolutionary pathway and level of completeness (which determines the number of potential mating partners in the population), and in general is more likely for lower haplotype number. The conditions for diversification are broader in stochastic simulations of finite population size. However, the number of haplotypes observed under high inbreeding and moderate to high self-pollination is less than that commonly observed in nature. Diversification was observed through pathways that maintain SI as well as through self-compatible intermediates. Yet the lifespan of diversified haplotypes was sensitive to their level of completeness. By examining diversification in a non-self recognition SI system, this model extends our understanding of the evolution and maintenance of haplotype diversity observed in a self recognition system common in flowering plants.' article_processing_charge: No article_type: original author: - first_name: Katarina full_name: Bodova, Katarina id: 2BA24EA0-F248-11E8-B48F-1D18A9856A87 last_name: Bodova orcid: 0000-0002-7214-0171 - first_name: Tadeas full_name: Priklopil, Tadeas id: 3C869AA0-F248-11E8-B48F-1D18A9856A87 last_name: Priklopil - first_name: David full_name: Field, David id: 419049E2-F248-11E8-B48F-1D18A9856A87 last_name: Field orcid: 0000-0002-4014-8478 - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 - first_name: Melinda full_name: Pickup, Melinda id: 2C78037E-F248-11E8-B48F-1D18A9856A87 last_name: Pickup orcid: 0000-0001-6118-0541 citation: ama: Bodova K, Priklopil T, Field D, Barton NH, Pickup M. Evolutionary pathways for the generation of new self-incompatibility haplotypes in a non-self recognition system. Genetics. 2018;209(3):861-883. doi:10.1534/genetics.118.300748 apa: Bodova, K., Priklopil, T., Field, D., Barton, N. H., & Pickup, M. (2018). Evolutionary pathways for the generation of new self-incompatibility haplotypes in a non-self recognition system. Genetics. Genetics Society of America. https://doi.org/10.1534/genetics.118.300748 chicago: Bodova, Katarina, Tadeas Priklopil, David Field, Nicholas H Barton, and Melinda Pickup. “Evolutionary Pathways for the Generation of New Self-Incompatibility Haplotypes in a Non-Self Recognition System.” Genetics. Genetics Society of America, 2018. https://doi.org/10.1534/genetics.118.300748. ieee: K. Bodova, T. Priklopil, D. Field, N. H. Barton, and M. Pickup, “Evolutionary pathways for the generation of new self-incompatibility haplotypes in a non-self recognition system,” Genetics, vol. 209, no. 3. Genetics Society of America, pp. 861–883, 2018. ista: Bodova K, Priklopil T, Field D, Barton NH, Pickup M. 2018. Evolutionary pathways for the generation of new self-incompatibility haplotypes in a non-self recognition system. Genetics. 209(3), 861–883. mla: Bodova, Katarina, et al. “Evolutionary Pathways for the Generation of New Self-Incompatibility Haplotypes in a Non-Self Recognition System.” Genetics, vol. 209, no. 3, Genetics Society of America, 2018, pp. 861–83, doi:10.1534/genetics.118.300748. short: K. Bodova, T. Priklopil, D. Field, N.H. Barton, M. Pickup, Genetics 209 (2018) 861–883. date_created: 2018-12-11T11:45:47Z date_published: 2018-07-01T00:00:00Z date_updated: 2023-09-11T13:57:43Z day: '01' department: - _id: NiBa - _id: GaTk doi: 10.1534/genetics.118.300748 ec_funded: 1 external_id: isi: - '000437171700017' intvolume: ' 209' isi: 1 issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: https://www.biorxiv.org/node/80098.abstract month: '07' oa: 1 oa_version: Preprint page: 861-883 project: - _id: 25B36484-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '329960' name: Mating system and the evolutionary dynamics of hybrid zones - _id: 25B07788-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '250152' name: Limits to selection in biology and in evolutionary computation - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Genetics publication_status: published publisher: Genetics Society of America quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/recognizing-others-but-not-yourself-new-insights-into-the-evolution-of-plant-mating/ record: - id: '9813' relation: research_data status: public scopus_import: '1' status: public title: Evolutionary pathways for the generation of new self-incompatibility haplotypes in a non-self recognition system type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 209 year: '2018' ... --- _id: '9813' abstract: - lang: eng text: 'File S1 contains figures that clarify the following features: (i) effect of population size on the average number/frequency of SI classes, (ii) changes in the minimal completeness deficit in time for a single class, and (iii) diversification diagrams for all studied pathways, including the summary figure for k = 8. File S2 contains the code required for a stochastic simulation of the SLF system with an example. This file also includes the output in the form of figures and tables.' article_processing_charge: No author: - first_name: Katarína full_name: Bod'ová, Katarína id: 2BA24EA0-F248-11E8-B48F-1D18A9856A87 last_name: Bod'ová orcid: 0000-0002-7214-0171 - first_name: Tadeas full_name: Priklopil, Tadeas id: 3C869AA0-F248-11E8-B48F-1D18A9856A87 last_name: Priklopil - first_name: David full_name: Field, David id: 419049E2-F248-11E8-B48F-1D18A9856A87 last_name: Field orcid: 0000-0002-4014-8478 - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 - first_name: Melinda full_name: Pickup, Melinda id: 2C78037E-F248-11E8-B48F-1D18A9856A87 last_name: Pickup orcid: 0000-0001-6118-0541 citation: ama: Bodova K, Priklopil T, Field D, Barton NH, Pickup M. Supplemental material for Bodova et al., 2018. 2018. doi:10.25386/genetics.6148304.v1 apa: Bodova, K., Priklopil, T., Field, D., Barton, N. H., & Pickup, M. (2018). Supplemental material for Bodova et al., 2018. Genetics Society of America. https://doi.org/10.25386/genetics.6148304.v1 chicago: Bodova, Katarina, Tadeas Priklopil, David Field, Nicholas H Barton, and Melinda Pickup. “Supplemental Material for Bodova et Al., 2018.” Genetics Society of America, 2018. https://doi.org/10.25386/genetics.6148304.v1. ieee: K. Bodova, T. Priklopil, D. Field, N. H. Barton, and M. Pickup, “Supplemental material for Bodova et al., 2018.” Genetics Society of America, 2018. ista: Bodova K, Priklopil T, Field D, Barton NH, Pickup M. 2018. Supplemental material for Bodova et al., 2018, Genetics Society of America, 10.25386/genetics.6148304.v1. mla: Bodova, Katarina, et al. Supplemental Material for Bodova et Al., 2018. Genetics Society of America, 2018, doi:10.25386/genetics.6148304.v1. short: K. Bodova, T. Priklopil, D. Field, N.H. Barton, M. Pickup, (2018). date_created: 2021-08-06T13:04:32Z date_published: 2018-04-30T00:00:00Z date_updated: 2023-09-11T13:57:42Z day: '30' department: - _id: NiBa - _id: GaTk doi: 10.25386/genetics.6148304.v1 main_file_link: - open_access: '1' url: https://doi.org/10.25386/genetics.6148304.v1 month: '04' oa: 1 oa_version: Published Version publisher: Genetics Society of America related_material: record: - id: '316' relation: used_in_publication status: public status: public title: Supplemental material for Bodova et al., 2018 type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2018' ... --- _id: '723' abstract: - lang: eng text: Escaping local optima is one of the major obstacles to function optimisation. Using the metaphor of a fitness landscape, local optima correspond to hills separated by fitness valleys that have to be overcome. We define a class of fitness valleys of tunable difficulty by considering their length, representing the Hamming path between the two optima and their depth, the drop in fitness. For this function class we present a runtime comparison between stochastic search algorithms using different search strategies. The (1+1) EA is a simple and well-studied evolutionary algorithm that has to jump across the valley to a point of higher fitness because it does not accept worsening moves (elitism). In contrast, the Metropolis algorithm and the Strong Selection Weak Mutation (SSWM) algorithm, a famous process in population genetics, are both able to cross the fitness valley by accepting worsening moves. We show that the runtime of the (1+1) EA depends critically on the length of the valley while the runtimes of the non-elitist algorithms depend crucially on the depth of the valley. Moreover, we show that both SSWM and Metropolis can also efficiently optimise a rugged function consisting of consecutive valleys. article_processing_charge: No author: - first_name: Pietro full_name: Oliveto, Pietro last_name: Oliveto - first_name: Tiago full_name: Paixao, Tiago id: 2C5658E6-F248-11E8-B48F-1D18A9856A87 last_name: Paixao orcid: 0000-0003-2361-3953 - first_name: Jorge full_name: Pérez Heredia, Jorge last_name: Pérez Heredia - first_name: Dirk full_name: Sudholt, Dirk last_name: Sudholt - first_name: Barbora full_name: Trubenova, Barbora id: 42302D54-F248-11E8-B48F-1D18A9856A87 last_name: Trubenova orcid: 0000-0002-6873-2967 citation: ama: Oliveto P, Paixao T, Pérez Heredia J, Sudholt D, Trubenova B. How to escape local optima in black box optimisation when non elitism outperforms elitism. Algorithmica. 2018;80(5):1604-1633. doi:10.1007/s00453-017-0369-2 apa: Oliveto, P., Paixao, T., Pérez Heredia, J., Sudholt, D., & Trubenova, B. (2018). How to escape local optima in black box optimisation when non elitism outperforms elitism. Algorithmica. Springer. https://doi.org/10.1007/s00453-017-0369-2 chicago: Oliveto, Pietro, Tiago Paixao, Jorge Pérez Heredia, Dirk Sudholt, and Barbora Trubenova. “How to Escape Local Optima in Black Box Optimisation When Non Elitism Outperforms Elitism.” Algorithmica. Springer, 2018. https://doi.org/10.1007/s00453-017-0369-2. ieee: P. Oliveto, T. Paixao, J. Pérez Heredia, D. Sudholt, and B. Trubenova, “How to escape local optima in black box optimisation when non elitism outperforms elitism,” Algorithmica, vol. 80, no. 5. Springer, pp. 1604–1633, 2018. ista: Oliveto P, Paixao T, Pérez Heredia J, Sudholt D, Trubenova B. 2018. How to escape local optima in black box optimisation when non elitism outperforms elitism. Algorithmica. 80(5), 1604–1633. mla: Oliveto, Pietro, et al. “How to Escape Local Optima in Black Box Optimisation When Non Elitism Outperforms Elitism.” Algorithmica, vol. 80, no. 5, Springer, 2018, pp. 1604–33, doi:10.1007/s00453-017-0369-2. short: P. Oliveto, T. Paixao, J. Pérez Heredia, D. Sudholt, B. Trubenova, Algorithmica 80 (2018) 1604–1633. date_created: 2018-12-11T11:48:09Z date_published: 2018-05-01T00:00:00Z date_updated: 2023-09-11T14:11:35Z day: '01' ddc: - '576' department: - _id: NiBa - _id: CaGu doi: 10.1007/s00453-017-0369-2 ec_funded: 1 external_id: isi: - '000428239300010' file: - access_level: open_access checksum: 7d92f5d7be81e387edeec4f06442791c content_type: application/pdf creator: system date_created: 2018-12-12T10:08:14Z date_updated: 2020-07-14T12:47:54Z file_id: '4674' file_name: IST-2018-1014-v1+1_2018_Paixao_Escape.pdf file_size: 691245 relation: main_file file_date_updated: 2020-07-14T12:47:54Z has_accepted_license: '1' intvolume: ' 80' isi: 1 issue: '5' language: - iso: eng month: '05' oa: 1 oa_version: Published Version page: 1604 - 1633 project: - _id: 25B1EC9E-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '618091' name: Speed of Adaptation in Population Genetics and Evolutionary Computation publication: Algorithmica publication_status: published publisher: Springer publist_id: '6957' pubrep_id: '1014' quality_controlled: '1' scopus_import: '1' status: public title: How to escape local optima in black box optimisation when non elitism outperforms elitism tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 80 year: '2018' ... --- _id: '282' abstract: - lang: eng text: Adaptive introgression is common in nature and can be driven by selection acting on multiple, linked genes. We explore the effects of polygenic selection on introgression under the infinitesimal model with linkage. This model assumes that the introgressing block has an effectively infinite number of genes, each with an infinitesimal effect on the trait under selection. The block is assumed to introgress under directional selection within a native population that is genetically homogeneous. We use individual-based simulations and a branching process approximation to compute various statistics of the introgressing block, and explore how these depend on parameters such as the map length and initial trait value associated with the introgressing block, the genetic variability along the block, and the strength of selection. Our results show that the introgression dynamics of a block under infinitesimal selection is qualitatively different from the dynamics of neutral introgression. We also find that in the long run, surviving descendant blocks are likely to have intermediate lengths, and clarify how the length is shaped by the interplay between linkage and infinitesimal selection. Our results suggest that it may be difficult to distinguish introgression of single loci from that of genomic blocks with multiple, tightly linked and weakly selected loci. article_processing_charge: No author: - first_name: Himani full_name: Sachdeva, Himani id: 42377A0A-F248-11E8-B48F-1D18A9856A87 last_name: Sachdeva - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 citation: ama: Sachdeva H, Barton NH. Introgression of a block of genome under infinitesimal selection. Genetics. 2018;209(4):1279-1303. doi:10.1534/genetics.118.301018 apa: Sachdeva, H., & Barton, N. H. (2018). Introgression of a block of genome under infinitesimal selection. Genetics. Genetics Society of America. https://doi.org/10.1534/genetics.118.301018 chicago: Sachdeva, Himani, and Nicholas H Barton. “Introgression of a Block of Genome under Infinitesimal Selection.” Genetics. Genetics Society of America, 2018. https://doi.org/10.1534/genetics.118.301018. ieee: H. Sachdeva and N. H. Barton, “Introgression of a block of genome under infinitesimal selection,” Genetics, vol. 209, no. 4. Genetics Society of America, pp. 1279–1303, 2018. ista: Sachdeva H, Barton NH. 2018. Introgression of a block of genome under infinitesimal selection. Genetics. 209(4), 1279–1303. mla: Sachdeva, Himani, and Nicholas H. Barton. “Introgression of a Block of Genome under Infinitesimal Selection.” Genetics, vol. 209, no. 4, Genetics Society of America, 2018, pp. 1279–303, doi:10.1534/genetics.118.301018. short: H. Sachdeva, N.H. Barton, Genetics 209 (2018) 1279–1303. date_created: 2018-12-11T11:45:36Z date_published: 2018-08-01T00:00:00Z date_updated: 2023-09-13T08:22:32Z day: '01' department: - _id: NiBa doi: 10.1534/genetics.118.301018 external_id: isi: - '000440014100020' intvolume: ' 209' isi: 1 issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://www.biorxiv.org/content/early/2017/11/30/227082 month: '08' oa: 1 oa_version: Submitted Version page: 1279 - 1303 publication: Genetics publication_status: published publisher: Genetics Society of America publist_id: '7617' quality_controlled: '1' scopus_import: '1' status: public title: Introgression of a block of genome under infinitesimal selection type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 209 year: '2018' ... --- _id: '39' abstract: - lang: eng text: We study how a block of genome with a large number of weakly selected loci introgresses under directional selection into a genetically homogeneous population. We derive exact expressions for the expected rate of growth of any fragment of the introduced block during the initial phase of introgression, and show that the growth rate of a single-locus variant is largely insensitive to its own additive effect, but depends instead on the combined effect of all loci within a characteristic linkage scale. The expected growth rate of a fragment is highly correlated with its long-term introgression probability in populations of moderate size, and can hence identify variants that are likely to introgress across replicate populations. We clarify how the introgression probability of an individual variant is determined by the interplay between hitchhiking with relatively large fragments during the early phase of introgression and selection on fine-scale variation within these, which at longer times results in differential introgression probabilities for beneficial and deleterious loci within successful fragments. By simulating individuals, we also investigate how introgression probabilities at individual loci depend on the variance of fitness effects, the net fitness of the introduced block, and the size of the recipient population, and how this shapes the net advance under selection. Our work suggests that even highly replicable substitutions may be associated with a range of selective effects, which makes it challenging to fine map the causal loci that underlie polygenic adaptation. article_processing_charge: No article_type: original author: - first_name: Himani full_name: Sachdeva, Himani id: 42377A0A-F248-11E8-B48F-1D18A9856A87 last_name: Sachdeva - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 citation: ama: Sachdeva H, Barton NH. Replicability of introgression under linked, polygenic selection. Genetics. 2018;210(4):1411-1427. doi:10.1534/genetics.118.301429 apa: Sachdeva, H., & Barton, N. H. (2018). Replicability of introgression under linked, polygenic selection. Genetics. Genetics Society of America. https://doi.org/10.1534/genetics.118.301429 chicago: Sachdeva, Himani, and Nicholas H Barton. “Replicability of Introgression under Linked, Polygenic Selection.” Genetics. Genetics Society of America, 2018. https://doi.org/10.1534/genetics.118.301429. ieee: H. Sachdeva and N. H. Barton, “Replicability of introgression under linked, polygenic selection,” Genetics, vol. 210, no. 4. Genetics Society of America, pp. 1411–1427, 2018. ista: Sachdeva H, Barton NH. 2018. Replicability of introgression under linked, polygenic selection. Genetics. 210(4), 1411–1427. mla: Sachdeva, Himani, and Nicholas H. Barton. “Replicability of Introgression under Linked, Polygenic Selection.” Genetics, vol. 210, no. 4, Genetics Society of America, 2018, pp. 1411–27, doi:10.1534/genetics.118.301429. short: H. Sachdeva, N.H. Barton, Genetics 210 (2018) 1411–1427. date_created: 2018-12-11T11:44:18Z date_published: 2018-12-04T00:00:00Z date_updated: 2023-09-18T08:10:29Z day: '04' department: - _id: NiBa doi: 10.1534/genetics.118.301429 external_id: isi: - '000452315900021' intvolume: ' 210' isi: 1 issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://www.biorxiv.org/content/10.1101/379578v1 month: '12' oa: 1 oa_version: Preprint page: 1411-1427 publication: Genetics publication_identifier: issn: - '00166731' publication_status: published publisher: Genetics Society of America quality_controlled: '1' scopus_import: '1' status: public title: Replicability of introgression under linked, polygenic selection type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 210 year: '2018' ... --- _id: '38' abstract: - lang: eng text: 'Genomes of closely-related species or populations often display localized regions of enhanced relative sequence divergence, termed genomic islands. It has been proposed that these islands arise through selective sweeps and/or barriers to gene flow. Here, we genetically dissect a genomic island that controls flower color pattern differences between two subspecies of Antirrhinum majus, A.m.striatum and A.m.pseudomajus, and relate it to clinal variation across a natural hybrid zone. We show that selective sweeps likely raised relative divergence at two tightly-linked MYB-like transcription factors, leading to distinct flower patterns in the two subspecies. The two patterns provide alternate floral guides and create a strong barrier to gene flow where populations come into contact. This barrier affects the selected flower color genes and tightlylinked loci, but does not extend outside of this domain, allowing gene flow to lower relative divergence for the rest of the chromosome. Thus, both selective sweeps and barriers to gene flow play a role in shaping genomic islands: sweeps cause elevation in relative divergence, while heterogeneous gene flow flattens the surrounding "sea," making the island of divergence stand out. By showing how selective sweeps establish alternative adaptive phenotypes that lead to barriers to gene flow, our study sheds light on possible mechanisms leading to reproductive isolation and speciation.' acknowledgement: ' ERC Grant 201252 (to N.H.B.)' article_processing_charge: No author: - first_name: Hugo full_name: Tavares, Hugo last_name: Tavares - first_name: Annabel full_name: Whitley, Annabel last_name: Whitley - first_name: David full_name: Field, David id: 419049E2-F248-11E8-B48F-1D18A9856A87 last_name: Field orcid: 0000-0002-4014-8478 - first_name: Desmond full_name: Bradley, Desmond last_name: Bradley - first_name: Matthew full_name: Couchman, Matthew last_name: Couchman - first_name: Lucy full_name: Copsey, Lucy last_name: Copsey - first_name: Joane full_name: Elleouet, Joane last_name: Elleouet - first_name: Monique full_name: Burrus, Monique last_name: Burrus - first_name: Christophe full_name: Andalo, Christophe last_name: Andalo - first_name: Miaomiao full_name: Li, Miaomiao last_name: Li - first_name: Qun full_name: Li, Qun last_name: Li - first_name: Yongbiao full_name: Xue, Yongbiao last_name: Xue - first_name: Alexandra B full_name: Rebocho, Alexandra B last_name: Rebocho - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 - first_name: Enrico full_name: Coen, Enrico last_name: Coen citation: ama: Tavares H, Whitley A, Field D, et al. Selection and gene flow shape genomic islands that control floral guides. PNAS. 2018;115(43):11006-11011. doi:10.1073/pnas.1801832115 apa: Tavares, H., Whitley, A., Field, D., Bradley, D., Couchman, M., Copsey, L., … Coen, E. (2018). Selection and gene flow shape genomic islands that control floral guides. PNAS. National Academy of Sciences. https://doi.org/10.1073/pnas.1801832115 chicago: Tavares, Hugo, Annabel Whitley, David Field, Desmond Bradley, Matthew Couchman, Lucy Copsey, Joane Elleouet, et al. “Selection and Gene Flow Shape Genomic Islands That Control Floral Guides.” PNAS. National Academy of Sciences, 2018. https://doi.org/10.1073/pnas.1801832115. ieee: H. Tavares et al., “Selection and gene flow shape genomic islands that control floral guides,” PNAS, vol. 115, no. 43. National Academy of Sciences, pp. 11006–11011, 2018. ista: Tavares H, Whitley A, Field D, Bradley D, Couchman M, Copsey L, Elleouet J, Burrus M, Andalo C, Li M, Li Q, Xue Y, Rebocho AB, Barton NH, Coen E. 2018. Selection and gene flow shape genomic islands that control floral guides. PNAS. 115(43), 11006–11011. mla: Tavares, Hugo, et al. “Selection and Gene Flow Shape Genomic Islands That Control Floral Guides.” PNAS, vol. 115, no. 43, National Academy of Sciences, 2018, pp. 11006–11, doi:10.1073/pnas.1801832115. short: H. Tavares, A. Whitley, D. Field, D. Bradley, M. Couchman, L. Copsey, J. Elleouet, M. Burrus, C. Andalo, M. Li, Q. Li, Y. Xue, A.B. Rebocho, N.H. Barton, E. Coen, PNAS 115 (2018) 11006–11011. date_created: 2018-12-11T11:44:18Z date_published: 2018-10-23T00:00:00Z date_updated: 2023-09-18T08:36:49Z day: '23' ddc: - '570' department: - _id: NiBa doi: 10.1073/pnas.1801832115 external_id: isi: - '000448040500065' pmid: - '30297406' file: - access_level: open_access checksum: d2305d0cc81dbbe4c1c677d64ad6f6d1 content_type: application/pdf creator: dernst date_created: 2018-12-17T08:44:03Z date_updated: 2020-07-14T12:46:16Z file_id: '5683' file_name: 11006.full.pdf file_size: 1911302 relation: main_file file_date_updated: 2020-07-14T12:46:16Z has_accepted_license: '1' intvolume: ' 115' isi: 1 issue: '43' language: - iso: eng license: https://creativecommons.org/licenses/by-nc-nd/4.0/ month: '10' oa: 1 oa_version: Published Version page: 11006 - 11011 pmid: 1 publication: PNAS publication_identifier: issn: - '00278424' publication_status: published publisher: National Academy of Sciences publist_id: '8017' quality_controlled: '1' scopus_import: '1' status: public title: Selection and gene flow shape genomic islands that control floral guides tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 115 year: '2018' ... --- _id: '40' abstract: - lang: eng text: Hanemaaijer et al. (Molecular Ecology, 27, 2018) describe the genetic consequences of the introgression of an insecticide resistance allele into a mosquito population. Linked alleles initially increased, but many of these later declined. It is hard to determine whether this decline was due to counter‐selection, rather than simply to chance. article_processing_charge: Yes (via OA deal) article_type: letter_note author: - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 citation: ama: Barton NH. The consequences of an introgression event. Molecular Ecology. 2018;27(24):4973-4975. doi:10.1111/mec.14950 apa: Barton, N. H. (2018). The consequences of an introgression event. Molecular Ecology. Wiley. https://doi.org/10.1111/mec.14950 chicago: Barton, Nicholas H. “The Consequences of an Introgression Event.” Molecular Ecology. Wiley, 2018. https://doi.org/10.1111/mec.14950. ieee: N. H. Barton, “The consequences of an introgression event,” Molecular Ecology, vol. 27, no. 24. Wiley, pp. 4973–4975, 2018. ista: Barton NH. 2018. The consequences of an introgression event. Molecular Ecology. 27(24), 4973–4975. mla: Barton, Nicholas H. “The Consequences of an Introgression Event.” Molecular Ecology, vol. 27, no. 24, Wiley, 2018, pp. 4973–75, doi:10.1111/mec.14950. short: N.H. Barton, Molecular Ecology 27 (2018) 4973–4975. date_created: 2018-12-11T11:44:18Z date_published: 2018-12-31T00:00:00Z date_updated: 2023-09-19T10:06:08Z day: '31' ddc: - '576' department: - _id: NiBa doi: 10.1111/mec.14950 external_id: isi: - '000454600500001' pmid: - '30599087' file: - access_level: open_access content_type: application/pdf creator: apreinsp date_created: 2019-07-19T06:54:46Z date_updated: 2020-07-14T12:46:22Z file_id: '6652' file_name: 2018_MolecularEcology_BartonNick.pdf file_size: 295452 relation: main_file file_date_updated: 2020-07-14T12:46:22Z has_accepted_license: '1' intvolume: ' 27' isi: 1 issue: '24' language: - iso: eng month: '12' oa: 1 oa_version: Published Version page: 4973-4975 pmid: 1 publication: Molecular Ecology publication_identifier: issn: - 1365294X publication_status: published publisher: Wiley publist_id: '8014' quality_controlled: '1' related_material: record: - id: '9805' relation: research_data status: public scopus_import: '1' status: public title: The consequences of an introgression event tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 27 year: '2018' ... --- _id: '565' abstract: - lang: eng text: 'We re-examine the model of Kirkpatrick and Barton for the spread of an inversion into a local population. This model assumes that local selection maintains alleles at two or more loci, despite immigration of alternative alleles at these loci from another population. We show that an inversion is favored because it prevents the breakdown of linkage disequilibrium generated by migration; the selective advantage of an inversion is proportional to the amount of recombination between the loci involved, as in other cases where inversions are selected for. We derive expressions for the rate of spread of an inversion; when the loci covered by the inversion are tightly linked, these conditions deviate substantially from those proposed previously, and imply that an inversion can then have only a small advantage. ' article_processing_charge: No article_type: original author: - first_name: Brian full_name: Charlesworth, Brian last_name: Charlesworth - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 citation: ama: Charlesworth B, Barton NH. The spread of an inversion with migration and selection. Genetics. 2018;208(1):377-382. doi:10.1534/genetics.117.300426 apa: Charlesworth, B., & Barton, N. H. (2018). The spread of an inversion with migration and selection. Genetics. Genetics . https://doi.org/10.1534/genetics.117.300426 chicago: Charlesworth, Brian, and Nicholas H Barton. “The Spread of an Inversion with Migration and Selection.” Genetics. Genetics , 2018. https://doi.org/10.1534/genetics.117.300426. ieee: B. Charlesworth and N. H. Barton, “The spread of an inversion with migration and selection,” Genetics, vol. 208, no. 1. Genetics , pp. 377–382, 2018. ista: Charlesworth B, Barton NH. 2018. The spread of an inversion with migration and selection. Genetics. 208(1), 377–382. mla: Charlesworth, Brian, and Nicholas H. Barton. “The Spread of an Inversion with Migration and Selection.” Genetics, vol. 208, no. 1, Genetics , 2018, pp. 377–82, doi:10.1534/genetics.117.300426. short: B. Charlesworth, N.H. Barton, Genetics 208 (2018) 377–382. date_created: 2018-12-11T11:47:12Z date_published: 2018-01-01T00:00:00Z date_updated: 2023-09-19T10:12:31Z day: '01' department: - _id: NiBa doi: 10.1534/genetics.117.300426 external_id: isi: - '000419356300025' pmid: - '29158424' intvolume: ' 208' isi: 1 issue: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5753870/ month: '01' oa: 1 oa_version: Published Version page: 377 - 382 pmid: 1 publication: Genetics publication_status: published publisher: 'Genetics ' publist_id: '7249' quality_controlled: '1' scopus_import: '1' status: public title: The spread of an inversion with migration and selection type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 208 year: '2018' ... --- _id: '430' abstract: - lang: eng text: In this issue of GENETICS, a new method for detecting natural selection on polygenic traits is developed and applied to sev- eral human examples ( Racimo et al. 2018 ). By de fi nition, many loci contribute to variation in polygenic traits, and a challenge for evolutionary ge neticists has been that these traits can evolve by small, nearly undetectable shifts in allele frequencies across each of many, typically unknown, loci. Recently, a helpful remedy has arisen. Genome-wide associ- ation studies (GWAS) have been illuminating sets of loci that can be interrogated jointly for c hanges in allele frequencies. By aggregating small signal s of change across many such loci, directional natural selection is now in principle detect- able using genetic data, even for highly polygenic traits. This is an exciting arena of progress – with these methods, tests can be made for selection associated with traits, and we can now study selection in what may be its most prevalent mode. The continuing fast pace of GWAS publications suggest there will be many more polygenic tests of selection in the near future, as every new GWAS is an opportunity for an accom- panying test of polygenic selection. However, it is important to be aware of complications th at arise in interpretation, especially given that these studies may easily be misinter- preted both in and outside the evolutionary genetics commu- nity. Here, we provide context for understanding polygenic tests and urge caution regarding how these results are inter- preted and reported upon more broadly. article_processing_charge: No author: - first_name: John full_name: Novembre, John last_name: Novembre - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 citation: ama: Novembre J, Barton NH. Tread lightly interpreting polygenic tests of selection. Genetics. 2018;208(4):1351-1355. doi:10.1534/genetics.118.300786 apa: Novembre, J., & Barton, N. H. (2018). Tread lightly interpreting polygenic tests of selection. Genetics. Genetics Society of America. https://doi.org/10.1534/genetics.118.300786 chicago: Novembre, John, and Nicholas H Barton. “Tread Lightly Interpreting Polygenic Tests of Selection.” Genetics. Genetics Society of America, 2018. https://doi.org/10.1534/genetics.118.300786. ieee: J. Novembre and N. H. Barton, “Tread lightly interpreting polygenic tests of selection,” Genetics, vol. 208, no. 4. Genetics Society of America, pp. 1351–1355, 2018. ista: Novembre J, Barton NH. 2018. Tread lightly interpreting polygenic tests of selection. Genetics. 208(4), 1351–1355. mla: Novembre, John, and Nicholas H. Barton. “Tread Lightly Interpreting Polygenic Tests of Selection.” Genetics, vol. 208, no. 4, Genetics Society of America, 2018, pp. 1351–55, doi:10.1534/genetics.118.300786. short: J. Novembre, N.H. Barton, Genetics 208 (2018) 1351–1355. date_created: 2018-12-11T11:46:26Z date_published: 2018-04-01T00:00:00Z date_updated: 2023-09-19T10:17:30Z day: '01' ddc: - '576' department: - _id: NiBa doi: 10.1534/genetics.118.300786 external_id: isi: - '000429094400005' file: - access_level: open_access checksum: 3d838dc285df394376555b794b6a5ad1 content_type: application/pdf creator: system date_created: 2018-12-12T10:12:40Z date_updated: 2020-07-14T12:46:26Z file_id: '4958' file_name: IST-2018-1012-v1+1_2018_Barton_Tread.pdf file_size: 500129 relation: main_file file_date_updated: 2020-07-14T12:46:26Z has_accepted_license: '1' intvolume: ' 208' isi: 1 issue: '4' language: - iso: eng month: '04' oa: 1 oa_version: Published Version page: 1351 - 1355 publication: Genetics publication_status: published publisher: Genetics Society of America publist_id: '7393' pubrep_id: '1012' quality_controlled: '1' scopus_import: '1' status: public title: Tread lightly interpreting polygenic tests of selection tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 208 year: '2018' ... --- _id: '607' abstract: - lang: eng text: We study the Fokker-Planck equation derived in the large system limit of the Markovian process describing the dynamics of quantitative traits. The Fokker-Planck equation is posed on a bounded domain and its transport and diffusion coefficients vanish on the domain's boundary. We first argue that, despite this degeneracy, the standard no-flux boundary condition is valid. We derive the weak formulation of the problem and prove the existence and uniqueness of its solutions by constructing the corresponding contraction semigroup on a suitable function space. Then, we prove that for the parameter regime with high enough mutation rate the problem exhibits a positive spectral gap, which implies exponential convergence to equilibrium.Next, we provide a simple derivation of the so-called Dynamic Maximum Entropy (DynMaxEnt) method for approximation of observables (moments) of the Fokker-Planck solution, which can be interpreted as a nonlinear Galerkin approximation. The limited applicability of the DynMaxEnt method inspires us to introduce its modified version that is valid for the whole range of admissible parameters. Finally, we present several numerical experiments to demonstrate the performance of both the original and modified DynMaxEnt methods. We observe that in the parameter regimes where both methods are valid, the modified one exhibits slightly better approximation properties compared to the original one. acknowledgement: "JH and PM are funded by KAUST baseline funds and grant no. 1000000193 .\r\nWe thank Nicholas Barton (IST Austria) for his useful comments and suggestions. \r\n\r\n" article_processing_charge: No author: - first_name: Katarina full_name: Bodova, Katarina id: 2BA24EA0-F248-11E8-B48F-1D18A9856A87 last_name: Bodova orcid: 0000-0002-7214-0171 - first_name: Jan full_name: Haskovec, Jan last_name: Haskovec - first_name: Peter full_name: Markowich, Peter last_name: Markowich citation: ama: 'Bodova K, Haskovec J, Markowich P. Well posedness and maximum entropy approximation for the dynamics of quantitative traits. Physica D: Nonlinear Phenomena. 2018;376-377:108-120. doi:10.1016/j.physd.2017.10.015' apa: 'Bodova, K., Haskovec, J., & Markowich, P. (2018). Well posedness and maximum entropy approximation for the dynamics of quantitative traits. Physica D: Nonlinear Phenomena. Elsevier. https://doi.org/10.1016/j.physd.2017.10.015' chicago: 'Bodova, Katarina, Jan Haskovec, and Peter Markowich. “Well Posedness and Maximum Entropy Approximation for the Dynamics of Quantitative Traits.” Physica D: Nonlinear Phenomena. Elsevier, 2018. https://doi.org/10.1016/j.physd.2017.10.015.' ieee: 'K. Bodova, J. Haskovec, and P. Markowich, “Well posedness and maximum entropy approximation for the dynamics of quantitative traits,” Physica D: Nonlinear Phenomena, vol. 376–377. Elsevier, pp. 108–120, 2018.' ista: 'Bodova K, Haskovec J, Markowich P. 2018. Well posedness and maximum entropy approximation for the dynamics of quantitative traits. Physica D: Nonlinear Phenomena. 376–377, 108–120.' mla: 'Bodova, Katarina, et al. “Well Posedness and Maximum Entropy Approximation for the Dynamics of Quantitative Traits.” Physica D: Nonlinear Phenomena, vol. 376–377, Elsevier, 2018, pp. 108–20, doi:10.1016/j.physd.2017.10.015.' short: 'K. Bodova, J. Haskovec, P. Markowich, Physica D: Nonlinear Phenomena 376–377 (2018) 108–120.' date_created: 2018-12-11T11:47:28Z date_published: 2018-08-01T00:00:00Z date_updated: 2023-09-19T10:38:34Z day: '01' department: - _id: NiBa - _id: GaTk doi: 10.1016/j.physd.2017.10.015 external_id: arxiv: - '1704.08757' isi: - '000437962900012' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1704.08757 month: '08' oa: 1 oa_version: Submitted Version page: 108-120 publication: 'Physica D: Nonlinear Phenomena' publication_status: published publisher: Elsevier publist_id: '7198' quality_controlled: '1' scopus_import: '1' status: public title: Well posedness and maximum entropy approximation for the dynamics of quantitative traits type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 376-377 year: '2018' ... --- _id: '200' abstract: - lang: eng text: This thesis is concerned with the inference of current population structure based on geo-referenced genetic data. The underlying idea is that population structure affects its spatial genetic structure. Therefore, genotype information can be utilized to estimate important demographic parameters such as migration rates. These indirect estimates of population structure have become very attractive, as genotype data is now widely available. However, there also has been much concern about these approaches. Importantly, genetic structure can be influenced by many complex patterns, which often cannot be disentangled. Moreover, many methods merely fit heuristic patterns of genetic structure, and do not build upon population genetics theory. Here, I describe two novel inference methods that address these shortcomings. In Chapter 2, I introduce an inference scheme based on a new type of signal, identity by descent (IBD) blocks. Recently, it has become feasible to detect such long blocks of genome shared between pairs of samples. These blocks are direct traces of recent coalescence events. As such, they contain ample signal for inferring recent demography. I examine sharing of IBD blocks in two-dimensional populations with local migration. Using a diffusion approximation, I derive formulas for an isolation by distance pattern of long IBD blocks and show that sharing of long IBD blocks approaches rapid exponential decay for growing sample distance. I describe an inference scheme based on these results. It can robustly estimate the dispersal rate and population density, which is demonstrated on simulated data. I also show an application to estimate mean migration and the rate of recent population growth within Eastern Europe. Chapter 3 is about a novel method to estimate barriers to gene flow in a two dimensional population. This inference scheme utilizes geographically localized allele frequency fluctuations - a classical isolation by distance signal. The strength of these local fluctuations increases on average next to a barrier, and there is less correlation across it. I again use a framework of diffusion of ancestral lineages to model this effect, and provide an efficient numerical implementation to fit the results to geo-referenced biallelic SNP data. This inference scheme is able to robustly estimate strong barriers to gene flow, as tests on simulated data confirm. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Harald full_name: Ringbauer, Harald id: 417FCFF4-F248-11E8-B48F-1D18A9856A87 last_name: Ringbauer orcid: 0000-0002-4884-9682 citation: ama: Ringbauer H. Inferring recent demography from spatial genetic structure. 2018. doi:10.15479/AT:ISTA:th_963 apa: Ringbauer, H. (2018). Inferring recent demography from spatial genetic structure. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th_963 chicago: Ringbauer, Harald. “Inferring Recent Demography from Spatial Genetic Structure.” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:th_963. ieee: H. Ringbauer, “Inferring recent demography from spatial genetic structure,” Institute of Science and Technology Austria, 2018. ista: Ringbauer H. 2018. Inferring recent demography from spatial genetic structure. Institute of Science and Technology Austria. mla: Ringbauer, Harald. Inferring Recent Demography from Spatial Genetic Structure. Institute of Science and Technology Austria, 2018, doi:10.15479/AT:ISTA:th_963. short: H. Ringbauer, Inferring Recent Demography from Spatial Genetic Structure, Institute of Science and Technology Austria, 2018. date_created: 2018-12-11T11:45:10Z date_published: 2018-02-21T00:00:00Z date_updated: 2023-09-20T12:00:56Z day: '21' ddc: - '576' degree_awarded: PhD department: - _id: NiBa doi: 10.15479/AT:ISTA:th_963 file: - access_level: open_access checksum: 8cc534d2b528ae017acf80874cce48c9 content_type: application/pdf creator: system date_created: 2018-12-12T10:14:55Z date_updated: 2020-07-14T12:45:23Z file_id: '5111' file_name: IST-2018-963-v1+1_thesis.pdf file_size: 5792935 relation: main_file - access_level: closed checksum: 6af18d7e5a7e2728ceda2f41ee24f628 content_type: application/zip creator: dernst date_created: 2019-04-05T09:30:12Z date_updated: 2020-07-14T12:45:23Z file_id: '6224' file_name: 2018_thesis_ringbauer_source.zip file_size: 113365 relation: source_file file_date_updated: 2020-07-14T12:45:23Z has_accepted_license: '1' language: - iso: eng month: '02' oa: 1 oa_version: Published Version page: '146' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '7713' pubrep_id: '963' related_material: record: - id: '563' relation: part_of_dissertation status: public - id: '1074' relation: part_of_dissertation status: public status: public supervisor: - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 title: Inferring recent demography from spatial genetic structure tmp: image: /images/cc_by_nc.png legal_code_url: https://creativecommons.org/licenses/by-nc/4.0/legalcode name: Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) short: CC BY-NC (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '139' abstract: - lang: eng text: 'Genome-scale diversity data are increasingly available in a variety of biological systems, and can be used to reconstruct the past evolutionary history of species divergence. However, extracting the full demographic information from these data is not trivial, and requires inferential methods that account for the diversity of coalescent histories throughout the genome. Here, we evaluate the potential and limitations of one such approach. We reexamine a well-known system of mussel sister species, using the joint site frequency spectrum (jSFS) of synonymousmutations computed either fromexome capture or RNA-seq, in an Approximate Bayesian Computation (ABC) framework. We first assess the best sampling strategy (number of: individuals, loci, and bins in the jSFS), and show that model selection is robust to variation in the number of individuals and loci. In contrast, different binning choices when summarizing the jSFS, strongly affect the results: including classes of low and high frequency shared polymorphisms can more effectively reveal recent migration events. We then take advantage of the flexibility of ABC to compare more realistic models of speciation, including variation in migration rates through time (i.e., periodic connectivity) and across genes (i.e., genome-wide heterogeneity in migration rates). We show that these models were consistently selected as the most probable, suggesting that mussels have experienced a complex history of gene flow during divergence and that the species boundary is semi-permeable. Our work provides a comprehensive evaluation of ABC demographic inference in mussels based on the coding jSFS, and supplies guidelines for employing different sequencing techniques and sampling strategies. We emphasize, perhaps surprisingly, that inferences are less limited by the volume of data, than by the way in which they are analyzed.' article_number: '30083438' article_processing_charge: No author: - first_name: Christelle full_name: Fraisse, Christelle id: 32DF5794-F248-11E8-B48F-1D18A9856A87 last_name: Fraisse orcid: 0000-0001-8441-5075 - first_name: Camille full_name: Roux, Camille last_name: Roux - first_name: Pierre full_name: Gagnaire, Pierre last_name: Gagnaire - first_name: Jonathan full_name: Romiguier, Jonathan last_name: Romiguier - first_name: Nicolas full_name: Faivre, Nicolas last_name: Faivre - first_name: John full_name: Welch, John last_name: Welch - first_name: Nicolas full_name: Bierne, Nicolas last_name: Bierne citation: ama: 'Fraisse C, Roux C, Gagnaire P, et al. The divergence history of European blue mussel species reconstructed from Approximate Bayesian Computation: The effects of sequencing techniques and sampling strategies. PeerJ. 2018;2018(7). doi:10.7717/peerj.5198' apa: 'Fraisse, C., Roux, C., Gagnaire, P., Romiguier, J., Faivre, N., Welch, J., & Bierne, N. (2018). The divergence history of European blue mussel species reconstructed from Approximate Bayesian Computation: The effects of sequencing techniques and sampling strategies. PeerJ. PeerJ. https://doi.org/10.7717/peerj.5198' chicago: 'Fraisse, Christelle, Camille Roux, Pierre Gagnaire, Jonathan Romiguier, Nicolas Faivre, John Welch, and Nicolas Bierne. “The Divergence History of European Blue Mussel Species Reconstructed from Approximate Bayesian Computation: The Effects of Sequencing Techniques and Sampling Strategies.” PeerJ. PeerJ, 2018. https://doi.org/10.7717/peerj.5198.' ieee: 'C. Fraisse et al., “The divergence history of European blue mussel species reconstructed from Approximate Bayesian Computation: The effects of sequencing techniques and sampling strategies,” PeerJ, vol. 2018, no. 7. PeerJ, 2018.' ista: 'Fraisse C, Roux C, Gagnaire P, Romiguier J, Faivre N, Welch J, Bierne N. 2018. The divergence history of European blue mussel species reconstructed from Approximate Bayesian Computation: The effects of sequencing techniques and sampling strategies. PeerJ. 2018(7), 30083438.' mla: 'Fraisse, Christelle, et al. “The Divergence History of European Blue Mussel Species Reconstructed from Approximate Bayesian Computation: The Effects of Sequencing Techniques and Sampling Strategies.” PeerJ, vol. 2018, no. 7, 30083438, PeerJ, 2018, doi:10.7717/peerj.5198.' short: C. Fraisse, C. Roux, P. Gagnaire, J. Romiguier, N. Faivre, J. Welch, N. Bierne, PeerJ 2018 (2018). date_created: 2018-12-11T11:44:50Z date_published: 2018-07-30T00:00:00Z date_updated: 2023-10-17T12:25:28Z day: '30' ddc: - '576' department: - _id: BeVi - _id: NiBa doi: 10.7717/peerj.5198 external_id: isi: - '000440484800002' file: - access_level: open_access checksum: 7d55ae22598a1c70759cd671600cff53 content_type: application/pdf creator: dernst date_created: 2018-12-18T09:42:11Z date_updated: 2020-07-14T12:44:48Z file_id: '5739' file_name: 2018_PeerJ_Fraisse.pdf file_size: 1480792 relation: main_file file_date_updated: 2020-07-14T12:44:48Z has_accepted_license: '1' intvolume: ' 2018' isi: 1 issue: '7' language: - iso: eng month: '07' oa: 1 oa_version: Published Version publication: PeerJ publication_status: published publisher: PeerJ publist_id: '7784' quality_controlled: '1' scopus_import: '1' status: public title: 'The divergence history of European blue mussel species reconstructed from Approximate Bayesian Computation: The effects of sequencing techniques and sampling strategies' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 2018 year: '2018' ... --- _id: '33' abstract: - lang: eng text: Secondary contact is the reestablishment of gene flow between sister populations that have diverged. For instance, at the end of the Quaternary glaciations in Europe, secondary contact occurred during the northward expansion of the populations which had found refugia in the southern peninsulas. With the advent of multi-locus markers, secondary contact can be investigated using various molecular signatures including gradients of allele frequency, admixture clines, and local increase of genetic differentiation. We use coalescent simulations to investigate if molecular data provide enough information to distinguish between secondary contact following range expansion and an alternative evolutionary scenario consisting of a barrier to gene flow in an isolation-by-distance model. We find that an excess of linkage disequilibrium and of genetic diversity at the suture zone is a unique signature of secondary contact. We also find that the directionality index ψ, which was proposed to study range expansion, is informative to distinguish between the two hypotheses. However, although evidence for secondary contact is usually conveyed by statistics related to admixture coefficients, we find that they can be confounded by isolation-by-distance. We recommend to account for the spatial repartition of individuals when investigating secondary contact in order to better reflect the complex spatio-temporal evolution of populations and species. acknowledgement: 'Johanna Bertl was supported by the Vienna Graduate School of Population Genetics (Austrian Science Fund (FWF): W1225-B20) and worked on this project while employed at the Department of Statistics and Operations Research, University of Vienna, Austria. This article was developed in the framework of the Grenoble Alpes Data Institute, which is supported by the French National Research Agency under the “Investissments d’avenir” program (ANR-15-IDEX-02).' article_number: e5325 article_processing_charge: No author: - first_name: Johanna full_name: Bertl, Johanna last_name: Bertl - first_name: Harald full_name: Ringbauer, Harald id: 417FCFF4-F248-11E8-B48F-1D18A9856A87 last_name: Ringbauer orcid: 0000-0002-4884-9682 - first_name: Michaël full_name: Blum, Michaël last_name: Blum citation: ama: Bertl J, Ringbauer H, Blum M. Can secondary contact following range expansion be distinguished from barriers to gene flow? PeerJ. 2018;2018(10). doi:10.7717/peerj.5325 apa: Bertl, J., Ringbauer, H., & Blum, M. (2018). Can secondary contact following range expansion be distinguished from barriers to gene flow? PeerJ. PeerJ. https://doi.org/10.7717/peerj.5325 chicago: Bertl, Johanna, Harald Ringbauer, and Michaël Blum. “Can Secondary Contact Following Range Expansion Be Distinguished from Barriers to Gene Flow?” PeerJ. PeerJ, 2018. https://doi.org/10.7717/peerj.5325. ieee: J. Bertl, H. Ringbauer, and M. Blum, “Can secondary contact following range expansion be distinguished from barriers to gene flow?,” PeerJ, vol. 2018, no. 10. PeerJ, 2018. ista: Bertl J, Ringbauer H, Blum M. 2018. Can secondary contact following range expansion be distinguished from barriers to gene flow? PeerJ. 2018(10), e5325. mla: Bertl, Johanna, et al. “Can Secondary Contact Following Range Expansion Be Distinguished from Barriers to Gene Flow?” PeerJ, vol. 2018, no. 10, e5325, PeerJ, 2018, doi:10.7717/peerj.5325. short: J. Bertl, H. Ringbauer, M. Blum, PeerJ 2018 (2018). date_created: 2018-12-11T11:44:16Z date_published: 2018-10-01T00:00:00Z date_updated: 2023-10-17T12:24:43Z day: '01' ddc: - '576' department: - _id: NiBa doi: 10.7717/peerj.5325 external_id: isi: - '000447204400001' pmid: - '30294507' file: - access_level: open_access checksum: 3334886c4b39678db4c4b74299ca14ba content_type: application/pdf creator: dernst date_created: 2018-12-17T10:46:06Z date_updated: 2020-07-14T12:46:06Z file_id: '5692' file_name: 2018_PeerJ_Bertl.pdf file_size: 1328344 relation: main_file file_date_updated: 2020-07-14T12:46:06Z has_accepted_license: '1' intvolume: ' 2018' isi: 1 issue: '10' language: - iso: eng month: '10' oa: 1 oa_version: Published Version pmid: 1 publication: PeerJ publication_status: published publisher: PeerJ publist_id: '8022' quality_controlled: '1' scopus_import: '1' status: public title: Can secondary contact following range expansion be distinguished from barriers to gene flow? tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 2018 year: '2018' ... --- _id: '286' abstract: - lang: eng text: 'Pedigree and sibship reconstruction are important methods in quantifying relationships and fitness of individuals in natural populations. Current methods employ a Markov chain-based algorithm to explore plausible possible pedigrees iteratively. This provides accurate results, but is time-consuming. Here, we develop a method to infer sibship and paternity relationships from half-sibling arrays of known maternity using hierarchical clustering. Given 50 or more unlinked SNP markers and empirically derived error rates, the method performs as well as the widely used package Colony, but is faster by two orders of magnitude. Using simulations, we show that the method performs well across contrasting mating scenarios, even when samples are large. We then apply the method to open-pollinated arrays of the snapdragon Antirrhinum majus and find evidence for a high degree of multiple mating. Although we focus on diploid SNP data, the method does not depend on marker type and as such has broad applications in nonmodel systems. ' acknowledgement: 'ERC, Grant/Award Number: 250152' article_processing_charge: No author: - first_name: Thomas full_name: Ellis, Thomas id: 3153D6D4-F248-11E8-B48F-1D18A9856A87 last_name: Ellis orcid: 0000-0002-8511-0254 - first_name: David full_name: Field, David id: 419049E2-F248-11E8-B48F-1D18A9856A87 last_name: Field orcid: 0000-0002-4014-8478 - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 citation: ama: Ellis T, Field D, Barton NH. Efficient inference of paternity and sibship inference given known maternity via hierarchical clustering. Molecular Ecology Resources. 2018;18(5):988-999. doi:10.1111/1755-0998.12782 apa: Ellis, T., Field, D., & Barton, N. H. (2018). Efficient inference of paternity and sibship inference given known maternity via hierarchical clustering. Molecular Ecology Resources. Wiley. https://doi.org/10.1111/1755-0998.12782 chicago: Ellis, Thomas, David Field, and Nicholas H Barton. “Efficient Inference of Paternity and Sibship Inference given Known Maternity via Hierarchical Clustering.” Molecular Ecology Resources. Wiley, 2018. https://doi.org/10.1111/1755-0998.12782. ieee: T. Ellis, D. Field, and N. H. Barton, “Efficient inference of paternity and sibship inference given known maternity via hierarchical clustering,” Molecular Ecology Resources, vol. 18, no. 5. Wiley, pp. 988–999, 2018. ista: Ellis T, Field D, Barton NH. 2018. Efficient inference of paternity and sibship inference given known maternity via hierarchical clustering. Molecular Ecology Resources. 18(5), 988–999. mla: Ellis, Thomas, et al. “Efficient Inference of Paternity and Sibship Inference given Known Maternity via Hierarchical Clustering.” Molecular Ecology Resources, vol. 18, no. 5, Wiley, 2018, pp. 988–99, doi:10.1111/1755-0998.12782. short: T. Ellis, D. Field, N.H. Barton, Molecular Ecology Resources 18 (2018) 988–999. date_created: 2018-12-11T11:45:37Z date_published: 2018-09-01T00:00:00Z date_updated: 2024-02-21T13:45:00Z day: '01' department: - _id: NiBa doi: 10.1111/1755-0998.12782 ec_funded: 1 external_id: isi: - '000441753000007' intvolume: ' 18' isi: 1 issue: '5' language: - iso: eng month: '09' oa_version: None page: 988 - 999 project: - _id: 25B07788-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '250152' name: Limits to selection in biology and in evolutionary computation publication: Molecular Ecology Resources publication_status: published publisher: Wiley quality_controlled: '1' related_material: record: - id: '5583' relation: popular_science status: public scopus_import: '1' status: public title: Efficient inference of paternity and sibship inference given known maternity via hierarchical clustering type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 18 year: '2018' ... --- _id: '5583' abstract: - lang: eng text: "Data and scripts are provided in support of the manuscript \"Efficient inference of paternity and sibship inference given known maternity via hierarchical clustering\", and the associated Python package FAPS, available from www.github.com/ellisztamas/faps.\r\n\r\nSimulation scripts cover:\r\n1. Performance under different mating scenarios.\r\n2. Comparison with Colony2.\r\n3. Effect of changing the number of Monte Carlo draws\r\n\r\nThe final script covers the analysis of half-sib arrays from wild-pollinated seed in an Antirrhinum majus hybrid zone." article_processing_charge: No author: - first_name: Thomas full_name: Ellis, Thomas id: 3153D6D4-F248-11E8-B48F-1D18A9856A87 last_name: Ellis orcid: 0000-0002-8511-0254 citation: ama: Ellis T. Data and Python scripts supporting Python package FAPS. 2018. doi:10.15479/AT:ISTA:95 apa: Ellis, T. (2018). Data and Python scripts supporting Python package FAPS. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:95 chicago: Ellis, Thomas. “Data and Python Scripts Supporting Python Package FAPS.” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:95. ieee: T. Ellis, “Data and Python scripts supporting Python package FAPS.” Institute of Science and Technology Austria, 2018. ista: Ellis T. 2018. Data and Python scripts supporting Python package FAPS, Institute of Science and Technology Austria, 10.15479/AT:ISTA:95. mla: Ellis, Thomas. Data and Python Scripts Supporting Python Package FAPS. Institute of Science and Technology Austria, 2018, doi:10.15479/AT:ISTA:95. short: T. Ellis, (2018). contributor: - first_name: David id: 419049E2-F248-11E8-B48F-1D18A9856A87 last_name: Field - first_name: Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton datarep_id: '95' date_created: 2018-12-12T12:31:39Z date_published: 2018-02-12T00:00:00Z date_updated: 2024-02-21T13:45:01Z day: '12' department: - _id: NiBa doi: 10.15479/AT:ISTA:95 file: - access_level: open_access checksum: fc6aab51439f2622ba6df8632e66fd4f content_type: text/csv creator: system date_created: 2018-12-12T13:02:41Z date_updated: 2020-07-14T12:47:07Z file_id: '5606' file_name: IST-2018-95-v1+1_amajus_GPS_2012.csv file_size: 122048 relation: main_file - access_level: open_access checksum: 92347586ae4f8a6eb7c04354797bf314 content_type: text/csv creator: system date_created: 2018-12-12T13:02:42Z date_updated: 2020-07-14T12:47:07Z file_id: '5607' file_name: IST-2018-95-v1+2_offspring_SNPs_2012.csv file_size: 235980 relation: main_file - access_level: open_access checksum: 3300813645a54e6c5c39f41917228354 content_type: text/csv creator: system date_created: 2018-12-12T13:02:43Z date_updated: 2020-07-14T12:47:07Z file_id: '5608' file_name: IST-2018-95-v1+3_parents_SNPs_2012.csv file_size: 311712 relation: main_file - access_level: open_access checksum: e739fc473567fd8f39438b445fc46147 content_type: application/zip creator: system date_created: 2018-12-12T13:02:44Z date_updated: 2020-07-14T12:47:07Z file_id: '5609' file_name: IST-2018-95-v1+4_faps_scripts.zip file_size: 342090 relation: main_file file_date_updated: 2020-07-14T12:47:07Z has_accepted_license: '1' month: '02' oa: 1 oa_version: Published Version publisher: Institute of Science and Technology Austria related_material: record: - id: '286' relation: research_paper status: public status: public title: Data and Python scripts supporting Python package FAPS tmp: image: /images/cc_0.png legal_code_url: https://creativecommons.org/publicdomain/zero/1.0/legalcode name: Creative Commons Public Domain Dedication (CC0 1.0) short: CC0 (1.0) type: research_data user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2018' ... --- _id: '5757' abstract: - lang: eng text: "File S1. Variant Calling Format file of the ingroup: 197 haploid sequences of D. melanogaster from Zambia (Africa) aligned to the D. melanogaster 5.57 reference genome.\r\n\r\nFile S2. Variant Calling Format file of the outgroup: 1 haploid sequence of D. simulans aligned to the D. melanogaster 5.57 reference genome.\r\n\r\nFile S3. Annotations of each transcript in coding regions with SNPeff: Ps (# of synonymous polymorphic sites); Pn (# of non-synonymous polymorphic sites); Ds (# of synonymous divergent sites); Dn (# of non-synonymous divergent sites); DoS; ⍺ MK . All variants were included.\r\n\r\nFile S4. Annotations of each transcript in non-coding regions with SNPeff: Ps (# of synonymous polymorphic sites); Pu (# of UTR polymorphic sites); Ds (# of synonymous divergent sites); Du (# of UTR divergent sites); DoS; ⍺ MK . All variants were included.\r\n\r\nFile S5. Annotations of each transcript in coding regions with SNPGenie: Ps (# of synonymous polymorphic sites); πs (synonymous diversity); Ss_p (total # of synonymous sites in the polymorphism data); Pn (# of non-synonymous polymorphic sites); πn (non-synonymous diversity); Sn_p (total # of non-synonymous sites in the polymorphism data); Ds (# of synonymous divergent sites); ks (synonymous evolutionary rate); Ss_d (total # of synonymous sites in the divergence data); Dn (# of non-synonymous divergent sites); kn (non-synonymous evolutionary rate); Sn_d (total # of non-\r\nsynonymous sites in the divergence data); DoS; ⍺ MK . All variants were included.\r\n\r\nFile S6. Gene expression values (RPKM summed over all transcripts) for each sample. Values were quantile-normalized across all samples.\r\n\r\nFile S7. Final dataset with all covariates, ⍺ MK , ωA MK and DoS for coding sites, excluding variants below 5% frequency.\r\n\r\nFile S8. Final dataset with all covariates, ⍺ MK , ωA MK and DoS for non-coding sites, excluding variants below 5%\r\nfrequency.\r\n\r\nFile S9. Final dataset with all covariates, ⍺ EWK , ωA EWK and deleterious SFS for coding sites obtained with the Eyre-Walker and Keightley method on binned data and using all variants." article_processing_charge: No author: - first_name: Christelle full_name: Fraisse, Christelle id: 32DF5794-F248-11E8-B48F-1D18A9856A87 last_name: Fraisse orcid: 0000-0001-8441-5075 citation: ama: Fraisse C. Supplementary Files for “Pleiotropy modulates the efficacy of selection in Drosophila melanogaster.” 2018. doi:10.15479/at:ista:/5757 apa: Fraisse, C. (2018). Supplementary Files for “Pleiotropy modulates the efficacy of selection in Drosophila melanogaster.” Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:/5757 chicago: Fraisse, Christelle. “Supplementary Files for ‘Pleiotropy Modulates the Efficacy of Selection in Drosophila Melanogaster.’” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/at:ista:/5757. ieee: C. Fraisse, “Supplementary Files for ‘Pleiotropy modulates the efficacy of selection in Drosophila melanogaster.’” Institute of Science and Technology Austria, 2018. ista: Fraisse C. 2018. Supplementary Files for ‘Pleiotropy modulates the efficacy of selection in Drosophila melanogaster’, Institute of Science and Technology Austria, 10.15479/at:ista:/5757. mla: Fraisse, Christelle. Supplementary Files for “Pleiotropy Modulates the Efficacy of Selection in Drosophila Melanogaster.” Institute of Science and Technology Austria, 2018, doi:10.15479/at:ista:/5757. short: C. Fraisse, (2018). contributor: - first_name: Christelle id: 32DF5794-F248-11E8-B48F-1D18A9856A87 last_name: Fraisse - first_name: Gemma id: 33AB266C-F248-11E8-B48F-1D18A9856A87 last_name: Puixeu Sala - first_name: Beatriz id: 49E1C5C6-F248-11E8-B48F-1D18A9856A87 last_name: Vicoso orcid: 0000-0002-4579-8306 date_created: 2018-12-19T14:22:35Z date_published: 2018-12-19T00:00:00Z date_updated: 2024-02-21T13:59:18Z day: '19' ddc: - '576' department: - _id: BeVi - _id: NiBa doi: 10.15479/at:ista:/5757 ec_funded: 1 file: - access_level: open_access checksum: aed7ee9ca3f4dc07d8a66945f68e13cd content_type: application/zip creator: cfraisse date_created: 2018-12-19T14:19:52Z date_updated: 2020-07-14T12:47:11Z file_id: '5758' file_name: FileS1.zip file_size: 369837892 relation: main_file - access_level: open_access checksum: 3592e467b4d8206650860b612d6e12f3 content_type: application/zip creator: cfraisse date_created: 2018-12-19T14:19:49Z date_updated: 2020-07-14T12:47:11Z file_id: '5759' file_name: FileS2.zip file_size: 84856909 relation: main_file - access_level: open_access checksum: c37ac5d5437c457338afc128c1240655 content_type: text/plain creator: cfraisse date_created: 2018-12-19T14:19:49Z date_updated: 2020-07-14T12:47:11Z file_id: '5760' file_name: FileS3.txt file_size: 881133 relation: main_file - access_level: open_access checksum: 943dfd14da61817441e33e3e3cb8cdb9 content_type: text/plain creator: cfraisse date_created: 2018-12-19T14:19:49Z date_updated: 2020-07-14T12:47:11Z file_id: '5761' file_name: FileS4.txt file_size: 883742 relation: main_file - access_level: open_access checksum: 1c669b6c4690ec1bbca3e2da9f566d17 content_type: text/plain creator: cfraisse date_created: 2018-12-19T14:19:49Z date_updated: 2020-07-14T12:47:11Z file_id: '5762' file_name: FileS5.txt file_size: 2495437 relation: main_file - access_level: open_access checksum: f40f661b987ca6fb6b47f650cbbb04e6 content_type: text/plain creator: cfraisse date_created: 2018-12-19T14:19:50Z date_updated: 2020-07-14T12:47:11Z file_id: '5763' file_name: FileS6.txt file_size: 15913457 relation: main_file - access_level: open_access checksum: 25f41e5b8a075669c6c88d4c6713bf6f content_type: text/plain creator: cfraisse date_created: 2018-12-19T14:19:50Z date_updated: 2020-07-14T12:47:11Z file_id: '5764' file_name: FileS7.txt file_size: 2584120 relation: main_file - access_level: open_access checksum: f6c0bd3e63e14ddf5445bd69b43a9152 content_type: text/plain creator: cfraisse date_created: 2018-12-19T14:19:50Z date_updated: 2020-07-14T12:47:11Z file_id: '5765' file_name: FileS8.txt file_size: 2446059 relation: main_file - access_level: open_access checksum: 0fe7a58a030b11bf3b9c8ff7a7addcae content_type: text/plain creator: cfraisse date_created: 2018-12-19T14:19:50Z date_updated: 2020-07-14T12:47:11Z file_id: '5766' file_name: FileS9.txt file_size: 100737 relation: main_file file_date_updated: 2020-07-14T12:47:11Z has_accepted_license: '1' keyword: - (mal)adaptation - pleiotropy - selective constraint - evo-devo - gene expression - Drosophila melanogaster month: '12' oa: 1 oa_version: Published Version project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publisher: Institute of Science and Technology Austria related_material: record: - id: '6089' relation: research_paper status: public status: public title: Supplementary Files for "Pleiotropy modulates the efficacy of selection in Drosophila melanogaster" type: research_data user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2018' ... --- _id: '1112' abstract: - lang: eng text: There has been renewed interest in modelling the behaviour of evolutionary algorithms by more traditional mathematical objects, such as ordinary differential equations or Markov chains. The advantage is that the analysis becomes greatly facilitated due to the existence of well established methods. However, this typically comes at the cost of disregarding information about the process. Here, we introduce the use of stochastic differential equations (SDEs) for the study of EAs. SDEs can produce simple analytical results for the dynamics of stochastic processes, unlike Markov chains which can produce rigorous but unwieldy expressions about the dynamics. On the other hand, unlike ordinary differential equations (ODEs), they do not discard information about the stochasticity of the process. We show that these are especially suitable for the analysis of fixed budget scenarios and present analogs of the additive and multiplicative drift theorems for SDEs. We exemplify the use of these methods for two model algorithms ((1+1) EA and RLS) on two canonical problems(OneMax and LeadingOnes). author: - first_name: Tiago full_name: Paixao, Tiago id: 2C5658E6-F248-11E8-B48F-1D18A9856A87 last_name: Paixao orcid: 0000-0003-2361-3953 - first_name: Jorge full_name: Pérez Heredia, Jorge last_name: Pérez Heredia citation: ama: 'Paixao T, Pérez Heredia J. An application of stochastic differential equations to evolutionary algorithms. In: Proceedings of the 14th ACM/SIGEVO Conference on Foundations of Genetic Algorithms. ACM; 2017:3-11. doi:10.1145/3040718.3040729' apa: 'Paixao, T., & Pérez Heredia, J. (2017). An application of stochastic differential equations to evolutionary algorithms. In Proceedings of the 14th ACM/SIGEVO Conference on Foundations of Genetic Algorithms (pp. 3–11). Copenhagen, Denmark: ACM. https://doi.org/10.1145/3040718.3040729' chicago: Paixao, Tiago, and Jorge Pérez Heredia. “An Application of Stochastic Differential Equations to Evolutionary Algorithms.” In Proceedings of the 14th ACM/SIGEVO Conference on Foundations of Genetic Algorithms, 3–11. ACM, 2017. https://doi.org/10.1145/3040718.3040729. ieee: T. Paixao and J. Pérez Heredia, “An application of stochastic differential equations to evolutionary algorithms,” in Proceedings of the 14th ACM/SIGEVO Conference on Foundations of Genetic Algorithms, Copenhagen, Denmark, 2017, pp. 3–11. ista: 'Paixao T, Pérez Heredia J. 2017. An application of stochastic differential equations to evolutionary algorithms. Proceedings of the 14th ACM/SIGEVO Conference on Foundations of Genetic Algorithms. FOGA: Foundations of Genetic Algorithms, 3–11.' mla: Paixao, Tiago, and Jorge Pérez Heredia. “An Application of Stochastic Differential Equations to Evolutionary Algorithms.” Proceedings of the 14th ACM/SIGEVO Conference on Foundations of Genetic Algorithms, ACM, 2017, pp. 3–11, doi:10.1145/3040718.3040729. short: T. Paixao, J. Pérez Heredia, in:, Proceedings of the 14th ACM/SIGEVO Conference on Foundations of Genetic Algorithms, ACM, 2017, pp. 3–11. conference: end_date: 2017-01-15 location: Copenhagen, Denmark name: 'FOGA: Foundations of Genetic Algorithms' start_date: 2017-01-12 date_created: 2018-12-11T11:50:12Z date_published: 2017-01-12T00:00:00Z date_updated: 2021-01-12T06:48:22Z day: '12' department: - _id: NiBa doi: 10.1145/3040718.3040729 language: - iso: eng month: '01' oa_version: None page: 3 - 11 publication: Proceedings of the 14th ACM/SIGEVO Conference on Foundations of Genetic Algorithms publication_identifier: isbn: - 978-145034651-1 publication_status: published publisher: ACM publist_id: '6255' quality_controlled: '1' scopus_import: 1 status: public title: An application of stochastic differential equations to evolutionary algorithms type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2017' ... --- _id: '1191' abstract: - lang: eng text: Variation in genotypes may be responsible for differences in dispersal rates, directional biases, and growth rates of individuals. These traits may favor certain genotypes and enhance their spatiotemporal spreading into areas occupied by the less advantageous genotypes. We study how these factors influence the speed of spreading in the case of two competing genotypes under the assumption that spatial variation of the total population is small compared to the spatial variation of the frequencies of the genotypes in the population. In that case, the dynamics of the frequency of one of the genotypes is approximately described by a generalized Fisher–Kolmogorov–Petrovskii–Piskunov (F–KPP) equation. This generalized F–KPP equation with (nonlinear) frequency-dependent diffusion and advection terms admits traveling wave solutions that characterize the invasion of the dominant genotype. Our existence results generalize the classical theory for traveling waves for the F–KPP with constant coefficients. Moreover, in the particular case of the quadratic (monostable) nonlinear growth–decay rate in the generalized F–KPP we study in detail the influence of the variance in diffusion and mean displacement rates of the two genotypes on the minimal wave propagation speed. acknowledgement: "We thank Nick Barton, Katarína Bod’ová, and Sr\r\n-\r\ndan Sarikas for constructive feed-\r\nback and support. Furthermore, we would like to express our deep gratitude to the anonymous referees (one\r\nof whom, Jimmy Garnier, agreed to reveal his identity) and the editor Max Souza, for very helpful and\r\ndetailed comments and suggestions that significantly helped us to improve the manuscript. This project has\r\nreceived funding from the European Union’s Seventh Framework Programme for research, technological\r\ndevelopment and demonstration under Grant Agreement 618091 Speed of Adaptation in Population Genet-\r\nics and Evolutionary Computation (SAGE) and the European Research Council (ERC) Grant No. 250152\r\n(SN), from the Scientific Grant Agency of the Slovak Republic under the Grant 1/0459/13 and by the Slovak\r\nResearch and Development Agency under the Contract No. APVV-14-0378 (RK). RK would also like to\r\nthank IST Austria for its hospitality during the work on this project." author: - first_name: Richard full_name: Kollár, Richard last_name: Kollár - first_name: Sebastian full_name: Novak, Sebastian id: 461468AE-F248-11E8-B48F-1D18A9856A87 last_name: Novak citation: ama: Kollár R, Novak S. Existence of traveling waves for the generalized F–KPP equation. Bulletin of Mathematical Biology. 2017;79(3):525-559. doi:10.1007/s11538-016-0244-3 apa: Kollár, R., & Novak, S. (2017). Existence of traveling waves for the generalized F–KPP equation. Bulletin of Mathematical Biology. Springer. https://doi.org/10.1007/s11538-016-0244-3 chicago: Kollár, Richard, and Sebastian Novak. “Existence of Traveling Waves for the Generalized F–KPP Equation.” Bulletin of Mathematical Biology. Springer, 2017. https://doi.org/10.1007/s11538-016-0244-3. ieee: R. Kollár and S. Novak, “Existence of traveling waves for the generalized F–KPP equation,” Bulletin of Mathematical Biology, vol. 79, no. 3. Springer, pp. 525–559, 2017. ista: Kollár R, Novak S. 2017. Existence of traveling waves for the generalized F–KPP equation. Bulletin of Mathematical Biology. 79(3), 525–559. mla: Kollár, Richard, and Sebastian Novak. “Existence of Traveling Waves for the Generalized F–KPP Equation.” Bulletin of Mathematical Biology, vol. 79, no. 3, Springer, 2017, pp. 525–59, doi:10.1007/s11538-016-0244-3. short: R. Kollár, S. Novak, Bulletin of Mathematical Biology 79 (2017) 525–559. date_created: 2018-12-11T11:50:38Z date_published: 2017-03-01T00:00:00Z date_updated: 2021-01-12T06:48:58Z day: '01' department: - _id: NiBa doi: 10.1007/s11538-016-0244-3 ec_funded: 1 intvolume: ' 79' issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1607.00944 month: '03' oa: 1 oa_version: Preprint page: 525-559 project: - _id: 25B1EC9E-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '618091' name: Speed of Adaptation in Population Genetics and Evolutionary Computation - _id: 25B07788-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '250152' name: Limits to selection in biology and in evolutionary computation publication: Bulletin of Mathematical Biology publication_status: published publisher: Springer publist_id: '6160' quality_controlled: '1' scopus_import: 1 status: public title: Existence of traveling waves for the generalized F–KPP equation type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 79 year: '2017' ... --- _id: '570' abstract: - lang: eng text: 'Most phenotypes are determined by molecular systems composed of specifically interacting molecules. However, unlike for individual components, little is known about the distributions of mutational effects of molecular systems as a whole. We ask how the distribution of mutational effects of a transcriptional regulatory system differs from the distributions of its components, by first independently, and then simultaneously, mutating a transcription factor and the associated promoter it represses. We find that the system distribution exhibits increased phenotypic variation compared to individual component distributions - an effect arising from intermolecular epistasis between the transcription factor and its DNA-binding site. In large part, this epistasis can be qualitatively attributed to the structure of the transcriptional regulatory system and could therefore be a common feature in prokaryotes. Counter-intuitively, intermolecular epistasis can alleviate the constraints of individual components, thereby increasing phenotypic variation that selection could act on and facilitating adaptive evolution. ' article_number: e28921 author: - first_name: Mato full_name: Lagator, Mato id: 345D25EC-F248-11E8-B48F-1D18A9856A87 last_name: Lagator - first_name: Srdjan full_name: Sarikas, Srdjan id: 35F0286E-F248-11E8-B48F-1D18A9856A87 last_name: Sarikas - first_name: Hande full_name: Acar, Hande id: 2DDF136A-F248-11E8-B48F-1D18A9856A87 last_name: Acar orcid: 0000-0003-1986-9753 - first_name: Jonathan P full_name: Bollback, Jonathan P id: 2C6FA9CC-F248-11E8-B48F-1D18A9856A87 last_name: Bollback orcid: 0000-0002-4624-4612 - first_name: Calin C full_name: Guet, Calin C id: 47F8433E-F248-11E8-B48F-1D18A9856A87 last_name: Guet orcid: 0000-0001-6220-2052 citation: ama: Lagator M, Sarikas S, Acar H, Bollback JP, Guet CC. Regulatory network structure determines patterns of intermolecular epistasis. eLife. 2017;6. doi:10.7554/eLife.28921 apa: Lagator, M., Sarikas, S., Acar, H., Bollback, J. P., & Guet, C. C. (2017). Regulatory network structure determines patterns of intermolecular epistasis. ELife. eLife Sciences Publications. https://doi.org/10.7554/eLife.28921 chicago: Lagator, Mato, Srdjan Sarikas, Hande Acar, Jonathan P Bollback, and Calin C Guet. “Regulatory Network Structure Determines Patterns of Intermolecular Epistasis.” ELife. eLife Sciences Publications, 2017. https://doi.org/10.7554/eLife.28921. ieee: M. Lagator, S. Sarikas, H. Acar, J. P. Bollback, and C. C. Guet, “Regulatory network structure determines patterns of intermolecular epistasis,” eLife, vol. 6. eLife Sciences Publications, 2017. ista: Lagator M, Sarikas S, Acar H, Bollback JP, Guet CC. 2017. Regulatory network structure determines patterns of intermolecular epistasis. eLife. 6, e28921. mla: Lagator, Mato, et al. “Regulatory Network Structure Determines Patterns of Intermolecular Epistasis.” ELife, vol. 6, e28921, eLife Sciences Publications, 2017, doi:10.7554/eLife.28921. short: M. Lagator, S. Sarikas, H. Acar, J.P. Bollback, C.C. Guet, ELife 6 (2017). date_created: 2018-12-11T11:47:14Z date_published: 2017-11-13T00:00:00Z date_updated: 2021-01-12T08:03:15Z day: '13' ddc: - '576' department: - _id: CaGu - _id: JoBo - _id: NiBa doi: 10.7554/eLife.28921 ec_funded: 1 file: - access_level: open_access checksum: 273ab17f33305e4eaafd911ff88e7c5b content_type: application/pdf creator: system date_created: 2018-12-12T10:14:42Z date_updated: 2020-07-14T12:47:10Z file_id: '5096' file_name: IST-2017-918-v1+1_elife-28921-figures-v3.pdf file_size: 8453470 relation: main_file - access_level: open_access checksum: b433f90576c7be597cd43367946f8e7f content_type: application/pdf creator: system date_created: 2018-12-12T10:14:43Z date_updated: 2020-07-14T12:47:10Z file_id: '5097' file_name: IST-2017-918-v1+2_elife-28921-v3.pdf file_size: 1953221 relation: main_file file_date_updated: 2020-07-14T12:47:10Z has_accepted_license: '1' intvolume: ' 6' language: - iso: eng month: '11' oa: 1 oa_version: Published Version project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme - _id: 2578D616-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '648440' name: Selective Barriers to Horizontal Gene Transfer publication: eLife publication_identifier: issn: - 2050084X publication_status: published publisher: eLife Sciences Publications publist_id: '7244' pubrep_id: '918' quality_controlled: '1' scopus_import: 1 status: public title: Regulatory network structure determines patterns of intermolecular epistasis tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 6 year: '2017' ... --- _id: '611' abstract: - lang: eng text: Small RNAs (sRNAs) regulate genes in plants and animals. Here, we show that population-wide differences in color patterns in snapdragon flowers are caused by an inverted duplication that generates sRNAs. The complexity and size of the transcripts indicate that the duplication represents an intermediate on the pathway to microRNA evolution. The sRNAs repress a pigment biosynthesis gene, creating a yellow highlight at the site of pollinator entry. The inverted duplication exhibits steep clines in allele frequency in a natural hybrid zone, showing that the allele is under selection. Thus, regulatory interactions of evolutionarily recent sRNAs can be acted upon by selection and contribute to the evolution of phenotypic diversity. author: - first_name: Desmond full_name: Bradley, Desmond last_name: Bradley - first_name: Ping full_name: Xu, Ping last_name: Xu - first_name: Irina full_name: Mohorianu, Irina last_name: Mohorianu - first_name: Annabel full_name: Whibley, Annabel last_name: Whibley - first_name: David full_name: Field, David id: 419049E2-F248-11E8-B48F-1D18A9856A87 last_name: Field orcid: 0000-0002-4014-8478 - first_name: Hugo full_name: Tavares, Hugo last_name: Tavares - first_name: Matthew full_name: Couchman, Matthew last_name: Couchman - first_name: Lucy full_name: Copsey, Lucy last_name: Copsey - first_name: Rosemary full_name: Carpenter, Rosemary last_name: Carpenter - first_name: Miaomiao full_name: Li, Miaomiao last_name: Li - first_name: Qun full_name: Li, Qun last_name: Li - first_name: Yongbiao full_name: Xue, Yongbiao last_name: Xue - first_name: Tamas full_name: Dalmay, Tamas last_name: Dalmay - first_name: Enrico full_name: Coen, Enrico last_name: Coen citation: ama: Bradley D, Xu P, Mohorianu I, et al. Evolution of flower color pattern through selection on regulatory small RNAs. Science. 2017;358(6365):925-928. doi:10.1126/science.aao3526 apa: Bradley, D., Xu, P., Mohorianu, I., Whibley, A., Field, D., Tavares, H., … Coen, E. (2017). Evolution of flower color pattern through selection on regulatory small RNAs. Science. American Association for the Advancement of Science. https://doi.org/10.1126/science.aao3526 chicago: Bradley, Desmond, Ping Xu, Irina Mohorianu, Annabel Whibley, David Field, Hugo Tavares, Matthew Couchman, et al. “Evolution of Flower Color Pattern through Selection on Regulatory Small RNAs.” Science. American Association for the Advancement of Science, 2017. https://doi.org/10.1126/science.aao3526. ieee: D. Bradley et al., “Evolution of flower color pattern through selection on regulatory small RNAs,” Science, vol. 358, no. 6365. American Association for the Advancement of Science, pp. 925–928, 2017. ista: Bradley D, Xu P, Mohorianu I, Whibley A, Field D, Tavares H, Couchman M, Copsey L, Carpenter R, Li M, Li Q, Xue Y, Dalmay T, Coen E. 2017. Evolution of flower color pattern through selection on regulatory small RNAs. Science. 358(6365), 925–928. mla: Bradley, Desmond, et al. “Evolution of Flower Color Pattern through Selection on Regulatory Small RNAs.” Science, vol. 358, no. 6365, American Association for the Advancement of Science, 2017, pp. 925–28, doi:10.1126/science.aao3526. short: D. Bradley, P. Xu, I. Mohorianu, A. Whibley, D. Field, H. Tavares, M. Couchman, L. Copsey, R. Carpenter, M. Li, Q. Li, Y. Xue, T. Dalmay, E. Coen, Science 358 (2017) 925–928. date_created: 2018-12-11T11:47:29Z date_published: 2017-11-17T00:00:00Z date_updated: 2021-01-12T08:06:10Z day: '17' department: - _id: NiBa doi: 10.1126/science.aao3526 intvolume: ' 358' issue: '6365' language: - iso: eng month: '11' oa_version: None page: 925 - 928 publication: Science publication_identifier: issn: - '00368075' publication_status: published publisher: American Association for the Advancement of Science publist_id: '7193' quality_controlled: '1' scopus_import: 1 status: public title: Evolution of flower color pattern through selection on regulatory small RNAs type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 358 year: '2017' ... --- _id: '626' abstract: - lang: eng text: 'Our focus here is on the infinitesimal model. In this model, one or several quantitative traits are described as the sum of a genetic and a non-genetic component, the first being distributed within families as a normal random variable centred at the average of the parental genetic components, and with a variance independent of the parental traits. Thus, the variance that segregates within families is not perturbed by selection, and can be predicted from the variance components. This does not necessarily imply that the trait distribution across the whole population should be Gaussian, and indeed selection or population structure may have a substantial effect on the overall trait distribution. One of our main aims is to identify some general conditions on the allelic effects for the infinitesimal model to be accurate. We first review the long history of the infinitesimal model in quantitative genetics. Then we formulate the model at the phenotypic level in terms of individual trait values and relationships between individuals, but including different evolutionary processes: genetic drift, recombination, selection, mutation, population structure, …. We give a range of examples of its application to evolutionary questions related to stabilising selection, assortative mating, effective population size and response to selection, habitat preference and speciation. We provide a mathematical justification of the model as the limit as the number M of underlying loci tends to infinity of a model with Mendelian inheritance, mutation and environmental noise, when the genetic component of the trait is purely additive. We also show how the model generalises to include epistatic effects. We prove in particular that, within each family, the genetic components of the individual trait values in the current generation are indeed normally distributed with a variance independent of ancestral traits, up to an error of order 1∕M. Simulations suggest that in some cases the convergence may be as fast as 1∕M.' author: - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 - first_name: Alison full_name: Etheridge, Alison last_name: Etheridge - first_name: Amandine full_name: Véber, Amandine last_name: Véber citation: ama: 'Barton NH, Etheridge A, Véber A. The infinitesimal model: Definition derivation and implications. Theoretical Population Biology. 2017;118:50-73. doi:10.1016/j.tpb.2017.06.001' apa: 'Barton, N. H., Etheridge, A., & Véber, A. (2017). The infinitesimal model: Definition derivation and implications. Theoretical Population Biology. Academic Press. https://doi.org/10.1016/j.tpb.2017.06.001' chicago: 'Barton, Nicholas H, Alison Etheridge, and Amandine Véber. “The Infinitesimal Model: Definition Derivation and Implications.” Theoretical Population Biology. Academic Press, 2017. https://doi.org/10.1016/j.tpb.2017.06.001.' ieee: 'N. H. Barton, A. Etheridge, and A. Véber, “The infinitesimal model: Definition derivation and implications,” Theoretical Population Biology, vol. 118. Academic Press, pp. 50–73, 2017.' ista: 'Barton NH, Etheridge A, Véber A. 2017. The infinitesimal model: Definition derivation and implications. Theoretical Population Biology. 118, 50–73.' mla: 'Barton, Nicholas H., et al. “The Infinitesimal Model: Definition Derivation and Implications.” Theoretical Population Biology, vol. 118, Academic Press, 2017, pp. 50–73, doi:10.1016/j.tpb.2017.06.001.' short: N.H. Barton, A. Etheridge, A. Véber, Theoretical Population Biology 118 (2017) 50–73. date_created: 2018-12-11T11:47:34Z date_published: 2017-12-01T00:00:00Z date_updated: 2021-01-12T08:06:50Z day: '01' ddc: - '576' department: - _id: NiBa doi: 10.1016/j.tpb.2017.06.001 ec_funded: 1 file: - access_level: open_access checksum: 7dd02bfcfe8f244f4a6c19091aedf2c8 content_type: application/pdf creator: system date_created: 2018-12-12T10:12:45Z date_updated: 2020-07-14T12:47:25Z file_id: '4964' file_name: IST-2017-908-v1+1_1-s2.0-S0040580917300886-main_1_.pdf file_size: 1133924 relation: main_file file_date_updated: 2020-07-14T12:47:25Z has_accepted_license: '1' intvolume: ' 118' language: - iso: eng month: '12' oa: 1 oa_version: Published Version page: 50 - 73 project: - _id: 25B07788-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '250152' name: Limits to selection in biology and in evolutionary computation publication: Theoretical Population Biology publication_identifier: issn: - '00405809' publication_status: published publisher: Academic Press publist_id: '7169' pubrep_id: '908' quality_controlled: '1' scopus_import: 1 status: public title: 'The infinitesimal model: Definition derivation and implications' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 118 year: '2017' ... --- _id: '9849' abstract: - lang: eng text: This text provides additional information about the model, a derivation of the analytic results in Eq (4), and details about simulations of an additional parameter set. article_processing_charge: No author: - first_name: Marta full_name: Lukacisinova, Marta id: 4342E402-F248-11E8-B48F-1D18A9856A87 last_name: Lukacisinova orcid: 0000-0002-2519-8004 - first_name: Sebastian full_name: Novak, Sebastian id: 461468AE-F248-11E8-B48F-1D18A9856A87 last_name: Novak - first_name: Tiago full_name: Paixao, Tiago id: 2C5658E6-F248-11E8-B48F-1D18A9856A87 last_name: Paixao orcid: 0000-0003-2361-3953 citation: ama: Lukacisinova M, Novak S, Paixao T. Modelling and simulation details. 2017. doi:10.1371/journal.pcbi.1005609.s001 apa: Lukacisinova, M., Novak, S., & Paixao, T. (2017). Modelling and simulation details. Public Library of Science. https://doi.org/10.1371/journal.pcbi.1005609.s001 chicago: Lukacisinova, Marta, Sebastian Novak, and Tiago Paixao. “Modelling and Simulation Details.” Public Library of Science, 2017. https://doi.org/10.1371/journal.pcbi.1005609.s001. ieee: M. Lukacisinova, S. Novak, and T. Paixao, “Modelling and simulation details.” Public Library of Science, 2017. ista: Lukacisinova M, Novak S, Paixao T. 2017. Modelling and simulation details, Public Library of Science, 10.1371/journal.pcbi.1005609.s001. mla: Lukacisinova, Marta, et al. Modelling and Simulation Details. Public Library of Science, 2017, doi:10.1371/journal.pcbi.1005609.s001. short: M. Lukacisinova, S. Novak, T. Paixao, (2017). date_created: 2021-08-09T14:02:34Z date_published: 2017-07-18T00:00:00Z date_updated: 2023-02-23T12:55:39Z day: '18' department: - _id: ToBo - _id: NiBa - _id: CaGu doi: 10.1371/journal.pcbi.1005609.s001 month: '07' oa_version: Published Version publisher: Public Library of Science related_material: record: - id: '696' relation: used_in_publication status: public status: public title: Modelling and simulation details type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2017' ... --- _id: '9850' abstract: - lang: eng text: In this text, we discuss how a cost of resistance and the possibility of lethal mutations impact our model. article_processing_charge: No author: - first_name: Marta full_name: Lukacisinova, Marta id: 4342E402-F248-11E8-B48F-1D18A9856A87 last_name: Lukacisinova orcid: 0000-0002-2519-8004 - first_name: Sebastian full_name: Novak, Sebastian id: 461468AE-F248-11E8-B48F-1D18A9856A87 last_name: Novak - first_name: Tiago full_name: Paixao, Tiago id: 2C5658E6-F248-11E8-B48F-1D18A9856A87 last_name: Paixao orcid: 0000-0003-2361-3953 citation: ama: Lukacisinova M, Novak S, Paixao T. Extensions of the model. 2017. doi:10.1371/journal.pcbi.1005609.s002 apa: Lukacisinova, M., Novak, S., & Paixao, T. (2017). Extensions of the model. Public Library of Science. https://doi.org/10.1371/journal.pcbi.1005609.s002 chicago: Lukacisinova, Marta, Sebastian Novak, and Tiago Paixao. “Extensions of the Model.” Public Library of Science, 2017. https://doi.org/10.1371/journal.pcbi.1005609.s002. ieee: M. Lukacisinova, S. Novak, and T. Paixao, “Extensions of the model.” Public Library of Science, 2017. ista: Lukacisinova M, Novak S, Paixao T. 2017. Extensions of the model, Public Library of Science, 10.1371/journal.pcbi.1005609.s002. mla: Lukacisinova, Marta, et al. Extensions of the Model. Public Library of Science, 2017, doi:10.1371/journal.pcbi.1005609.s002. short: M. Lukacisinova, S. Novak, T. Paixao, (2017). date_created: 2021-08-09T14:05:24Z date_published: 2017-07-18T00:00:00Z date_updated: 2023-02-23T12:55:39Z day: '18' department: - _id: ToBo - _id: CaGu - _id: NiBa doi: 10.1371/journal.pcbi.1005609.s002 month: '07' oa_version: Published Version publisher: Public Library of Science related_material: record: - id: '696' relation: used_in_publication status: public status: public title: Extensions of the model type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2017' ... --- _id: '9851' abstract: - lang: eng text: Based on the intuitive derivation of the dynamics of SIM allele frequency pM in the main text, we present a heuristic prediction for the long-term SIM allele frequencies with χ > 1 stresses and compare it to numerical simulations. article_processing_charge: No author: - first_name: Marta full_name: Lukacisinova, Marta id: 4342E402-F248-11E8-B48F-1D18A9856A87 last_name: Lukacisinova orcid: 0000-0002-2519-8004 - first_name: Sebastian full_name: Novak, Sebastian id: 461468AE-F248-11E8-B48F-1D18A9856A87 last_name: Novak - first_name: Tiago full_name: Paixao, Tiago id: 2C5658E6-F248-11E8-B48F-1D18A9856A87 last_name: Paixao orcid: 0000-0003-2361-3953 citation: ama: Lukacisinova M, Novak S, Paixao T. Heuristic prediction for multiple stresses. 2017. doi:10.1371/journal.pcbi.1005609.s003 apa: Lukacisinova, M., Novak, S., & Paixao, T. (2017). Heuristic prediction for multiple stresses. Public Library of Science. https://doi.org/10.1371/journal.pcbi.1005609.s003 chicago: Lukacisinova, Marta, Sebastian Novak, and Tiago Paixao. “Heuristic Prediction for Multiple Stresses.” Public Library of Science, 2017. https://doi.org/10.1371/journal.pcbi.1005609.s003. ieee: M. Lukacisinova, S. Novak, and T. Paixao, “Heuristic prediction for multiple stresses.” Public Library of Science, 2017. ista: Lukacisinova M, Novak S, Paixao T. 2017. Heuristic prediction for multiple stresses, Public Library of Science, 10.1371/journal.pcbi.1005609.s003. mla: Lukacisinova, Marta, et al. Heuristic Prediction for Multiple Stresses. Public Library of Science, 2017, doi:10.1371/journal.pcbi.1005609.s003. short: M. Lukacisinova, S. Novak, T. Paixao, (2017). date_created: 2021-08-09T14:08:14Z date_published: 2017-07-18T00:00:00Z date_updated: 2023-02-23T12:55:39Z day: '18' department: - _id: ToBo - _id: CaGu - _id: NiBa doi: 10.1371/journal.pcbi.1005609.s003 month: '07' oa_version: Published Version publisher: Public Library of Science related_material: record: - id: '696' relation: used_in_publication status: public status: public title: Heuristic prediction for multiple stresses type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2017' ... --- _id: '9852' abstract: - lang: eng text: We show how different combination strategies affect the fraction of individuals that are multi-resistant. article_processing_charge: No author: - first_name: Marta full_name: Lukacisinova, Marta id: 4342E402-F248-11E8-B48F-1D18A9856A87 last_name: Lukacisinova orcid: 0000-0002-2519-8004 - first_name: Sebastian full_name: Novak, Sebastian id: 461468AE-F248-11E8-B48F-1D18A9856A87 last_name: Novak - first_name: Tiago full_name: Paixao, Tiago id: 2C5658E6-F248-11E8-B48F-1D18A9856A87 last_name: Paixao orcid: 0000-0003-2361-3953 citation: ama: Lukacisinova M, Novak S, Paixao T. Resistance frequencies for different combination strategies. 2017. doi:10.1371/journal.pcbi.1005609.s004 apa: Lukacisinova, M., Novak, S., & Paixao, T. (2017). Resistance frequencies for different combination strategies. Public Library of Science. https://doi.org/10.1371/journal.pcbi.1005609.s004 chicago: Lukacisinova, Marta, Sebastian Novak, and Tiago Paixao. “Resistance Frequencies for Different Combination Strategies.” Public Library of Science, 2017. https://doi.org/10.1371/journal.pcbi.1005609.s004. ieee: M. Lukacisinova, S. Novak, and T. Paixao, “Resistance frequencies for different combination strategies.” Public Library of Science, 2017. ista: Lukacisinova M, Novak S, Paixao T. 2017. Resistance frequencies for different combination strategies, Public Library of Science, 10.1371/journal.pcbi.1005609.s004. mla: Lukacisinova, Marta, et al. Resistance Frequencies for Different Combination Strategies. Public Library of Science, 2017, doi:10.1371/journal.pcbi.1005609.s004. short: M. Lukacisinova, S. Novak, T. Paixao, (2017). date_created: 2021-08-09T14:11:40Z date_published: 2017-07-18T00:00:00Z date_updated: 2023-02-23T12:55:39Z day: '18' department: - _id: ToBo - _id: CaGu - _id: NiBa doi: 10.1371/journal.pcbi.1005609.s004 month: '07' oa_version: Published Version publisher: Public Library of Science related_material: record: - id: '696' relation: used_in_publication status: public status: public title: Resistance frequencies for different combination strategies type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2017' ... --- _id: '6291' abstract: - lang: eng text: Bacteria and their pathogens – phages – are the most abundant living entities on Earth. Throughout their coevolution, bacteria have evolved multiple immune systems to overcome the ubiquitous threat from the phages. Although the molecu- lar details of these immune systems’ functions are relatively well understood, their epidemiological consequences for the phage-bacterial communities have been largely neglected. In this thesis we employed both experimental and theoretical methods to explore whether herd and social immunity may arise in bacterial popu- lations. Using our experimental system consisting of Escherichia coli strains with a CRISPR based immunity to the T7 phage we show that herd immunity arises in phage-bacterial communities and that it is accentuated when the populations are spatially structured. By fitting a mathematical model, we inferred expressions for the herd immunity threshold and the velocity of spread of a phage epidemic in partially resistant bacterial populations, which both depend on the bacterial growth rate, phage burst size and phage latent period. We also investigated the poten- tial for social immunity in Streptococcus thermophilus and its phage 2972 using a bioinformatic analysis of potentially coding short open reading frames with a signalling signature, encoded within the CRISPR associated genes. Subsequently, we tested one identified potentially signalling peptide and found that its addition to a phage-challenged culture increases probability of survival of bacteria two fold, although the results were only marginally significant. Together, these results demonstrate that the ubiquitous arms races between bacteria and phages have further consequences at the level of the population. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Pavel full_name: Payne, Pavel id: 35F78294-F248-11E8-B48F-1D18A9856A87 last_name: Payne orcid: 0000-0002-2711-9453 citation: ama: Payne P. Bacterial herd and social immunity to phages. 2017. apa: Payne, P. (2017). Bacterial herd and social immunity to phages. Institute of Science and Technology Austria. chicago: Payne, Pavel. “Bacterial Herd and Social Immunity to Phages.” Institute of Science and Technology Austria, 2017. ieee: P. Payne, “Bacterial herd and social immunity to phages,” Institute of Science and Technology Austria, 2017. ista: Payne P. 2017. Bacterial herd and social immunity to phages. Institute of Science and Technology Austria. mla: Payne, Pavel. Bacterial Herd and Social Immunity to Phages. Institute of Science and Technology Austria, 2017. short: P. Payne, Bacterial Herd and Social Immunity to Phages, Institute of Science and Technology Austria, 2017. date_created: 2019-04-09T15:16:45Z date_published: 2017-02-01T00:00:00Z date_updated: 2023-09-07T12:00:00Z day: '01' ddc: - '570' degree_awarded: PhD department: - _id: NiBa - _id: JoBo file: - access_level: closed checksum: a0fc5c26a89c0ea759947ffba87d0d8f content_type: application/pdf creator: dernst date_created: 2019-04-09T15:15:32Z date_updated: 2020-07-14T12:47:27Z file_id: '6292' file_name: thesis_pavel_payne_final_w_signature_page.pdf file_size: 3025175 relation: main_file - access_level: open_access checksum: af531e921a7f64a9e0af4cd8783b2226 content_type: application/pdf creator: dernst date_created: 2021-02-22T13:45:59Z date_updated: 2021-02-22T13:45:59Z file_id: '9187' file_name: 2017_Payne_Thesis.pdf file_size: 3111536 relation: main_file success: 1 file_date_updated: 2021-02-22T13:45:59Z has_accepted_license: '1' language: - iso: eng month: '02' oa: 1 oa_version: Published Version page: '83' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria status: public supervisor: - first_name: Jonathan P full_name: Bollback, Jonathan P id: 2C6FA9CC-F248-11E8-B48F-1D18A9856A87 last_name: Bollback orcid: 0000-0002-4624-4612 - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 title: Bacterial herd and social immunity to phages type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2017' ... --- _id: '9842' abstract: - lang: eng text: Mathematica notebooks used to generate figures. article_processing_charge: No author: - first_name: Alison full_name: Etheridge, Alison last_name: Etheridge - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 citation: ama: 'Etheridge A, Barton NH. Data for: Establishment in a new habitat by polygenic adaptation. 2017. doi:10.17632/nw68fxzjpm.1' apa: 'Etheridge, A., & Barton, N. H. (2017). Data for: Establishment in a new habitat by polygenic adaptation. Mendeley Data. https://doi.org/10.17632/nw68fxzjpm.1' chicago: 'Etheridge, Alison, and Nicholas H Barton. “Data for: Establishment in a New Habitat by Polygenic Adaptation.” Mendeley Data, 2017. https://doi.org/10.17632/nw68fxzjpm.1.' ieee: 'A. Etheridge and N. H. Barton, “Data for: Establishment in a new habitat by polygenic adaptation.” Mendeley Data, 2017.' ista: 'Etheridge A, Barton NH. 2017. Data for: Establishment in a new habitat by polygenic adaptation, Mendeley Data, 10.17632/nw68fxzjpm.1.' mla: 'Etheridge, Alison, and Nicholas H. Barton. Data for: Establishment in a New Habitat by Polygenic Adaptation. Mendeley Data, 2017, doi:10.17632/nw68fxzjpm.1.' short: A. Etheridge, N.H. Barton, (2017). date_created: 2021-08-09T13:18:55Z date_published: 2017-12-29T00:00:00Z date_updated: 2023-09-11T13:41:21Z day: '29' department: - _id: NiBa doi: 10.17632/nw68fxzjpm.1 main_file_link: - open_access: '1' url: https://doi.org/10.17632/nw68fxzjpm.1 month: '12' oa: 1 oa_version: Published Version publisher: Mendeley Data related_material: record: - id: '564' relation: used_in_publication status: public status: public title: 'Data for: Establishment in a new habitat by polygenic adaptation' type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2017' ... --- _id: '1351' abstract: - lang: eng text: The behaviour of gene regulatory networks (GRNs) is typically analysed using simulation-based statistical testing-like methods. In this paper, we demonstrate that we can replace this approach by a formal verification-like method that gives higher assurance and scalability. We focus on Wagner’s weighted GRN model with varying weights, which is used in evolutionary biology. In the model, weight parameters represent the gene interaction strength that may change due to genetic mutations. For a property of interest, we synthesise the constraints over the parameter space that represent the set of GRNs satisfying the property. We experimentally show that our parameter synthesis procedure computes the mutational robustness of GRNs—an important problem of interest in evolutionary biology—more efficiently than the classical simulation method. We specify the property in linear temporal logic. We employ symbolic bounded model checking and SMT solving to compute the space of GRNs that satisfy the property, which amounts to synthesizing a set of linear constraints on the weights. article_processing_charge: No author: - first_name: Mirco full_name: Giacobbe, Mirco id: 3444EA5E-F248-11E8-B48F-1D18A9856A87 last_name: Giacobbe orcid: 0000-0001-8180-0904 - first_name: Calin C full_name: Guet, Calin C id: 47F8433E-F248-11E8-B48F-1D18A9856A87 last_name: Guet orcid: 0000-0001-6220-2052 - first_name: Ashutosh full_name: Gupta, Ashutosh id: 335E5684-F248-11E8-B48F-1D18A9856A87 last_name: Gupta - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000−0002−2985−7724 - first_name: Tiago full_name: Paixao, Tiago id: 2C5658E6-F248-11E8-B48F-1D18A9856A87 last_name: Paixao orcid: 0000-0003-2361-3953 - first_name: Tatjana full_name: Petrov, Tatjana id: 3D5811FC-F248-11E8-B48F-1D18A9856A87 last_name: Petrov orcid: 0000-0002-9041-0905 citation: ama: Giacobbe M, Guet CC, Gupta A, Henzinger TA, Paixao T, Petrov T. Model checking the evolution of gene regulatory networks. Acta Informatica. 2017;54(8):765-787. doi:10.1007/s00236-016-0278-x apa: Giacobbe, M., Guet, C. C., Gupta, A., Henzinger, T. A., Paixao, T., & Petrov, T. (2017). Model checking the evolution of gene regulatory networks. Acta Informatica. Springer. https://doi.org/10.1007/s00236-016-0278-x chicago: Giacobbe, Mirco, Calin C Guet, Ashutosh Gupta, Thomas A Henzinger, Tiago Paixao, and Tatjana Petrov. “Model Checking the Evolution of Gene Regulatory Networks.” Acta Informatica. Springer, 2017. https://doi.org/10.1007/s00236-016-0278-x. ieee: M. Giacobbe, C. C. Guet, A. Gupta, T. A. Henzinger, T. Paixao, and T. Petrov, “Model checking the evolution of gene regulatory networks,” Acta Informatica, vol. 54, no. 8. Springer, pp. 765–787, 2017. ista: Giacobbe M, Guet CC, Gupta A, Henzinger TA, Paixao T, Petrov T. 2017. Model checking the evolution of gene regulatory networks. Acta Informatica. 54(8), 765–787. mla: Giacobbe, Mirco, et al. “Model Checking the Evolution of Gene Regulatory Networks.” Acta Informatica, vol. 54, no. 8, Springer, 2017, pp. 765–87, doi:10.1007/s00236-016-0278-x. short: M. Giacobbe, C.C. Guet, A. Gupta, T.A. Henzinger, T. Paixao, T. Petrov, Acta Informatica 54 (2017) 765–787. date_created: 2018-12-11T11:51:32Z date_published: 2017-12-01T00:00:00Z date_updated: 2023-09-20T11:06:03Z day: '01' ddc: - '006' - '576' department: - _id: ToHe - _id: CaGu - _id: NiBa doi: 10.1007/s00236-016-0278-x ec_funded: 1 external_id: isi: - '000414343200003' file: - access_level: open_access checksum: 4e661d9135d7f8c342e8e258dee76f3e content_type: application/pdf creator: dernst date_created: 2019-01-17T15:57:29Z date_updated: 2020-07-14T12:44:46Z file_id: '5841' file_name: 2017_ActaInformatica_Giacobbe.pdf file_size: 755241 relation: main_file file_date_updated: 2020-07-14T12:44:46Z has_accepted_license: '1' intvolume: ' 54' isi: 1 issue: '8' language: - iso: eng month: '12' oa: 1 oa_version: Published Version page: 765 - 787 project: - _id: 25EE3708-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '267989' name: Quantitative Reactive Modeling - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize - _id: 25B1EC9E-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '618091' name: Speed of Adaptation in Population Genetics and Evolutionary Computation - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme - _id: 25B07788-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '250152' name: Limits to selection in biology and in evolutionary computation publication: Acta Informatica publication_identifier: issn: - '00015903' publication_status: published publisher: Springer publist_id: '5898' pubrep_id: '649' quality_controlled: '1' related_material: record: - id: '1835' relation: earlier_version status: public scopus_import: '1' status: public title: Model checking the evolution of gene regulatory networks tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 54 year: '2017' ... --- _id: '1336' abstract: - lang: eng text: Evolutionary algorithms (EAs) form a popular optimisation paradigm inspired by natural evolution. In recent years the field of evolutionary computation has developed a rigorous analytical theory to analyse the runtimes of EAs on many illustrative problems. Here we apply this theory to a simple model of natural evolution. In the Strong Selection Weak Mutation (SSWM) evolutionary regime the time between occurrences of new mutations is much longer than the time it takes for a mutated genotype to take over the population. In this situation, the population only contains copies of one genotype and evolution can be modelled as a stochastic process evolving one genotype by means of mutation and selection between the resident and the mutated genotype. The probability of accepting the mutated genotype then depends on the change in fitness. We study this process, SSWM, from an algorithmic perspective, quantifying its expected optimisation time for various parameters and investigating differences to a similar evolutionary algorithm, the well-known (1+1) EA. We show that SSWM can have a moderate advantage over the (1+1) EA at crossing fitness valleys and study an example where SSWM outperforms the (1+1) EA by taking advantage of information on the fitness gradient. article_processing_charge: No author: - first_name: Tiago full_name: Paixao, Tiago id: 2C5658E6-F248-11E8-B48F-1D18A9856A87 last_name: Paixao orcid: 0000-0003-2361-3953 - first_name: Jorge full_name: Pérez Heredia, Jorge last_name: Pérez Heredia - first_name: Dirk full_name: Sudholt, Dirk last_name: Sudholt - first_name: Barbora full_name: Trubenova, Barbora id: 42302D54-F248-11E8-B48F-1D18A9856A87 last_name: Trubenova orcid: 0000-0002-6873-2967 citation: ama: Paixao T, Pérez Heredia J, Sudholt D, Trubenova B. Towards a runtime comparison of natural and artificial evolution. Algorithmica. 2017;78(2):681-713. doi:10.1007/s00453-016-0212-1 apa: Paixao, T., Pérez Heredia, J., Sudholt, D., & Trubenova, B. (2017). Towards a runtime comparison of natural and artificial evolution. Algorithmica. Springer. https://doi.org/10.1007/s00453-016-0212-1 chicago: Paixao, Tiago, Jorge Pérez Heredia, Dirk Sudholt, and Barbora Trubenova. “Towards a Runtime Comparison of Natural and Artificial Evolution.” Algorithmica. Springer, 2017. https://doi.org/10.1007/s00453-016-0212-1. ieee: T. Paixao, J. Pérez Heredia, D. Sudholt, and B. Trubenova, “Towards a runtime comparison of natural and artificial evolution,” Algorithmica, vol. 78, no. 2. Springer, pp. 681–713, 2017. ista: Paixao T, Pérez Heredia J, Sudholt D, Trubenova B. 2017. Towards a runtime comparison of natural and artificial evolution. Algorithmica. 78(2), 681–713. mla: Paixao, Tiago, et al. “Towards a Runtime Comparison of Natural and Artificial Evolution.” Algorithmica, vol. 78, no. 2, Springer, 2017, pp. 681–713, doi:10.1007/s00453-016-0212-1. short: T. Paixao, J. Pérez Heredia, D. Sudholt, B. Trubenova, Algorithmica 78 (2017) 681–713. date_created: 2018-12-11T11:51:27Z date_published: 2017-06-01T00:00:00Z date_updated: 2023-09-20T11:14:42Z day: '01' ddc: - '576' department: - _id: NiBa - _id: CaGu doi: 10.1007/s00453-016-0212-1 ec_funded: 1 external_id: isi: - '000400379500013' file: - access_level: open_access checksum: 7873f665a0c598ac747c908f34cb14b9 content_type: application/pdf creator: system date_created: 2018-12-12T10:10:19Z date_updated: 2020-07-14T12:44:44Z file_id: '4805' file_name: IST-2016-658-v1+1_s00453-016-0212-1.pdf file_size: 710206 relation: main_file file_date_updated: 2020-07-14T12:44:44Z has_accepted_license: '1' intvolume: ' 78' isi: 1 issue: '2' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: 681 - 713 project: - _id: 25B1EC9E-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '618091' name: Speed of Adaptation in Population Genetics and Evolutionary Computation publication: Algorithmica publication_identifier: issn: - '01784617' publication_status: published publisher: Springer publist_id: '5931' pubrep_id: '658' quality_controlled: '1' scopus_import: '1' status: public title: Towards a runtime comparison of natural and artificial evolution tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 78 year: '2017' ... --- _id: '1199' abstract: - lang: eng text: Much of quantitative genetics is based on the ‘infinitesimal model’, under which selection has a negligible effect on the genetic variance. This is typically justified by assuming a very large number of loci with additive effects. However, it applies even when genes interact, provided that the number of loci is large enough that selection on each of them is weak relative to random drift. In the long term, directional selection will change allele frequencies, but even then, the effects of epistasis on the ultimate change in trait mean due to selection may be modest. Stabilising selection can maintain many traits close to their optima, even when the underlying alleles are weakly selected. However, the number of traits that can be optimised is apparently limited to ~4Ne by the ‘drift load’, and this is hard to reconcile with the apparent complexity of many organisms. Just as for the mutation load, this limit can be evaded by a particular form of negative epistasis. A more robust limit is set by the variance in reproductive success. This suggests that selection accumulates information most efficiently in the infinitesimal regime, when selection on individual alleles is weak, and comparable with random drift. A review of evidence on selection strength suggests that although most variance in fitness may be because of alleles with large Nes, substantial amounts of adaptation may be because of alleles in the infinitesimal regime, in which epistasis has modest effects. article_processing_charge: No author: - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 citation: ama: Barton NH. How does epistasis influence the response to selection? Heredity. 2017;118:96-109. doi:10.1038/hdy.2016.109 apa: Barton, N. H. (2017). How does epistasis influence the response to selection? Heredity. Nature Publishing Group. https://doi.org/10.1038/hdy.2016.109 chicago: Barton, Nicholas H. “How Does Epistasis Influence the Response to Selection?” Heredity. Nature Publishing Group, 2017. https://doi.org/10.1038/hdy.2016.109. ieee: N. H. Barton, “How does epistasis influence the response to selection?,” Heredity, vol. 118. Nature Publishing Group, pp. 96–109, 2017. ista: Barton NH. 2017. How does epistasis influence the response to selection? Heredity. 118, 96–109. mla: Barton, Nicholas H. “How Does Epistasis Influence the Response to Selection?” Heredity, vol. 118, Nature Publishing Group, 2017, pp. 96–109, doi:10.1038/hdy.2016.109. short: N.H. Barton, Heredity 118 (2017) 96–109. date_created: 2018-12-11T11:50:40Z date_published: 2017-01-01T00:00:00Z date_updated: 2023-09-20T11:17:47Z day: '01' department: - _id: NiBa doi: 10.1038/hdy.2016.109 ec_funded: 1 external_id: isi: - '000392229100011' intvolume: ' 118' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5176114/ month: '01' oa: 1 oa_version: Submitted Version page: 96 - 109 project: - _id: 25B07788-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '250152' name: Limits to selection in biology and in evolutionary computation publication: Heredity publication_status: published publisher: Nature Publishing Group publist_id: '6151' quality_controlled: '1' related_material: record: - id: '9710' relation: research_data status: public scopus_import: '1' status: public title: How does epistasis influence the response to selection? type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 118 year: '2017' ... --- _id: '1169' abstract: - lang: eng text: Dispersal is a crucial factor in natural evolution, since it determines the habitat experienced by any population and defines the spatial scale of interactions between individuals. There is compelling evidence for systematic differences in dispersal characteristics within the same population, i.e., genotype-dependent dispersal. The consequences of genotype-dependent dispersal on other evolutionary phenomena, however, are poorly understood. In this article we investigate the effect of genotype-dependent dispersal on spatial gene frequency patterns, using a generalization of the classical diffusion model of selection and dispersal. Dispersal is characterized by the variance of dispersal (diffusion coefficient) and the mean displacement (directional advection term). We demonstrate that genotype-dependent dispersal may change the qualitative behavior of Fisher waves, which change from being “pulled” to being “pushed” wave fronts as the discrepancy in dispersal between genotypes increases. The speed of any wave is partitioned into components due to selection, genotype-dependent variance of dispersal, and genotype-dependent mean displacement. We apply our findings to wave fronts maintained by selection against heterozygotes. Furthermore, we identify a benefit of increased variance of dispersal, quantify its effect on the speed of the wave, and discuss the implications for the evolution of dispersal strategies. article_processing_charge: No author: - first_name: Sebastian full_name: Novak, Sebastian id: 461468AE-F248-11E8-B48F-1D18A9856A87 last_name: Novak orcid: 0000-0002-2519-824X - first_name: Richard full_name: Kollár, Richard last_name: Kollár citation: ama: Novak S, Kollár R. Spatial gene frequency waves under genotype dependent dispersal. Genetics. 2017;205(1):367-374. doi:10.1534/genetics.116.193946 apa: Novak, S., & Kollár, R. (2017). Spatial gene frequency waves under genotype dependent dispersal. Genetics. Genetics Society of America. https://doi.org/10.1534/genetics.116.193946 chicago: Novak, Sebastian, and Richard Kollár. “Spatial Gene Frequency Waves under Genotype Dependent Dispersal.” Genetics. Genetics Society of America, 2017. https://doi.org/10.1534/genetics.116.193946. ieee: S. Novak and R. Kollár, “Spatial gene frequency waves under genotype dependent dispersal,” Genetics, vol. 205, no. 1. Genetics Society of America, pp. 367–374, 2017. ista: Novak S, Kollár R. 2017. Spatial gene frequency waves under genotype dependent dispersal. Genetics. 205(1), 367–374. mla: Novak, Sebastian, and Richard Kollár. “Spatial Gene Frequency Waves under Genotype Dependent Dispersal.” Genetics, vol. 205, no. 1, Genetics Society of America, 2017, pp. 367–74, doi:10.1534/genetics.116.193946. short: S. Novak, R. Kollár, Genetics 205 (2017) 367–374. date_created: 2018-12-11T11:50:31Z date_published: 2017-01-01T00:00:00Z date_updated: 2023-09-20T11:24:21Z day: '01' ddc: - '576' department: - _id: NiBa doi: 10.1534/genetics.116.193946 ec_funded: 1 external_id: isi: - '000393677300025' file: - access_level: open_access checksum: 7c8ab79cda1f92760bbbbe0f53175bfc content_type: application/pdf creator: system date_created: 2018-12-12T10:10:43Z date_updated: 2020-07-14T12:44:37Z file_id: '4833' file_name: IST-2016-727-v1+1_SFC_Genetics_final.pdf file_size: 361500 relation: main_file file_date_updated: 2020-07-14T12:44:37Z has_accepted_license: '1' intvolume: ' 205' isi: 1 issue: '1' language: - iso: eng month: '01' oa: 1 oa_version: Submitted Version page: 367 - 374 project: - _id: 25B1EC9E-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '618091' name: Speed of Adaptation in Population Genetics and Evolutionary Computation - _id: 25B07788-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '250152' name: Limits to selection in biology and in evolutionary computation publication: Genetics publication_identifier: issn: - '00166731' publication_status: published publisher: Genetics Society of America publist_id: '6188' pubrep_id: '727' quality_controlled: '1' scopus_import: '1' status: public title: Spatial gene frequency waves under genotype dependent dispersal type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 205 year: '2017' ... --- _id: '1111' abstract: - lang: eng text: Adaptation depends critically on the effects of new mutations and their dependency on the genetic background in which they occur. These two factors can be summarized by the fitness landscape. However, it would require testing all mutations in all backgrounds, making the definition and analysis of fitness landscapes mostly inaccessible. Instead of postulating a particular fitness landscape, we address this problem by considering general classes of landscapes and calculating an upper limit for the time it takes for a population to reach a fitness peak, circumventing the need to have full knowledge about the fitness landscape. We analyze populations in the weak-mutation regime and characterize the conditions that enable them to quickly reach the fitness peak as a function of the number of sites under selection. We show that for additive landscapes there is a critical selection strength enabling populations to reach high-fitness genotypes, regardless of the distribution of effects. This threshold scales with the number of sites under selection, effectively setting a limit to adaptation, and results from the inevitable increase in deleterious mutational pressure as the population adapts in a space of discrete genotypes. Furthermore, we show that for the class of all unimodal landscapes this condition is sufficient but not necessary for rapid adaptation, as in some highly epistatic landscapes the critical strength does not depend on the number of sites under selection; effectively removing this barrier to adaptation. article_processing_charge: No article_type: original author: - first_name: Jorge full_name: Heredia, Jorge last_name: Heredia - first_name: Barbora full_name: Trubenova, Barbora id: 42302D54-F248-11E8-B48F-1D18A9856A87 last_name: Trubenova orcid: 0000-0002-6873-2967 - first_name: Dirk full_name: Sudholt, Dirk last_name: Sudholt - first_name: Tiago full_name: Paixao, Tiago id: 2C5658E6-F248-11E8-B48F-1D18A9856A87 last_name: Paixao orcid: 0000-0003-2361-3953 citation: ama: Heredia J, Trubenova B, Sudholt D, Paixao T. Selection limits to adaptive walks on correlated landscapes. Genetics. 2017;205(2):803-825. doi:10.1534/genetics.116.189340 apa: Heredia, J., Trubenova, B., Sudholt, D., & Paixao, T. (2017). Selection limits to adaptive walks on correlated landscapes. Genetics. Genetics Society of America. https://doi.org/10.1534/genetics.116.189340 chicago: Heredia, Jorge, Barbora Trubenova, Dirk Sudholt, and Tiago Paixao. “Selection Limits to Adaptive Walks on Correlated Landscapes.” Genetics. Genetics Society of America, 2017. https://doi.org/10.1534/genetics.116.189340. ieee: J. Heredia, B. Trubenova, D. Sudholt, and T. Paixao, “Selection limits to adaptive walks on correlated landscapes,” Genetics, vol. 205, no. 2. Genetics Society of America, pp. 803–825, 2017. ista: Heredia J, Trubenova B, Sudholt D, Paixao T. 2017. Selection limits to adaptive walks on correlated landscapes. Genetics. 205(2), 803–825. mla: Heredia, Jorge, et al. “Selection Limits to Adaptive Walks on Correlated Landscapes.” Genetics, vol. 205, no. 2, Genetics Society of America, 2017, pp. 803–25, doi:10.1534/genetics.116.189340. short: J. Heredia, B. Trubenova, D. Sudholt, T. Paixao, Genetics 205 (2017) 803–825. date_created: 2018-12-11T11:50:12Z date_published: 2017-02-01T00:00:00Z date_updated: 2023-09-20T11:35:03Z day: '01' department: - _id: NiBa doi: 10.1534/genetics.116.189340 ec_funded: 1 external_id: isi: - '000394144900025' pmid: - '27881471' intvolume: ' 205' isi: 1 issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1534/genetics.116.189340 month: '02' oa: 1 oa_version: Published Version page: 803 - 825 pmid: 1 project: - _id: 25B1EC9E-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '618091' name: Speed of Adaptation in Population Genetics and Evolutionary Computation publication: Genetics publication_identifier: issn: - '00166731' publication_status: published publisher: Genetics Society of America publist_id: '6256' quality_controlled: '1' scopus_import: '1' status: public title: Selection limits to adaptive walks on correlated landscapes type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 205 year: '2017' ... --- _id: '1077' abstract: - lang: eng text: Viral capsids are structurally constrained by interactions among the amino acids (AAs) of their constituent proteins. Therefore, epistasis is expected to evolve among physically interacting sites and to influence the rates of substitution. To study the evolution of epistasis, we focused on the major structural protein of the fX174 phage family by first reconstructing the ancestral protein sequences of 18 species using a Bayesian statistical framework. The inferred ancestral reconstruction differed at eight AAs, for a total of 256 possible ancestral haplotypes. For each ancestral haplotype and the extant species, we estimated, in silico, the distribution of free energies and epistasis of the capsid structure. We found that free energy has not significantly increased but epistasis has. We decomposed epistasis up to fifth order and found that higher-order epistasis sometimes compensates pairwise interactions making the free energy seem additive. The dN/dS ratio is low, suggesting strong purifying selection, and that structure is under stabilizing selection. We synthesized phages carrying ancestral haplotypes of the coat protein gene and measured their fitness experimentally. Our findings indicate that stabilizing mutations can have higher fitness, and that fitness optima do not necessarily coincide with energy minima. article_number: '20160139' article_processing_charge: Yes (in subscription journal) author: - first_name: Rodrigo A full_name: Fernandes Redondo, Rodrigo A id: 409D5C96-F248-11E8-B48F-1D18A9856A87 last_name: Fernandes Redondo orcid: 0000-0002-5837-2793 - first_name: Harold full_name: Vladar, Harold id: 2A181218-F248-11E8-B48F-1D18A9856A87 last_name: Vladar orcid: 0000-0002-5985-7653 - first_name: Tomasz full_name: Włodarski, Tomasz last_name: Włodarski - first_name: Jonathan P full_name: Bollback, Jonathan P id: 2C6FA9CC-F248-11E8-B48F-1D18A9856A87 last_name: Bollback orcid: 0000-0002-4624-4612 citation: ama: Fernandes Redondo RA, de Vladar H, Włodarski T, Bollback JP. Evolutionary interplay between structure, energy and epistasis in the coat protein of the ϕX174 phage family. Journal of the Royal Society Interface. 2017;14(126). doi:10.1098/rsif.2016.0139 apa: Fernandes Redondo, R. A., de Vladar, H., Włodarski, T., & Bollback, J. P. (2017). Evolutionary interplay between structure, energy and epistasis in the coat protein of the ϕX174 phage family. Journal of the Royal Society Interface. Royal Society of London. https://doi.org/10.1098/rsif.2016.0139 chicago: Fernandes Redondo, Rodrigo A, Harold de Vladar, Tomasz Włodarski, and Jonathan P Bollback. “Evolutionary Interplay between Structure, Energy and Epistasis in the Coat Protein of the ΦX174 Phage Family.” Journal of the Royal Society Interface. Royal Society of London, 2017. https://doi.org/10.1098/rsif.2016.0139. ieee: R. A. Fernandes Redondo, H. de Vladar, T. Włodarski, and J. P. Bollback, “Evolutionary interplay between structure, energy and epistasis in the coat protein of the ϕX174 phage family,” Journal of the Royal Society Interface, vol. 14, no. 126. Royal Society of London, 2017. ista: Fernandes Redondo RA, de Vladar H, Włodarski T, Bollback JP. 2017. Evolutionary interplay between structure, energy and epistasis in the coat protein of the ϕX174 phage family. Journal of the Royal Society Interface. 14(126), 20160139. mla: Fernandes Redondo, Rodrigo A., et al. “Evolutionary Interplay between Structure, Energy and Epistasis in the Coat Protein of the ΦX174 Phage Family.” Journal of the Royal Society Interface, vol. 14, no. 126, 20160139, Royal Society of London, 2017, doi:10.1098/rsif.2016.0139. short: R.A. Fernandes Redondo, H. de Vladar, T. Włodarski, J.P. Bollback, Journal of the Royal Society Interface 14 (2017). date_created: 2018-12-11T11:50:01Z date_published: 2017-01-04T00:00:00Z date_updated: 2023-09-20T11:56:34Z day: '04' ddc: - '570' department: - _id: NiBa - _id: JoBo doi: 10.1098/rsif.2016.0139 ec_funded: 1 external_id: isi: - '000393380400001' file: - access_level: open_access content_type: application/pdf creator: dernst date_created: 2019-01-18T09:14:02Z date_updated: 2019-01-18T09:14:02Z file_id: '5843' file_name: 2017_JRSI_Redondo.pdf file_size: 1092015 relation: main_file success: 1 file_date_updated: 2019-01-18T09:14:02Z has_accepted_license: '1' intvolume: ' 14' isi: 1 issue: '126' language: - iso: eng month: '01' oa: 1 oa_version: Published Version project: - _id: 25B07788-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '250152' name: Limits to selection in biology and in evolutionary computation - _id: 2578D616-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '648440' name: Selective Barriers to Horizontal Gene Transfer publication: Journal of the Royal Society Interface publication_identifier: issn: - '17425689' publication_status: published publisher: Royal Society of London publist_id: '6303' quality_controlled: '1' related_material: record: - id: '9864' relation: research_data status: public scopus_import: '1' status: public title: Evolutionary interplay between structure, energy and epistasis in the coat protein of the ϕX174 phage family tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 14 year: '2017' ...