--- _id: '12166' abstract: - lang: eng text: Kerstin Johannesson is a marine ecologist and evolutionary biologist based at the Tjärnö Marine Laboratory of the University of Gothenburg, which is situated in the beautiful Kosterhavet National Park on the Swedish west coast. Her work, using marine periwinkles (especially Littorina saxatilis and L. fabalis) as main model systems, has made a remarkable contribution to marine evolutionary biology and our understanding of local adaptation and its genetic underpinnings. article_processing_charge: No article_type: letter_note author: - first_name: Anja M full_name: Westram, Anja M id: 3C147470-F248-11E8-B48F-1D18A9856A87 last_name: Westram orcid: 0000-0003-1050-4969 - first_name: Roger full_name: Butlin, Roger last_name: Butlin citation: ama: Westram AM, Butlin R. Professor Kerstin Johannesson–winner of the 2022 Molecular Ecology Prize. Molecular Ecology. 2022;32(1):26-29. doi:10.1111/mec.16779 apa: Westram, A. M., & Butlin, R. (2022). Professor Kerstin Johannesson–winner of the 2022 Molecular Ecology Prize. Molecular Ecology. Wiley. https://doi.org/10.1111/mec.16779 chicago: Westram, Anja M, and Roger Butlin. “Professor Kerstin Johannesson–Winner of the 2022 Molecular Ecology Prize.” Molecular Ecology. Wiley, 2022. https://doi.org/10.1111/mec.16779. ieee: A. M. Westram and R. Butlin, “Professor Kerstin Johannesson–winner of the 2022 Molecular Ecology Prize,” Molecular Ecology, vol. 32, no. 1. Wiley, pp. 26–29, 2022. ista: Westram AM, Butlin R. 2022. Professor Kerstin Johannesson–winner of the 2022 Molecular Ecology Prize. Molecular Ecology. 32(1), 26–29. mla: Westram, Anja M., and Roger Butlin. “Professor Kerstin Johannesson–Winner of the 2022 Molecular Ecology Prize.” Molecular Ecology, vol. 32, no. 1, Wiley, 2022, pp. 26–29, doi:10.1111/mec.16779. short: A.M. Westram, R. Butlin, Molecular Ecology 32 (2022) 26–29. date_created: 2023-01-12T12:10:28Z date_published: 2022-11-28T00:00:00Z date_updated: 2023-08-04T09:09:15Z day: '28' department: - _id: NiBa doi: 10.1111/mec.16779 external_id: isi: - '000892168800001' intvolume: ' 32' isi: 1 issue: '1' keyword: - Genetics - Ecology - Evolution - Behavior and Systematics language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1111/mec.16779 month: '11' oa: 1 oa_version: Published Version page: 26-29 publication: Molecular Ecology publication_identifier: eissn: - 1365-294X issn: - 0962-1083 publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: Professor Kerstin Johannesson–winner of the 2022 Molecular Ecology Prize type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 32 year: '2022' ... --- _id: '12234' abstract: - lang: eng text: Hybrid speciation—the origin of new species resulting from the hybridization of genetically divergent lineages—was once considered rare, but genomic data suggest that it may occur more often than once thought. In this study, Noguerales and Ortego found genomic evidence supporting the hybrid origin of a grasshopper that is able to exploit a broader range of host plants than either of its putative parents. article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Sean full_name: Stankowski, Sean id: 43161670-5719-11EA-8025-FABC3DDC885E last_name: Stankowski citation: ama: 'Stankowski S. Digest: On the origin of a possible hybrid species. Evolution. 2022;76(11):2784-2785. doi:10.1111/evo.14632' apa: 'Stankowski, S. (2022). Digest: On the origin of a possible hybrid species. Evolution. Wiley. https://doi.org/10.1111/evo.14632' chicago: 'Stankowski, Sean. “Digest: On the Origin of a Possible Hybrid Species.” Evolution. Wiley, 2022. https://doi.org/10.1111/evo.14632.' ieee: 'S. Stankowski, “Digest: On the origin of a possible hybrid species,” Evolution, vol. 76, no. 11. Wiley, pp. 2784–2785, 2022.' ista: 'Stankowski S. 2022. Digest: On the origin of a possible hybrid species. Evolution. 76(11), 2784–2785.' mla: 'Stankowski, Sean. “Digest: On the Origin of a Possible Hybrid Species.” Evolution, vol. 76, no. 11, Wiley, 2022, pp. 2784–85, doi:10.1111/evo.14632.' short: S. Stankowski, Evolution 76 (2022) 2784–2785. date_created: 2023-01-16T09:50:48Z date_published: 2022-11-01T00:00:00Z date_updated: 2023-08-04T09:35:48Z day: '01' ddc: - '570' department: - _id: NiBa doi: 10.1111/evo.14632 external_id: isi: - '000855751600001' file: - access_level: open_access checksum: 4c0f05083b414ac0323a1b9ee1abc275 content_type: application/pdf creator: dernst date_created: 2023-01-27T11:28:38Z date_updated: 2023-01-27T11:28:38Z file_id: '12425' file_name: 2022_Evolution_Stankowski.pdf file_size: 287282 relation: main_file success: 1 file_date_updated: 2023-01-27T11:28:38Z has_accepted_license: '1' intvolume: ' 76' isi: 1 issue: '11' keyword: - General Agricultural and Biological Sciences - Genetics - Ecology - Evolution - Behavior and Systematics language: - iso: eng license: https://creativecommons.org/licenses/by-nc-nd/4.0/ month: '11' oa: 1 oa_version: Published Version page: 2784-2785 publication: Evolution publication_identifier: eissn: - 1558-5646 issn: - 0014-3820 publication_status: published publisher: Wiley quality_controlled: '1' scopus_import: '1' status: public title: 'Digest: On the origin of a possible hybrid species' tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 76 year: '2022' ... --- _id: '12247' abstract: - lang: eng text: Chromosomal inversions have been shown to play a major role in a local adaptation by suppressing recombination between alternative arrangements and maintaining beneficial allele combinations. However, so far, their importance relative to the remaining genome remains largely unknown. Understanding the genetic architecture of adaptation requires better estimates of how loci of different effect sizes contribute to phenotypic variation. Here, we used three Swedish islands where the marine snail Littorina saxatilis has repeatedly evolved into two distinct ecotypes along a habitat transition. We estimated the contribution of inversion polymorphisms to phenotypic divergence while controlling for polygenic effects in the remaining genome using a quantitative genetics framework. We confirmed the importance of inversions but showed that contributions of loci outside inversions are of similar magnitude, with variable proportions dependent on the trait and the population. Some inversions showed consistent effects across all sites, whereas others exhibited site-specific effects, indicating that the genomic basis for replicated phenotypic divergence is only partly shared. The contributions of sexual dimorphism as well as environmental factors to phenotypic variation were significant but minor compared to inversions and polygenic background. Overall, this integrated approach provides insight into the multiple mechanisms contributing to parallel phenotypic divergence. acknowledgement: We thank everyone who helped with fieldwork, snail processing, and DNA extractions, particularly Laura Brettell, Mårten Duvetorp, Juan Galindo, Anne-Lise Liabot, Irena Senčić, and Zuzanna Zagrodzka. We also thank Rui Faria and Jenny Larsson for their contributions, with inversions and shell shape respectively. KJ was funded by the Swedish research council Vetenskapsrådet, grant number 2017-03798. R.K.B. and E.K. were funded by the European Research Council (ERC-2015-AdG-693030-BARRIERS). R.K.B. was also funded by the Natural Environment Research Council and the Swedish Research Council Vetenskapsrådet. article_processing_charge: No article_type: original author: - first_name: Eva L. full_name: Koch, Eva L. last_name: Koch - first_name: Mark full_name: Ravinet, Mark last_name: Ravinet - first_name: Anja M full_name: Westram, Anja M id: 3C147470-F248-11E8-B48F-1D18A9856A87 last_name: Westram orcid: 0000-0003-1050-4969 - first_name: Kerstin full_name: Johannesson, Kerstin last_name: Johannesson - first_name: Roger K. full_name: Butlin, Roger K. last_name: Butlin citation: ama: Koch EL, Ravinet M, Westram AM, Johannesson K, Butlin RK. Genetic architecture of repeated phenotypic divergence in Littorina saxatilis evolution. Evolution. 2022;76(10):2332-2346. doi:10.1111/evo.14602 apa: Koch, E. L., Ravinet, M., Westram, A. M., Johannesson, K., & Butlin, R. K. (2022). Genetic architecture of repeated phenotypic divergence in Littorina saxatilis evolution. Evolution. Wiley. https://doi.org/10.1111/evo.14602 chicago: Koch, Eva L., Mark Ravinet, Anja M Westram, Kerstin Johannesson, and Roger K. Butlin. “Genetic Architecture of Repeated Phenotypic Divergence in Littorina Saxatilis Evolution.” Evolution. Wiley, 2022. https://doi.org/10.1111/evo.14602. ieee: E. L. Koch, M. Ravinet, A. M. Westram, K. Johannesson, and R. K. Butlin, “Genetic architecture of repeated phenotypic divergence in Littorina saxatilis evolution,” Evolution, vol. 76, no. 10. Wiley, pp. 2332–2346, 2022. ista: Koch EL, Ravinet M, Westram AM, Johannesson K, Butlin RK. 2022. Genetic architecture of repeated phenotypic divergence in Littorina saxatilis evolution. Evolution. 76(10), 2332–2346. mla: Koch, Eva L., et al. “Genetic Architecture of Repeated Phenotypic Divergence in Littorina Saxatilis Evolution.” Evolution, vol. 76, no. 10, Wiley, 2022, pp. 2332–46, doi:10.1111/evo.14602. short: E.L. Koch, M. Ravinet, A.M. Westram, K. Johannesson, R.K. Butlin, Evolution 76 (2022) 2332–2346. date_created: 2023-01-16T09:54:15Z date_published: 2022-10-01T00:00:00Z date_updated: 2023-08-04T09:42:11Z day: '01' ddc: - '570' department: - _id: NiBa doi: 10.1111/evo.14602 external_id: isi: - '000848449100001' pmid: - '35994296' file: - access_level: open_access checksum: defd8a4bea61cf00a3c88d4a30e2728c content_type: application/pdf creator: dernst date_created: 2023-01-30T08:45:35Z date_updated: 2023-01-30T08:45:35Z file_id: '12439' file_name: 2022_Evolution_Koch.pdf file_size: 2990581 relation: main_file success: 1 file_date_updated: 2023-01-30T08:45:35Z has_accepted_license: '1' intvolume: ' 76' isi: 1 issue: '10' keyword: - General Agricultural and Biological Sciences - Genetics - Ecology - Evolution - Behavior and Systematics language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '10' oa: 1 oa_version: Published Version page: 2332-2346 pmid: 1 publication: Evolution publication_identifier: eissn: - 1558-5646 issn: - 0014-3820 publication_status: published publisher: Wiley quality_controlled: '1' related_material: record: - id: '13066' relation: research_data status: public scopus_import: '1' status: public title: Genetic architecture of repeated phenotypic divergence in Littorina saxatilis evolution tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 76 year: '2022' ... --- _id: '13066' abstract: - lang: eng text: Chromosomal inversions have been shown to play a major role in local adaptation by suppressing recombination between alternative arrangements and maintaining beneficial allele combinations. However, so far, their importance relative to the remaining genome remains largely unknown. Understanding the genetic architecture of adaptation requires better estimates of how loci of different effect sizes contribute to phenotypic variation. Here, we used three Swedish islands where the marine snail Littorina saxatilis has repeatedly evolved into two distinct ecotypes along a habitat transition. We estimated the contribution of inversion polymorphisms to phenotypic divergence while controlling for polygenic effects in the remaining genome using a quantitative genetics framework. We confirmed the importance of inversions but showed that contributions of loci outside inversions are of similar magnitude, with variable proportions dependent on the trait and the population. Some inversions showed consistent effects across all sites, whereas others exhibited site-specific effects, indicating that the genomic basis for replicated phenotypic divergence is only partly shared. The contributions of sexual dimorphism as well as environmental factors to phenotypic variation were significant but minor compared to inversions and polygenic background. Overall, this integrated approach provides insight into the multiple mechanisms contributing to parallel phenotypic divergence. article_processing_charge: No author: - first_name: Eva full_name: Koch, Eva last_name: Koch - first_name: Mark full_name: Ravinet, Mark last_name: Ravinet - first_name: Anja M full_name: Westram, Anja M id: 3C147470-F248-11E8-B48F-1D18A9856A87 last_name: Westram orcid: 0000-0003-1050-4969 - first_name: Kerstin full_name: Jonannesson, Kerstin last_name: Jonannesson - first_name: Roger full_name: Butlin, Roger last_name: Butlin citation: ama: 'Koch E, Ravinet M, Westram AM, Jonannesson K, Butlin R. Data from: Genetic architecture of repeated phenotypic divergence in Littorina saxatilis ecotype evolution. 2022. doi:10.5061/DRYAD.M905QFV4B' apa: 'Koch, E., Ravinet, M., Westram, A. M., Jonannesson, K., & Butlin, R. (2022). Data from: Genetic architecture of repeated phenotypic divergence in Littorina saxatilis ecotype evolution. Dryad. https://doi.org/10.5061/DRYAD.M905QFV4B' chicago: 'Koch, Eva, Mark Ravinet, Anja M Westram, Kerstin Jonannesson, and Roger Butlin. “Data from: Genetic Architecture of Repeated Phenotypic Divergence in Littorina Saxatilis Ecotype Evolution.” Dryad, 2022. https://doi.org/10.5061/DRYAD.M905QFV4B.' ieee: 'E. Koch, M. Ravinet, A. M. Westram, K. Jonannesson, and R. Butlin, “Data from: Genetic architecture of repeated phenotypic divergence in Littorina saxatilis ecotype evolution.” Dryad, 2022.' ista: 'Koch E, Ravinet M, Westram AM, Jonannesson K, Butlin R. 2022. Data from: Genetic architecture of repeated phenotypic divergence in Littorina saxatilis ecotype evolution, Dryad, 10.5061/DRYAD.M905QFV4B.' mla: 'Koch, Eva, et al. Data from: Genetic Architecture of Repeated Phenotypic Divergence in Littorina Saxatilis Ecotype Evolution. Dryad, 2022, doi:10.5061/DRYAD.M905QFV4B.' short: E. Koch, M. Ravinet, A.M. Westram, K. Jonannesson, R. Butlin, (2022). date_created: 2023-05-23T16:33:12Z date_published: 2022-07-28T00:00:00Z date_updated: 2023-08-04T09:42:10Z day: '28' ddc: - '570' department: - _id: NiBa doi: 10.5061/DRYAD.M905QFV4B license: https://creativecommons.org/publicdomain/zero/1.0/ main_file_link: - open_access: '1' url: https://doi.org/10.5061/dryad.m905qfv4b month: '07' oa: 1 oa_version: Published Version publisher: Dryad related_material: record: - id: '12247' relation: used_in_publication status: public status: public title: 'Data from: Genetic architecture of repeated phenotypic divergence in Littorina saxatilis ecotype evolution' tmp: image: /images/cc_0.png legal_code_url: https://creativecommons.org/publicdomain/zero/1.0/legalcode name: Creative Commons Public Domain Dedication (CC0 1.0) short: CC0 (1.0) type: research_data_reference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2022' ... --- _id: '12264' abstract: - lang: eng text: Reproductive isolation (RI) is a core concept in evolutionary biology. It has been the central focus of speciation research since the modern synthesis and is the basis by which biological species are defined. Despite this, the term is used in seemingly different ways, and attempts to quantify RI have used very different approaches. After showing that the field lacks a clear definition of the term, we attempt to clarify key issues, including what RI is, how it can be quantified in principle, and how it can be measured in practice. Following other definitions with a genetic focus, we propose that RI is a quantitative measure of the effect that genetic differences between populations have on gene flow. Specifically, RI compares the flow of neutral alleles in the presence of these genetic differences to the flow without any such differences. RI is thus greater than zero when genetic differences between populations reduce the flow of neutral alleles between populations. We show how RI can be quantified in a range of scenarios. A key conclusion is that RI depends strongly on circumstances—including the spatial, temporal and genomic context—making it difficult to compare across systems. After reviewing methods for estimating RI from data, we conclude that it is difficult to measure in practice. We discuss our findings in light of the goals of speciation research and encourage the use of methods for estimating RI that integrate organismal and genetic approaches. acknowledgement: 'We are grateful to the participants of the ESEB satellite symposium ‘Understanding reproductive isolation: bridging conceptual barriers in speciation research’ in 2021 for the interesting discussions that helped us clarify the thoughts presented in this article. We thank Roger Butlin, Michael Turelli and two anonymous reviewers for their thoughtful comments on this manuscript. We are also very grateful to Roger Butlin and the Barton Group for the continued conversa-tions about RI. In addition, we thank all participants of the speciation survey. Part of this work was funded by the Austrian Science Fund FWF (grant P 32166)' article_processing_charge: Yes (via OA deal) article_type: review author: - first_name: Anja M full_name: Westram, Anja M id: 3C147470-F248-11E8-B48F-1D18A9856A87 last_name: Westram orcid: 0000-0003-1050-4969 - first_name: Sean full_name: Stankowski, Sean id: 43161670-5719-11EA-8025-FABC3DDC885E last_name: Stankowski - first_name: Parvathy full_name: Surendranadh, Parvathy id: 455235B8-F248-11E8-B48F-1D18A9856A87 last_name: Surendranadh - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 citation: ama: Westram AM, Stankowski S, Surendranadh P, Barton NH. What is reproductive isolation? Journal of Evolutionary Biology. 2022;35(9):1143-1164. doi:10.1111/jeb.14005 apa: Westram, A. M., Stankowski, S., Surendranadh, P., & Barton, N. H. (2022). What is reproductive isolation? Journal of Evolutionary Biology. Wiley. https://doi.org/10.1111/jeb.14005 chicago: Westram, Anja M, Sean Stankowski, Parvathy Surendranadh, and Nicholas H Barton. “What Is Reproductive Isolation?” Journal of Evolutionary Biology. Wiley, 2022. https://doi.org/10.1111/jeb.14005. ieee: A. M. Westram, S. Stankowski, P. Surendranadh, and N. H. Barton, “What is reproductive isolation?,” Journal of Evolutionary Biology, vol. 35, no. 9. Wiley, pp. 1143–1164, 2022. ista: Westram AM, Stankowski S, Surendranadh P, Barton NH. 2022. What is reproductive isolation? Journal of Evolutionary Biology. 35(9), 1143–1164. mla: Westram, Anja M., et al. “What Is Reproductive Isolation?” Journal of Evolutionary Biology, vol. 35, no. 9, Wiley, 2022, pp. 1143–64, doi:10.1111/jeb.14005. short: A.M. Westram, S. Stankowski, P. Surendranadh, N.H. Barton, Journal of Evolutionary Biology 35 (2022) 1143–1164. date_created: 2023-01-16T09:59:24Z date_published: 2022-09-01T00:00:00Z date_updated: 2023-08-04T09:53:40Z day: '01' ddc: - '570' department: - _id: NiBa doi: 10.1111/jeb.14005 external_id: isi: - '000849851100002' pmid: - '36063156' file: - access_level: open_access checksum: f08de57112330a7ee88d2e1b20576a1e content_type: application/pdf creator: dernst date_created: 2023-01-30T10:05:31Z date_updated: 2023-01-30T10:05:31Z file_id: '12448' file_name: 2022_JourEvoBiology_Westram.pdf file_size: 3146793 relation: main_file success: 1 file_date_updated: 2023-01-30T10:05:31Z has_accepted_license: '1' intvolume: ' 35' isi: 1 issue: '9' keyword: - Ecology - Evolution - Behavior and Systematics language: - iso: eng month: '09' oa: 1 oa_version: Published Version page: 1143-1164 pmid: 1 project: - _id: 05959E1C-7A3F-11EA-A408-12923DDC885E grant_number: P32166 name: The maintenance of alternative adaptive peaks in snapdragons publication: Journal of Evolutionary Biology publication_identifier: eissn: - 1420-9101 issn: - 1010-061X publication_status: published publisher: Wiley quality_controlled: '1' related_material: record: - id: '12265' relation: other status: public scopus_import: '1' status: public title: What is reproductive isolation? tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 35 year: '2022' ...