--- _id: '1125' abstract: - lang: eng text: "Natural environments are never constant but subject to spatial and temporal change on\r\nall scales, increasingly so due to human activity. Hence, it is crucial to understand the\r\nimpact of environmental variation on evolutionary processes. In this thesis, I present\r\nthree topics that share the common theme of environmental variation, yet illustrate its\r\neffect from different perspectives.\r\nFirst, I show how a temporally fluctuating environment gives rise to second-order\r\nselection on a modifier for stress-induced mutagenesis. Without fluctuations, when\r\npopulations are adapted to their environment, mutation rates are minimized. I argue\r\nthat a stress-induced mutator mechanism may only be maintained if the population is\r\nrepeatedly subjected to diverse environmental challenges, and I outline implications of\r\nthe presented results to antibiotic treatment strategies.\r\nSecond, I discuss my work on the evolution of dispersal. Besides reproducing\r\nknown results about the effect of heterogeneous habitats on dispersal, it identifies\r\nspatial changes in dispersal type frequencies as a source for selection for increased\r\npropensities to disperse. This concept contains effects of relatedness that are known\r\nto promote dispersal, and I explain how it identifies other forces selecting for dispersal\r\nand puts them on a common scale.\r\nThird, I analyse genetic variances of phenotypic traits under multivariate stabilizing\r\nselection. For the case of constant environments, I generalize known formulae of\r\nequilibrium variances to multiple traits and discuss how the genetic variance of a focal\r\ntrait is influenced by selection on background traits. I conclude by presenting ideas and\r\npreliminary work aiming at including environmental fluctuations in the form of moving\r\ntrait optima into the model." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Sebastian full_name: Novak, Sebastian id: 461468AE-F248-11E8-B48F-1D18A9856A87 last_name: Novak orcid: 0000-0002-2519-824X citation: ama: Novak S. Evolutionary proccesses in variable emvironments. 2016. apa: Novak, S. (2016). Evolutionary proccesses in variable emvironments. Institute of Science and Technology Austria. chicago: Novak, Sebastian. “Evolutionary Proccesses in Variable Emvironments.” Institute of Science and Technology Austria, 2016. ieee: S. Novak, “Evolutionary proccesses in variable emvironments,” Institute of Science and Technology Austria, 2016. ista: Novak S. 2016. Evolutionary proccesses in variable emvironments. Institute of Science and Technology Austria. mla: Novak, Sebastian. Evolutionary Proccesses in Variable Emvironments. Institute of Science and Technology Austria, 2016. short: S. Novak, Evolutionary Proccesses in Variable Emvironments, Institute of Science and Technology Austria, 2016. date_created: 2018-12-11T11:50:17Z date_published: 2016-07-01T00:00:00Z date_updated: 2023-09-07T11:55:53Z day: '01' ddc: - '576' degree_awarded: PhD department: - _id: NiBa file: - access_level: closed checksum: 81dcc838dfcf7aa0b1a27ecf4fe2da4e content_type: application/pdf creator: dernst date_created: 2019-08-13T09:01:00Z date_updated: 2019-08-13T09:01:00Z file_id: '6811' file_name: Novak_thesis.pdf file_size: 3564901 relation: main_file - access_level: open_access checksum: 30808d2f7ca920e09f63a95cdc49bffd content_type: application/pdf creator: dernst date_created: 2021-02-22T13:42:47Z date_updated: 2021-02-22T13:42:47Z file_id: '9186' file_name: 2016_Novak_Thesis.pdf file_size: 2814384 relation: main_file success: 1 file_date_updated: 2021-02-22T13:42:47Z has_accepted_license: '1' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: '124' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '6235' related_material: record: - id: '2023' relation: part_of_dissertation status: public status: public supervisor: - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 title: Evolutionary proccesses in variable emvironments type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2016' ... --- _id: '1358' abstract: - lang: eng text: 'Gene regulation relies on the specificity of transcription factor (TF)–DNA interactions. Limited specificity may lead to crosstalk: a regulatory state in which a gene is either incorrectly activated due to noncognate TF–DNA interactions or remains erroneously inactive. As each TF can have numerous interactions with noncognate cis-regulatory elements, crosstalk is inherently a global problem, yet has previously not been studied as such. We construct a theoretical framework to analyse the effects of global crosstalk on gene regulation. We find that crosstalk presents a significant challenge for organisms with low-specificity TFs, such as metazoans. Crosstalk is not easily mitigated by known regulatory schemes acting at equilibrium, including variants of cooperativity and combinatorial regulation. Our results suggest that crosstalk imposes a previously unexplored global constraint on the functioning and evolution of regulatory networks, which is qualitatively distinct from the known constraints that act at the level of individual gene regulatory elements.' article_number: '12307' author: - first_name: Tamar full_name: Friedlander, Tamar id: 36A5845C-F248-11E8-B48F-1D18A9856A87 last_name: Friedlander - first_name: Roshan full_name: Prizak, Roshan id: 4456104E-F248-11E8-B48F-1D18A9856A87 last_name: Prizak - first_name: Calin C full_name: Guet, Calin C id: 47F8433E-F248-11E8-B48F-1D18A9856A87 last_name: Guet orcid: 0000-0001-6220-2052 - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 - first_name: Gasper full_name: Tkacik, Gasper id: 3D494DCA-F248-11E8-B48F-1D18A9856A87 last_name: Tkacik orcid: 0000-0002-6699-1455 citation: ama: Friedlander T, Prizak R, Guet CC, Barton NH, Tkačik G. Intrinsic limits to gene regulation by global crosstalk. Nature Communications. 2016;7. doi:10.1038/ncomms12307 apa: Friedlander, T., Prizak, R., Guet, C. C., Barton, N. H., & Tkačik, G. (2016). Intrinsic limits to gene regulation by global crosstalk. Nature Communications. Nature Publishing Group. https://doi.org/10.1038/ncomms12307 chicago: Friedlander, Tamar, Roshan Prizak, Calin C Guet, Nicholas H Barton, and Gašper Tkačik. “Intrinsic Limits to Gene Regulation by Global Crosstalk.” Nature Communications. Nature Publishing Group, 2016. https://doi.org/10.1038/ncomms12307. ieee: T. Friedlander, R. Prizak, C. C. Guet, N. H. Barton, and G. Tkačik, “Intrinsic limits to gene regulation by global crosstalk,” Nature Communications, vol. 7. Nature Publishing Group, 2016. ista: Friedlander T, Prizak R, Guet CC, Barton NH, Tkačik G. 2016. Intrinsic limits to gene regulation by global crosstalk. Nature Communications. 7, 12307. mla: Friedlander, Tamar, et al. “Intrinsic Limits to Gene Regulation by Global Crosstalk.” Nature Communications, vol. 7, 12307, Nature Publishing Group, 2016, doi:10.1038/ncomms12307. short: T. Friedlander, R. Prizak, C.C. Guet, N.H. Barton, G. Tkačik, Nature Communications 7 (2016). date_created: 2018-12-11T11:51:34Z date_published: 2016-08-04T00:00:00Z date_updated: 2023-09-07T12:53:49Z day: '04' ddc: - '576' department: - _id: GaTk - _id: NiBa - _id: CaGu doi: 10.1038/ncomms12307 ec_funded: 1 file: - access_level: open_access checksum: fe3f3a1526d180b29fe691ab11435b78 content_type: application/pdf creator: system date_created: 2018-12-12T10:12:01Z date_updated: 2020-07-14T12:44:46Z file_id: '4919' file_name: IST-2016-627-v1+1_ncomms12307.pdf file_size: 861805 relation: main_file - access_level: open_access checksum: 164864a1a675f3ad80e9917c27aba07f content_type: application/pdf creator: system date_created: 2018-12-12T10:12:02Z date_updated: 2020-07-14T12:44:46Z file_id: '4920' file_name: IST-2016-627-v1+2_ncomms12307-s1.pdf file_size: 1084703 relation: main_file file_date_updated: 2020-07-14T12:44:46Z has_accepted_license: '1' intvolume: ' 7' language: - iso: eng month: '08' oa: 1 oa_version: Published Version project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme - _id: 25B07788-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '250152' name: Limits to selection in biology and in evolutionary computation - _id: 254E9036-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P28844-B27 name: Biophysics of information processing in gene regulation publication: Nature Communications publication_status: published publisher: Nature Publishing Group publist_id: '5887' pubrep_id: '627' quality_controlled: '1' related_material: record: - id: '6071' relation: dissertation_contains status: public scopus_import: 1 status: public title: Intrinsic limits to gene regulation by global crosstalk tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 7 year: '2016' ... --- _id: '9710' abstract: - lang: eng text: Much of quantitative genetics is based on the ‘infinitesimal model’, under which selection has a negligible effect on the genetic variance. This is typically justified by assuming a very large number of loci with additive effects. However, it applies even when genes interact, provided that the number of loci is large enough that selection on each of them is weak relative to random drift. In the long term, directional selection will change allele frequencies, but even then, the effects of epistasis on the ultimate change in trait mean due to selection may be modest. Stabilising selection can maintain many traits close to their optima, even when the underlying alleles are weakly selected. However, the number of traits that can be optimised is apparently limited to ~4Ne by the ‘drift load’, and this is hard to reconcile with the apparent complexity of many organisms. Just as for the mutation load, this limit can be evaded by a particular form of negative epistasis. A more robust limit is set by the variance in reproductive success. This suggests that selection accumulates information most efficiently in the infinitesimal regime, when selection on individual alleles is weak, and comparable with random drift. A review of evidence on selection strength suggests that although most variance in fitness may be because of alleles with large Nes, substantial amounts of adaptation may be because of alleles in the infinitesimal regime, in which epistasis has modest effects. article_processing_charge: No author: - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 citation: ama: 'Barton NH. Data from: How does epistasis influence the response to selection? 2016. doi:10.5061/dryad.s5s7r' apa: 'Barton, N. H. (2016). Data from: How does epistasis influence the response to selection? Dryad. https://doi.org/10.5061/dryad.s5s7r' chicago: 'Barton, Nicholas H. “Data from: How Does Epistasis Influence the Response to Selection?” Dryad, 2016. https://doi.org/10.5061/dryad.s5s7r.' ieee: 'N. H. Barton, “Data from: How does epistasis influence the response to selection?” Dryad, 2016.' ista: 'Barton NH. 2016. Data from: How does epistasis influence the response to selection?, Dryad, 10.5061/dryad.s5s7r.' mla: 'Barton, Nicholas H. Data from: How Does Epistasis Influence the Response to Selection? Dryad, 2016, doi:10.5061/dryad.s5s7r.' short: N.H. Barton, (2016). date_created: 2021-07-23T11:45:47Z date_published: 2016-09-23T00:00:00Z date_updated: 2023-09-20T11:17:47Z day: '23' department: - _id: NiBa doi: 10.5061/dryad.s5s7r main_file_link: - open_access: '1' url: https://doi.org/10.5061/dryad.s5s7r month: '09' oa: 1 oa_version: Published Version publisher: Dryad related_material: record: - id: '1199' relation: used_in_publication status: public status: public title: 'Data from: How does epistasis influence the response to selection?' type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2016' ... --- _id: '9864' abstract: - lang: eng text: Viral capsids are structurally constrained by interactions among the amino acids (AAs) of their constituent proteins. Therefore, epistasis is expected to evolve among physically interacting sites and to influence the rates of substitution. To study the evolution of epistasis, we focused on the major structural protein of the ϕX174 phage family by, first, reconstructing the ancestral protein sequences of 18 species using a Bayesian statistical framework. The inferred ancestral reconstruction differed at eight AAs, for a total of 256 possible ancestral haplotypes. For each ancestral haplotype and the extant species, we estimated, in silico, the distribution of free energies and epistasis of the capsid structure. We found that free energy has not significantly increased but epistasis has. We decomposed epistasis up to fifth order and found that higher-order epistasis sometimes compensates pairwise interactions making the free energy seem additive. The dN/dS ratio is low, suggesting strong purifying selection, and that structure is under stabilizing selection. We synthesized phages carrying ancestral haplotypes of the coat protein gene and measured their fitness experimentally. Our findings indicate that stabilizing mutations can have higher fitness, and that fitness optima do not necessarily coincide with energy minima. article_processing_charge: No author: - first_name: Rodrigo A full_name: Fernandes Redondo, Rodrigo A id: 409D5C96-F248-11E8-B48F-1D18A9856A87 last_name: Fernandes Redondo orcid: 0000-0002-5837-2793 - first_name: Harold full_name: de Vladar, Harold id: 2A181218-F248-11E8-B48F-1D18A9856A87 last_name: de Vladar orcid: 0000-0002-5985-7653 - first_name: Tomasz full_name: Włodarski, Tomasz last_name: Włodarski - first_name: Jonathan P full_name: Bollback, Jonathan P id: 2C6FA9CC-F248-11E8-B48F-1D18A9856A87 last_name: Bollback orcid: 0000-0002-4624-4612 citation: ama: Fernandes Redondo RA, de Vladar H, Włodarski T, Bollback JP. Data from evolutionary interplay between structure, energy and epistasis in the coat protein of the ϕX174 phage family. 2016. doi:10.6084/m9.figshare.4315652.v1 apa: Fernandes Redondo, R. A., de Vladar, H., Włodarski, T., & Bollback, J. P. (2016). Data from evolutionary interplay between structure, energy and epistasis in the coat protein of the ϕX174 phage family. The Royal Society. https://doi.org/10.6084/m9.figshare.4315652.v1 chicago: Fernandes Redondo, Rodrigo A, Harold de Vladar, Tomasz Włodarski, and Jonathan P Bollback. “Data from Evolutionary Interplay between Structure, Energy and Epistasis in the Coat Protein of the ΦX174 Phage Family.” The Royal Society, 2016. https://doi.org/10.6084/m9.figshare.4315652.v1. ieee: R. A. Fernandes Redondo, H. de Vladar, T. Włodarski, and J. P. Bollback, “Data from evolutionary interplay between structure, energy and epistasis in the coat protein of the ϕX174 phage family.” The Royal Society, 2016. ista: Fernandes Redondo RA, de Vladar H, Włodarski T, Bollback JP. 2016. Data from evolutionary interplay between structure, energy and epistasis in the coat protein of the ϕX174 phage family, The Royal Society, 10.6084/m9.figshare.4315652.v1. mla: Fernandes Redondo, Rodrigo A., et al. Data from Evolutionary Interplay between Structure, Energy and Epistasis in the Coat Protein of the ΦX174 Phage Family. The Royal Society, 2016, doi:10.6084/m9.figshare.4315652.v1. short: R.A. Fernandes Redondo, H. de Vladar, T. Włodarski, J.P. Bollback, (2016). date_created: 2021-08-10T08:29:47Z date_published: 2016-12-14T00:00:00Z date_updated: 2023-09-20T11:56:33Z day: '14' department: - _id: NiBa - _id: JoBo doi: 10.6084/m9.figshare.4315652.v1 main_file_link: - open_access: '1' url: https://doi.org/10.6084/m9.figshare.4315652.v1 month: '12' oa: 1 oa_version: Published Version publisher: The Royal Society related_material: record: - id: '1077' relation: used_in_publication status: public status: public title: Data from evolutionary interplay between structure, energy and epistasis in the coat protein of the ϕX174 phage family type: research_data_reference user_id: 6785fbc1-c503-11eb-8a32-93094b40e1cf year: '2016' ... --- _id: '1382' abstract: - lang: eng text: Background and aims Angiosperms display remarkable diversity in flower colour, implying that transitions between pigmentation phenotypes must have been common. Despite progress in understanding transitions between anthocyanin (blue, purple, pink or red) and unpigmented (white) flowers, little is known about the evolutionary patterns of flower-colour transitions in lineages with both yellow and anthocyanin-pigmented flowers. This study investigates the relative rates of evolutionary transitions between different combinations of yellow- and anthocyanin-pigmentation phenotypes in the tribe Antirrhineae. Methods We surveyed taxonomic literature for data on anthocyanin and yellow floral pigmentation for 369 species across the tribe. We then reconstructed the phylogeny of 169 taxa and used phylogenetic comparative methods to estimate transition rates among pigmentation phenotypes across the phylogeny. Key Results In contrast to previous studies we found a bias towards transitions involving a gain in pigmentation, although transitions to phenotypes with both anthocyanin and yellow taxa are nevertheless extremely rare. Despite the dominance of yellow and anthocyanin-pigmented taxa, transitions between these phenotypes are constrained to move through a white intermediate stage, whereas transitions to double-pigmentation are very rare. The most abundant transitions are between anthocyanin-pigmented and unpigmented flowers, and similarly the most abundant polymorphic taxa were those with anthocyanin-pigmented and unpigmented flowers. Conclusions Our findings show that pigment evolution is limited by the presence of other floral pigments. This interaction between anthocyanin and yellow pigments constrains the breadth of potential floral diversity observed in nature. In particular, they suggest that selection has repeatedly acted to promote the spread of single-pigmented phenotypes across the Antirrhineae phylogeny. Furthermore, the correlation between transition rates and polymorphism suggests that the forces causing and maintaining variance in the short term reflect evolutionary processes on longer time scales. acknowledgement: We thank Melinda Pickup, Spencer Barrett, Nick Barton and four anonymous reviewers for helpful discussions on previous versions of this manuscript. We also thank Jana Porsche for her efforts in tracking down the more obscure references. author: - first_name: Thomas full_name: Ellis, Thomas id: 3153D6D4-F248-11E8-B48F-1D18A9856A87 last_name: Ellis orcid: 0000-0002-8511-0254 - first_name: David full_name: Field, David id: 419049E2-F248-11E8-B48F-1D18A9856A87 last_name: Field orcid: 0000-0002-4014-8478 citation: ama: Ellis T, Field D. Repeated gains in yellow and anthocyanin pigmentation in flower colour transitions in the Antirrhineae. Annals of Botany. 2016;117(7):1133-1140. doi:10.1093/aob/mcw043 apa: Ellis, T., & Field, D. (2016). Repeated gains in yellow and anthocyanin pigmentation in flower colour transitions in the Antirrhineae. Annals of Botany. Oxford University Press. https://doi.org/10.1093/aob/mcw043 chicago: Ellis, Thomas, and David Field. “Repeated Gains in Yellow and Anthocyanin Pigmentation in Flower Colour Transitions in the Antirrhineae.” Annals of Botany. Oxford University Press, 2016. https://doi.org/10.1093/aob/mcw043. ieee: T. Ellis and D. Field, “Repeated gains in yellow and anthocyanin pigmentation in flower colour transitions in the Antirrhineae,” Annals of Botany, vol. 117, no. 7. Oxford University Press, pp. 1133–1140, 2016. ista: Ellis T, Field D. 2016. Repeated gains in yellow and anthocyanin pigmentation in flower colour transitions in the Antirrhineae. Annals of Botany. 117(7), 1133–1140. mla: Ellis, Thomas, and David Field. “Repeated Gains in Yellow and Anthocyanin Pigmentation in Flower Colour Transitions in the Antirrhineae.” Annals of Botany, vol. 117, no. 7, Oxford University Press, 2016, pp. 1133–40, doi:10.1093/aob/mcw043. short: T. Ellis, D. Field, Annals of Botany 117 (2016) 1133–1140. date_created: 2018-12-11T11:51:42Z date_published: 2016-06-01T00:00:00Z date_updated: 2024-02-21T13:49:53Z day: '1' department: - _id: NiBa doi: 10.1093/aob/mcw043 intvolume: ' 117' issue: '7' language: - iso: eng month: '06' oa_version: None page: 1133 - 1140 publication: Annals of Botany publication_status: published publisher: Oxford University Press publist_id: '5828' quality_controlled: '1' related_material: record: - id: '5550' relation: popular_science status: public scopus_import: 1 status: public title: Repeated gains in yellow and anthocyanin pigmentation in flower colour transitions in the Antirrhineae type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 117 year: '2016' ... --- _id: '5550' abstract: - lang: eng text: "We collected flower colour information on species in the tribe Antirrhineae from taxonomic literature. We also retreived molecular data from GenBank for as many of these species as possible to estimate phylogenetic relationships among these taxa. We then used the R package 'diversitree' to examine patterns of evolutionary transitions between anthocyanin and yellow pigmentation across the phylogeny.\r\n\r\nFor full details of the methods see:\r\nEllis TJ and Field DL \"Repeated gains in yellow and anthocyanin pigmentation in flower colour transitions in the Antirrhineae”, Annals of Botany (in press)" article_processing_charge: No author: - first_name: Thomas full_name: Ellis, Thomas id: 3153D6D4-F248-11E8-B48F-1D18A9856A87 last_name: Ellis orcid: 0000-0002-8511-0254 - first_name: David full_name: Field, David id: 419049E2-F248-11E8-B48F-1D18A9856A87 last_name: Field orcid: 0000-0002-4014-8478 citation: ama: Ellis T, Field D. Flower colour data and phylogeny (NEXUS) files. 2016. doi:10.15479/AT:ISTA:34 apa: Ellis, T., & Field, D. (2016). Flower colour data and phylogeny (NEXUS) files. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:34 chicago: Ellis, Thomas, and David Field. “Flower Colour Data and Phylogeny (NEXUS) Files.” Institute of Science and Technology Austria, 2016. https://doi.org/10.15479/AT:ISTA:34. ieee: T. Ellis and D. Field, “Flower colour data and phylogeny (NEXUS) files.” Institute of Science and Technology Austria, 2016. ista: Ellis T, Field D. 2016. Flower colour data and phylogeny (NEXUS) files, Institute of Science and Technology Austria, 10.15479/AT:ISTA:34. mla: Ellis, Thomas, and David Field. Flower Colour Data and Phylogeny (NEXUS) Files. Institute of Science and Technology Austria, 2016, doi:10.15479/AT:ISTA:34. short: T. Ellis, D. Field, (2016). datarep_id: '34' date_created: 2018-12-12T12:31:29Z date_published: 2016-02-19T00:00:00Z date_updated: 2024-02-21T13:49:54Z day: '19' ddc: - '576' department: - _id: NiBa doi: 10.15479/AT:ISTA:34 file: - access_level: open_access checksum: 950f85b80427d357bfeff09608ba02e9 content_type: application/zip creator: system date_created: 2018-12-12T13:02:27Z date_updated: 2020-07-14T12:47:00Z file_id: '5594' file_name: IST-2016-34-v1+1_tellis_flower_colour_data.zip file_size: 4468543 relation: main_file file_date_updated: 2020-07-14T12:47:00Z has_accepted_license: '1' license: https://creativecommons.org/publicdomain/zero/1.0/ month: '02' oa: 1 oa_version: Published Version publisher: Institute of Science and Technology Austria publist_id: '5828' related_material: record: - id: '1382' relation: research_paper status: public status: public title: Flower colour data and phylogeny (NEXUS) files tmp: image: /images/cc_0.png legal_code_url: https://creativecommons.org/publicdomain/zero/1.0/legalcode name: Creative Commons Public Domain Dedication (CC0 1.0) short: CC0 (1.0) type: research_data user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2016' ... --- _id: '1398' abstract: - lang: eng text: Hybrid zones represent evolutionary laboratories, where recombination brings together alleles in combinations which have not previously been tested by selection. This provides an excellent opportunity to test the effect of molecular variation on fitness, and how this variation is able to spread through populations in a natural context. The snapdragon Antirrhinum majus is polymorphic in the wild for two loci controlling the distribution of yellow and magenta floral pigments. Where the yellow A. m. striatum and the magenta A. m. pseudomajus meet along a valley in the Spanish Pyrenees they form a stable hybrid zone Alleles at these loci recombine to give striking transgressive variation for flower colour. The sharp transition in phenotype over ~1km implies strong selection maintaining the hybrid zone. An indirect assay of pollinator visitation in the field found that pollinators forage in a positive-frequency dependent manner on Antirrhinum, matching previous data on fruit set. Experimental arrays and paternity analysis of wild-pollinated seeds demonstrated assortative mating for pigmentation alleles, and that pollinator behaviour alone is sufficient to explain this pattern. Selection by pollinators should be sufficiently strong to maintain the hybrid zone, although other mechanisms may be at work. At a broader scale I examined evolutionary transitions between yellow and anthocyanin pigmentation in the tribe Antirrhinae, and found that selection has acted strate that pollinators are a major determinant of reproductive success and mating patterns in wild Antirrhinum. acknowledgement: "I am indebted to many people for their support during my PhD, but I particularly wish to thank Nick Barton for his guidance and intuition, and for encouraging me to take the time to look beyond the immediate topic of my PhD to understand the broader context. I am also especially grateful to David Field his bottomless patience, invaluable advice on experimental design, analysis and scientific writing, and for tireless work on the population surveys and genomic work without most of my thesis could not have happened. \r\n\r\nIt has been a pleasure to work with the combined strengths of the groups at The John Innes Centre, University of Toulouse and IST Austria. Thanks to Enrico Coen and his group for hosting me in Norwich in 2011 and especially for setting up the tag experiment. \r\n\r\nI thank David Field, Desmond Bradley and Maria Clara Melo-Hurtado for organising field collections, as well as Monique Burrus and Christophe Andalo and a large number of volunteers for their e ff orts helping with the field work. Furthermore I thank Coline Jaworski for providing seeds and for her input into the design of the experimental arrays, and Matthew Couchman for maintaining the database of. \r\n\r\nIn addition to those mentioned above, I am grateful to Melinda Pickup, Spencer Barrett, and four anonymous reviewers for their insightful comments on sections of this manuscript. I also thank Jana Porsche for her e ff orts in tracking down the more obscure references for chapter 5, and Jon Bollback for his advice about the analysis. \r\n\r\nI am indebted to Jon Ågren for his patience whilst I finished this thesis, and to Sylvia Cremer and Magnus Nordborg for taking the time to read and evaluate the thesis given a shorter deadline than was fair. \r\n\r\nA very positive aspect of my PhD has been the supportive atmosphere of IST. In particular, I have come to appreciate the enormous support from our group assistants Nicole Hotzy, Julia Asimakis, Christine Ostermann and Jerneja Beslagic. I also thank Christian Chaloupka and Stefan Hipfinger for their enthusiasm and readiness to help where possible in setting up our greenhouse and experiments. " alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Thomas full_name: Ellis, Thomas id: 3153D6D4-F248-11E8-B48F-1D18A9856A87 last_name: Ellis orcid: 0000-0002-8511-0254 citation: ama: Ellis T. The role of pollinator-mediated selection in the maintenance of a flower color polymorphism in an Antirrhinum majus hybrid zone. 2016. doi:10.15479/AT:ISTA:TH_526 apa: Ellis, T. (2016). The role of pollinator-mediated selection in the maintenance of a flower color polymorphism in an Antirrhinum majus hybrid zone. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:TH_526 chicago: Ellis, Thomas. “The Role of Pollinator-Mediated Selection in the Maintenance of a Flower Color Polymorphism in an Antirrhinum Majus Hybrid Zone.” Institute of Science and Technology Austria, 2016. https://doi.org/10.15479/AT:ISTA:TH_526 . ieee: T. Ellis, “The role of pollinator-mediated selection in the maintenance of a flower color polymorphism in an Antirrhinum majus hybrid zone,” Institute of Science and Technology Austria, 2016. ista: Ellis T. 2016. The role of pollinator-mediated selection in the maintenance of a flower color polymorphism in an Antirrhinum majus hybrid zone. Institute of Science and Technology Austria. mla: Ellis, Thomas. The Role of Pollinator-Mediated Selection in the Maintenance of a Flower Color Polymorphism in an Antirrhinum Majus Hybrid Zone. Institute of Science and Technology Austria, 2016, doi:10.15479/AT:ISTA:TH_526 . short: T. Ellis, The Role of Pollinator-Mediated Selection in the Maintenance of a Flower Color Polymorphism in an Antirrhinum Majus Hybrid Zone, Institute of Science and Technology Austria, 2016. date_created: 2018-12-11T11:51:47Z date_published: 2016-02-18T00:00:00Z date_updated: 2024-02-21T13:51:39Z day: '18' ddc: - '576' degree_awarded: PhD department: - _id: NiBa doi: '10.15479/AT:ISTA:TH_526 ' file: - access_level: open_access checksum: a89b17ff27cf92c9a15f6b3d46bd7e53 content_type: application/pdf creator: system date_created: 2018-12-12T10:14:51Z date_updated: 2020-07-14T12:44:48Z file_id: '5106' file_name: IST-2016-526-v1+1_Ellis_signed_thesis.pdf file_size: 11928241 relation: main_file file_date_updated: 2020-07-14T12:44:48Z has_accepted_license: '1' language: - iso: eng month: '02' oa: 1 oa_version: Published Version page: '130' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '5809' pubrep_id: '526' related_material: record: - id: '5553' relation: popular_science status: public - id: '5551' relation: popular_science status: public - id: '5552' relation: popular_science status: public status: public supervisor: - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 title: The role of pollinator-mediated selection in the maintenance of a flower color polymorphism in an Antirrhinum majus hybrid zone type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2016' ... --- _id: '1131' abstract: - lang: eng text: "Evolution of gene regulation is important for phenotypic evolution and diversity. Sequence-specific binding of regulatory proteins is one of the key regulatory mechanisms determining gene expression. Although there has been intense interest in evolution of regulatory binding sites in the last decades, a theoretical understanding is far from being complete. In this thesis, I aim at a better understanding of the evolution of transcriptional regulatory binding sequences by using biophysical and population genetic models.\r\nIn the first part of the thesis, I discuss how to formulate the evolutionary dynamics of binding se- quences in a single isolated binding site and in promoter/enhancer regions. I develop a theoretical framework bridging between a thermodynamical model for transcription and a mutation-selection-drift model for monomorphic populations. I mainly address the typical evolutionary rates, and how they de- pend on biophysical parameters (e.g. binding length and specificity) and population genetic parameters (e.g. population size and selection strength).\r\nIn the second part of the thesis, I analyse empirical data for a better evolutionary and biophysical understanding of sequence-specific binding of bacterial RNA polymerase. First, I infer selection on regulatory and non-regulatory binding sites of RNA polymerase in the E. coli K12 genome. Second, I infer the chemical potential of RNA polymerase, an important but unknown physical parameter defining the threshold energy for strong binding. Furthermore, I try to understand the relation between the lac promoter sequence diversity and the LacZ activity variation among 20 bacterial isolates by constructing a simple but biophysically motivated gene expression model. Lastly, I lay out a statistical framework to predict adaptive point mutations in de novo promoter evolution in a selection experiment." acknowledgement: This PhD thesis may not have been completed without the help and care I received from some peo- ple during my PhD life. I am especially grateful to Tiago Paixao, Gasper Tkacik, Nick Barton, not only for their scientific advices but also for their patience and support. I thank Calin Guet and Jonathan Bollback for allowing me to “play around” in their labs and get some experience on experimental evolution. I thank Magdalena Steinrueck and Fabienne Jesse for collaborating and sharing their experimental data with me. I thank Johannes Jaeger for reviewing my thesis. I thank all members of Barton group (aka bartonians) for their feedback, and all workers of IST Austria for making the best working conditions. Lastly, I thank two special women, Nejla Sag ̆lam and Setenay Dog ̆an, for their continuous support and encouragement. I truly had a great chance of having right people around me. alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Murat full_name: Tugrul, Murat id: 37C323C6-F248-11E8-B48F-1D18A9856A87 last_name: Tugrul orcid: 0000-0002-8523-0758 citation: ama: Tugrul M. Evolution of transcriptional regulatory sequences. 2016. apa: Tugrul, M. (2016). Evolution of transcriptional regulatory sequences. Institute of Science and Technology Austria. chicago: Tugrul, Murat. “Evolution of Transcriptional Regulatory Sequences.” Institute of Science and Technology Austria, 2016. ieee: M. Tugrul, “Evolution of transcriptional regulatory sequences,” Institute of Science and Technology Austria, 2016. ista: Tugrul M. 2016. Evolution of transcriptional regulatory sequences. Institute of Science and Technology Austria. mla: Tugrul, Murat. Evolution of Transcriptional Regulatory Sequences. Institute of Science and Technology Austria, 2016. short: M. Tugrul, Evolution of Transcriptional Regulatory Sequences, Institute of Science and Technology Austria, 2016. date_created: 2018-12-11T11:50:19Z date_published: 2016-07-01T00:00:00Z date_updated: 2024-02-21T13:50:34Z day: '01' ddc: - '576' degree_awarded: PhD department: - _id: NiBa file: - access_level: closed checksum: 66cb61a59943e4fb7447c6a86be5ef51 content_type: application/pdf creator: dernst date_created: 2019-08-13T08:53:52Z date_updated: 2019-08-13T08:53:52Z file_id: '6810' file_name: Tugrul_thesis_w_signature_page.pdf file_size: 3695257 relation: main_file - access_level: open_access checksum: 293e388d70563760f6b24c3e66283dda content_type: application/pdf creator: dernst date_created: 2021-02-22T11:45:20Z date_updated: 2021-02-22T11:45:20Z file_id: '9182' file_name: 2016_Tugrul_Thesis.pdf file_size: 3880811 relation: main_file success: 1 file_date_updated: 2021-02-22T11:45:20Z has_accepted_license: '1' language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: '89' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '6229' related_material: record: - id: '1666' relation: part_of_dissertation status: public - id: '5554' relation: research_data status: public status: public supervisor: - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 title: Evolution of transcriptional regulatory sequences type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2016' ... --- _id: '5553' abstract: - lang: eng text: "Genotypic, phenotypic and demographic data for 2128 wild snapdragons and 1127 open-pollinated progeny from a natural hybrid zone, collected as part of Tom Ellis' PhD thesis (submitted) February 2016).\r\n\r\nTissue samples were sent to LGC Genomics in Berlin for DNA extraction, and genotyping at 70 SNP markers by KASPR genotyping. 29 of these SNPs failed to amplify reliably, and have been removed from this dataset.\r\n\r\nOther data were retreived from an online database of this population at www.antspec.org." article_processing_charge: No author: - first_name: David full_name: Field, David id: 419049E2-F248-11E8-B48F-1D18A9856A87 last_name: Field orcid: 0000-0002-4014-8478 - first_name: Thomas full_name: Ellis, Thomas id: 3153D6D4-F248-11E8-B48F-1D18A9856A87 last_name: Ellis orcid: 0000-0002-8511-0254 citation: ama: Field D, Ellis T. Inference of mating patterns among wild snapdragons in a natural hybrid zone in 2012. 2016. doi:10.15479/AT:ISTA:37 apa: Field, D., & Ellis, T. (2016). Inference of mating patterns among wild snapdragons in a natural hybrid zone in 2012. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:37 chicago: Field, David, and Thomas Ellis. “Inference of Mating Patterns among Wild Snapdragons in a Natural Hybrid Zone in 2012.” Institute of Science and Technology Austria, 2016. https://doi.org/10.15479/AT:ISTA:37. ieee: D. Field and T. Ellis, “Inference of mating patterns among wild snapdragons in a natural hybrid zone in 2012.” Institute of Science and Technology Austria, 2016. ista: Field D, Ellis T. 2016. Inference of mating patterns among wild snapdragons in a natural hybrid zone in 2012, Institute of Science and Technology Austria, 10.15479/AT:ISTA:37. mla: Field, David, and Thomas Ellis. Inference of Mating Patterns among Wild Snapdragons in a Natural Hybrid Zone in 2012. Institute of Science and Technology Austria, 2016, doi:10.15479/AT:ISTA:37. short: D. Field, T. Ellis, (2016). contributor: - contributor_type: project_manager first_name: Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 datarep_id: '37' date_created: 2018-12-12T12:31:30Z date_published: 2016-02-19T00:00:00Z date_updated: 2024-02-21T13:51:14Z day: '19' ddc: - '576' department: - _id: NiBa doi: 10.15479/AT:ISTA:37 file: - access_level: open_access checksum: 4ae751b1fa4897fa216241f975a57313 content_type: application/zip creator: system date_created: 2018-12-12T13:03:02Z date_updated: 2020-07-14T12:47:01Z file_id: '5620' file_name: IST-2016-37-v1+1_paternity_archive.zip file_size: 132808 relation: main_file file_date_updated: 2020-07-14T12:47:01Z has_accepted_license: '1' keyword: - paternity assignment - pedigree - matting patterns - assortative mating - Antirrhinum majus - frequency-dependent selection - plant-pollinator interaction month: '02' oa: 1 oa_version: Published Version publisher: Institute of Science and Technology Austria related_material: record: - id: '1398' relation: research_paper status: public status: public title: Inference of mating patterns among wild snapdragons in a natural hybrid zone in 2012 tmp: image: /images/cc_0.png legal_code_url: https://creativecommons.org/publicdomain/zero/1.0/legalcode name: Creative Commons Public Domain Dedication (CC0 1.0) short: CC0 (1.0) type: research_data user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2016' ... --- _id: '5551' abstract: - lang: eng text: "Data from array experiments investigating pollinator behaviour on snapdragons in controlled conditions, and their effect on plant mating. Data were collected as part of Tom Ellis' PhD thesis , submitted February 2016.\r\n\r\nWe placed a total of 36 plants in a grid inside a closed organza tent, with a single hive of commercially bred bumblebees (Bombus hortorum). We used only the yellow-flowered Antirrhinum majus striatum and the magenta-flowered Antirrhinum majus pseudomajus, at ratios of 6:36, 12:24, 18:18, 24:12 and 30:6.\r\n\r\nAfter 24 hours to learn how to deal with snapdragons, I observed pollinators foraging on plants, and recorded the transitions between plants. Thereafter seeds on plants were allowed to develops. A sample of these were grown to maturity when their flower colour could be determined, and they were scored as yellow, magenta, or hybrid." article_processing_charge: No author: - first_name: Thomas full_name: Ellis, Thomas id: 3153D6D4-F248-11E8-B48F-1D18A9856A87 last_name: Ellis orcid: 0000-0002-8511-0254 citation: ama: Ellis T. Data on pollinator observations and offpsring phenotypes. 2016. doi:10.15479/AT:ISTA:35 apa: Ellis, T. (2016). Data on pollinator observations and offpsring phenotypes. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:35 chicago: Ellis, Thomas. “Data on Pollinator Observations and Offpsring Phenotypes.” Institute of Science and Technology Austria, 2016. https://doi.org/10.15479/AT:ISTA:35. ieee: T. Ellis, “Data on pollinator observations and offpsring phenotypes.” Institute of Science and Technology Austria, 2016. ista: Ellis T. 2016. Data on pollinator observations and offpsring phenotypes, Institute of Science and Technology Austria, 10.15479/AT:ISTA:35. mla: Ellis, Thomas. Data on Pollinator Observations and Offpsring Phenotypes. Institute of Science and Technology Austria, 2016, doi:10.15479/AT:ISTA:35. short: T. Ellis, (2016). contributor: - first_name: David id: 419049E2-F248-11E8-B48F-1D18A9856A87 last_name: Field - first_name: Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 datarep_id: '35' date_created: 2018-12-12T12:31:29Z date_published: 2016-02-19T00:00:00Z date_updated: 2024-02-21T13:51:27Z day: '19' department: - _id: NiBa doi: 10.15479/AT:ISTA:35 file: - access_level: open_access checksum: aa3eb85d52b110cd192aa23147c4d4f3 content_type: application/zip creator: system date_created: 2018-12-12T13:05:12Z date_updated: 2020-07-14T12:47:01Z file_id: '5640' file_name: IST-2016-35-v1+1_array_data.zip file_size: 32775 relation: main_file file_date_updated: 2020-07-14T12:47:01Z has_accepted_license: '1' month: '02' oa: 1 oa_version: Published Version publisher: Institute of Science and Technology Austria related_material: record: - id: '1398' relation: research_paper status: public status: public title: Data on pollinator observations and offpsring phenotypes tmp: image: /images/cc_0.png legal_code_url: https://creativecommons.org/publicdomain/zero/1.0/legalcode name: Creative Commons Public Domain Dedication (CC0 1.0) short: CC0 (1.0) type: research_data user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2016' ... --- _id: '5552' abstract: - lang: eng text: "Data on pollinator visitation to wild snapdragons in a natural hybrid zone, collected as part of Tom Ellis' PhD thesis (submitted February 2016).\r\n\r\nSnapdragon flowers have a mouth-like structure which pollinators must open to access nectar. We placed 5mm cellophane tags in these mouths, which are held in place by the pressure of the flower until a pollinator visits. When she opens the flower, the tag drops out, and one can infer a visit. We surveyed plants over multiple days in 2010, 2011 and 2012.\r\n\r\nAlso included are data on phenotypic and demographic variables which may be explanatory variables for pollinator visitation." article_processing_charge: No author: - first_name: Thomas full_name: Ellis, Thomas id: 3153D6D4-F248-11E8-B48F-1D18A9856A87 last_name: Ellis orcid: 0000-0002-8511-0254 citation: ama: Ellis T. Pollinator visitation data for wild Antirrhinum majus plants, with phenotypic and frequency data. 2016. doi:10.15479/AT:ISTA:36 apa: Ellis, T. (2016). Pollinator visitation data for wild Antirrhinum majus plants, with phenotypic and frequency data. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:36 chicago: Ellis, Thomas. “Pollinator Visitation Data for Wild Antirrhinum Majus Plants, with Phenotypic and Frequency Data.” Institute of Science and Technology Austria, 2016. https://doi.org/10.15479/AT:ISTA:36. ieee: T. Ellis, “Pollinator visitation data for wild Antirrhinum majus plants, with phenotypic and frequency data.” Institute of Science and Technology Austria, 2016. ista: Ellis T. 2016. Pollinator visitation data for wild Antirrhinum majus plants, with phenotypic and frequency data., Institute of Science and Technology Austria, 10.15479/AT:ISTA:36. mla: Ellis, Thomas. Pollinator Visitation Data for Wild Antirrhinum Majus Plants, with Phenotypic and Frequency Data. Institute of Science and Technology Austria, 2016, doi:10.15479/AT:ISTA:36. short: T. Ellis, (2016). contributor: - first_name: David id: 419049E2-F248-11E8-B48F-1D18A9856A87 last_name: Field - first_name: Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 datarep_id: '36' date_created: 2018-12-12T12:31:30Z date_published: 2016-02-19T00:00:00Z date_updated: 2024-02-21T13:51:40Z day: '19' department: - _id: NiBa doi: 10.15479/AT:ISTA:36 file: - access_level: open_access checksum: cbc61b523d4d475a04a737d50dc470ef content_type: application/zip creator: system date_created: 2018-12-12T13:03:07Z date_updated: 2020-07-14T12:47:01Z file_id: '5625' file_name: IST-2016-36-v1+1_tag_assay_archive.zip file_size: 44905 relation: main_file file_date_updated: 2020-07-14T12:47:01Z has_accepted_license: '1' month: '02' oa: 1 oa_version: Published Version publisher: Institute of Science and Technology Austria related_material: record: - id: '1398' relation: research_paper status: public status: public title: Pollinator visitation data for wild Antirrhinum majus plants, with phenotypic and frequency data. type: research_data user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2016' ... --- _id: '5554' abstract: - lang: eng text: "The data stored here is used in Murat Tugrul's PhD thesis (Chapter 3), which is related to the evolution of bacterial RNA polymerase binding.\r\nMagdalena Steinrueck (PhD Student in Calin Guet's group at IST Austria) performed the experiments and created the data on de novo promoter evolution. Fabienne Jesse (PhD Student in Jon Bollback's group at IST Austria) performed the experiments and created the data on lac promoter evolution." article_processing_charge: No author: - first_name: Murat full_name: Tugrul, Murat id: 37C323C6-F248-11E8-B48F-1D18A9856A87 last_name: Tugrul orcid: 0000-0002-8523-0758 citation: ama: Tugrul M. Experimental Data for Binding Site Evolution of Bacterial RNA Polymerase. 2016. doi:10.15479/AT:ISTA:43 apa: Tugrul, M. (2016). Experimental Data for Binding Site Evolution of Bacterial RNA Polymerase. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:43 chicago: Tugrul, Murat. “Experimental Data for Binding Site Evolution of Bacterial RNA Polymerase.” Institute of Science and Technology Austria, 2016. https://doi.org/10.15479/AT:ISTA:43. ieee: M. Tugrul, “Experimental Data for Binding Site Evolution of Bacterial RNA Polymerase.” Institute of Science and Technology Austria, 2016. ista: Tugrul M. 2016. Experimental Data for Binding Site Evolution of Bacterial RNA Polymerase, Institute of Science and Technology Austria, 10.15479/AT:ISTA:43. mla: Tugrul, Murat. Experimental Data for Binding Site Evolution of Bacterial RNA Polymerase. Institute of Science and Technology Austria, 2016, doi:10.15479/AT:ISTA:43. short: M. Tugrul, (2016). contributor: - contributor_type: researcher first_name: Magdalena id: 2C023F40-F248-11E8-B48F-1D18A9856A87 last_name: Steinrück - contributor_type: researcher first_name: Fabienne id: 4C8C26A4-F248-11E8-B48F-1D18A9856A87 last_name: Jesse datarep_id: '43' date_created: 2018-12-12T12:31:30Z date_published: 2016-05-12T00:00:00Z date_updated: 2024-02-21T13:50:34Z day: '12' department: - _id: NiBa - _id: JoBo doi: 10.15479/AT:ISTA:43 file: - access_level: open_access checksum: 1fc0a10bb7ce110fcb5e1fbe3cf0c4e2 content_type: application/zip creator: system date_created: 2018-12-12T13:03:08Z date_updated: 2020-07-14T12:47:01Z file_id: '5626' file_name: IST-2016-43-v1+1_DATA_MTugrul_PhDThesis_Chapter3.zip file_size: 1123495 relation: main_file file_date_updated: 2020-07-14T12:47:01Z has_accepted_license: '1' keyword: - RNAP binding - de novo promoter evolution - lac promoter month: '05' oa: 1 oa_version: Published Version publisher: Institute of Science and Technology Austria related_material: record: - id: '1131' relation: used_in_publication status: public status: public title: Experimental Data for Binding Site Evolution of Bacterial RNA Polymerase tmp: image: /images/cc_0.png legal_code_url: https://creativecommons.org/publicdomain/zero/1.0/legalcode name: Creative Commons Public Domain Dedication (CC0 1.0) short: CC0 (1.0) type: research_data user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2016' ... --- _id: '1430' abstract: - lang: eng text: Evolutionary algorithms (EAs) form a popular optimisation paradigm inspired by natural evolution. In recent years the field of evolutionary computation has developed a rigorous analytical theory to analyse their runtime on many illustrative problems. Here we apply this theory to a simple model of natural evolution. In the Strong Selection Weak Mutation (SSWM) evolutionary regime the time between occurrence of new mutations is much longer than the time it takes for a new beneficial mutation to take over the population. In this situation, the population only contains copies of one genotype and evolution can be modelled as a (1+1)-type process where the probability of accepting a new genotype (improvements or worsenings) depends on the change in fitness. We present an initial runtime analysis of SSWM, quantifying its performance for various parameters and investigating differences to the (1+1) EA. We show that SSWM can have a moderate advantage over the (1+1) EA at crossing fitness valleys and study an example where SSWM outperforms the (1+1) EA by taking advantage of information on the fitness gradient. author: - first_name: Tiago full_name: Paixao, Tiago id: 2C5658E6-F248-11E8-B48F-1D18A9856A87 last_name: Paixao orcid: 0000-0003-2361-3953 - first_name: Dirk full_name: Sudholt, Dirk last_name: Sudholt - first_name: Jorge full_name: Heredia, Jorge last_name: Heredia - first_name: Barbora full_name: Trubenova, Barbora id: 42302D54-F248-11E8-B48F-1D18A9856A87 last_name: Trubenova orcid: 0000-0002-6873-2967 citation: ama: 'Paixao T, Sudholt D, Heredia J, Trubenova B. First steps towards a runtime comparison of natural and artificial evolution. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation. ACM; 2015:1455-1462. doi:10.1145/2739480.2754758' apa: 'Paixao, T., Sudholt, D., Heredia, J., & Trubenova, B. (2015). First steps towards a runtime comparison of natural and artificial evolution. In Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation (pp. 1455–1462). Madrid, Spain: ACM. https://doi.org/10.1145/2739480.2754758' chicago: Paixao, Tiago, Dirk Sudholt, Jorge Heredia, and Barbora Trubenova. “First Steps towards a Runtime Comparison of Natural and Artificial Evolution.” In Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, 1455–62. ACM, 2015. https://doi.org/10.1145/2739480.2754758. ieee: T. Paixao, D. Sudholt, J. Heredia, and B. Trubenova, “First steps towards a runtime comparison of natural and artificial evolution,” in Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, Madrid, Spain, 2015, pp. 1455–1462. ista: 'Paixao T, Sudholt D, Heredia J, Trubenova B. 2015. First steps towards a runtime comparison of natural and artificial evolution. Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation. GECCO: Genetic and evolutionary computation conference, 1455–1462.' mla: Paixao, Tiago, et al. “First Steps towards a Runtime Comparison of Natural and Artificial Evolution.” Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, ACM, 2015, pp. 1455–62, doi:10.1145/2739480.2754758. short: T. Paixao, D. Sudholt, J. Heredia, B. Trubenova, in:, Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, ACM, 2015, pp. 1455–1462. conference: end_date: 2015-07-15 location: Madrid, Spain name: 'GECCO: Genetic and evolutionary computation conference' start_date: 2015-07-11 date_created: 2018-12-11T11:51:58Z date_published: 2015-07-11T00:00:00Z date_updated: 2021-01-12T06:50:41Z day: '11' department: - _id: NiBa - _id: CaGu doi: 10.1145/2739480.2754758 ec_funded: 1 language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1504.06260 month: '07' oa: 1 oa_version: Preprint page: 1455 - 1462 project: - _id: 25B1EC9E-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '618091' name: Speed of Adaptation in Population Genetics and Evolutionary Computation publication: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation publication_status: published publisher: ACM publist_id: '5768' quality_controlled: '1' scopus_import: 1 status: public title: First steps towards a runtime comparison of natural and artificial evolution type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2015' ... --- _id: '1519' abstract: - lang: eng text: Evolutionary biologists have an array of powerful theoretical techniques that can accurately predict changes in the genetic composition of populations. Changes in gene frequencies and genetic associations between loci can be tracked as they respond to a wide variety of evolutionary forces. However, it is often less clear how to decompose these various forces into components that accurately reflect the underlying biology. Here, we present several issues that arise in the definition and interpretation of selection and selection coefficients, focusing on insights gained through the examination of selection coefficients in multilocus notation. Using this notation, we discuss how its flexibility-which allows different biological units to be identified as targets of selection-is reflected in the interpretation of the coefficients that the notation generates. In many situations, it can be difficult to agree on whether loci can be considered to be under "direct" versus "indirect" selection, or to quantify this selection. We present arguments for what the terms direct and indirect selection might best encompass, considering a range of issues, from viability and sexual selection to kin selection. We show how multilocus notation can discriminate between direct and indirect selection, and describe when it can do so. author: - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 - first_name: Maria full_name: Servedio, Maria last_name: Servedio citation: ama: Barton NH, Servedio M. The interpretation of selection coefficients. Evolution. 2015;69(5):1101-1112. doi:10.1111/evo.12641 apa: Barton, N. H., & Servedio, M. (2015). The interpretation of selection coefficients. Evolution. Wiley. https://doi.org/10.1111/evo.12641 chicago: Barton, Nicholas H, and Maria Servedio. “The Interpretation of Selection Coefficients.” Evolution. Wiley, 2015. https://doi.org/10.1111/evo.12641. ieee: N. H. Barton and M. Servedio, “The interpretation of selection coefficients,” Evolution, vol. 69, no. 5. Wiley, pp. 1101–1112, 2015. ista: Barton NH, Servedio M. 2015. The interpretation of selection coefficients. Evolution. 69(5), 1101–1112. mla: Barton, Nicholas H., and Maria Servedio. “The Interpretation of Selection Coefficients.” Evolution, vol. 69, no. 5, Wiley, 2015, pp. 1101–12, doi:10.1111/evo.12641. short: N.H. Barton, M. Servedio, Evolution 69 (2015) 1101–1112. date_created: 2018-12-11T11:52:29Z date_published: 2015-03-19T00:00:00Z date_updated: 2021-01-12T06:51:20Z day: '19' ddc: - '570' department: - _id: NiBa doi: 10.1111/evo.12641 ec_funded: 1 file: - access_level: open_access checksum: fd8d23f476bc194419929b72ca265c02 content_type: application/pdf creator: system date_created: 2018-12-12T10:10:34Z date_updated: 2020-07-14T12:45:00Z file_id: '4822' file_name: IST-2016-560-v1+1_Interpreting_ML_coefficients_11.2.15_App.pdf file_size: 188872 relation: main_file - access_level: open_access checksum: b774911e70044641d556e258efcb52ef content_type: application/pdf creator: system date_created: 2018-12-12T10:10:35Z date_updated: 2020-07-14T12:45:00Z file_id: '4823' file_name: IST-2016-560-v1+2_Interpreting_ML_coefficients_11.2.15_mainText.pdf file_size: 577415 relation: main_file file_date_updated: 2020-07-14T12:45:00Z has_accepted_license: '1' intvolume: ' 69' issue: '5' language: - iso: eng month: '03' oa: 1 oa_version: Submitted Version page: 1101 - 1112 project: - _id: 25B07788-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '250152' name: Limits to selection in biology and in evolutionary computation publication: Evolution publication_status: published publisher: Wiley publist_id: '5656' pubrep_id: '560' quality_controlled: '1' scopus_import: 1 status: public title: The interpretation of selection coefficients type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 69 year: '2015' ... --- _id: '1542' abstract: - lang: eng text: 'The theory of population genetics and evolutionary computation have been evolving separately for nearly 30 years. Many results have been independently obtained in both fields and many others are unique to its respective field. We aim to bridge this gap by developing a unifying framework for evolutionary processes that allows both evolutionary algorithms and population genetics models to be cast in the same formal framework. The framework we present here decomposes the evolutionary process into its several components in order to facilitate the identification of similarities between different models. In particular, we propose a classification of evolutionary operators based on the defining properties of the different components. We cast several commonly used operators from both fields into this common framework. Using this, we map different evolutionary and genetic algorithms to different evolutionary regimes and identify candidates with the most potential for the translation of results between the fields. This provides a unified description of evolutionary processes and represents a stepping stone towards new tools and results to both fields. ' author: - first_name: Tiago full_name: Paixao, Tiago id: 2C5658E6-F248-11E8-B48F-1D18A9856A87 last_name: Paixao orcid: 0000-0003-2361-3953 - first_name: Golnaz full_name: Badkobeh, Golnaz last_name: Badkobeh - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 - first_name: Doğan full_name: Çörüş, Doğan last_name: Çörüş - first_name: Duccuong full_name: Dang, Duccuong last_name: Dang - first_name: Tobias full_name: Friedrich, Tobias last_name: Friedrich - first_name: Per full_name: Lehre, Per last_name: Lehre - first_name: Dirk full_name: Sudholt, Dirk last_name: Sudholt - first_name: Andrew full_name: Sutton, Andrew last_name: Sutton - first_name: Barbora full_name: Trubenova, Barbora id: 42302D54-F248-11E8-B48F-1D18A9856A87 last_name: Trubenova orcid: 0000-0002-6873-2967 citation: ama: Paixao T, Badkobeh G, Barton NH, et al. Toward a unifying framework for evolutionary processes. Journal of Theoretical Biology. 2015;383:28-43. doi:10.1016/j.jtbi.2015.07.011 apa: Paixao, T., Badkobeh, G., Barton, N. H., Çörüş, D., Dang, D., Friedrich, T., … Trubenova, B. (2015). Toward a unifying framework for evolutionary processes. Journal of Theoretical Biology. Elsevier. https://doi.org/10.1016/j.jtbi.2015.07.011 chicago: Paixao, Tiago, Golnaz Badkobeh, Nicholas H Barton, Doğan Çörüş, Duccuong Dang, Tobias Friedrich, Per Lehre, Dirk Sudholt, Andrew Sutton, and Barbora Trubenova. “Toward a Unifying Framework for Evolutionary Processes.” Journal of Theoretical Biology. Elsevier, 2015. https://doi.org/10.1016/j.jtbi.2015.07.011. ieee: T. Paixao et al., “Toward a unifying framework for evolutionary processes,” Journal of Theoretical Biology, vol. 383. Elsevier, pp. 28–43, 2015. ista: Paixao T, Badkobeh G, Barton NH, Çörüş D, Dang D, Friedrich T, Lehre P, Sudholt D, Sutton A, Trubenova B. 2015. Toward a unifying framework for evolutionary processes. Journal of Theoretical Biology. 383, 28–43. mla: Paixao, Tiago, et al. “Toward a Unifying Framework for Evolutionary Processes.” Journal of Theoretical Biology, vol. 383, Elsevier, 2015, pp. 28–43, doi:10.1016/j.jtbi.2015.07.011. short: T. Paixao, G. Badkobeh, N.H. Barton, D. Çörüş, D. Dang, T. Friedrich, P. Lehre, D. Sudholt, A. Sutton, B. Trubenova, Journal of Theoretical Biology 383 (2015) 28–43. date_created: 2018-12-11T11:52:37Z date_published: 2015-10-21T00:00:00Z date_updated: 2021-01-12T06:51:29Z day: '21' ddc: - '570' department: - _id: NiBa - _id: CaGu doi: 10.1016/j.jtbi.2015.07.011 ec_funded: 1 file: - access_level: open_access checksum: 33b60ecfea60764756a9ee9df5eb65ca content_type: application/pdf creator: system date_created: 2018-12-12T10:16:53Z date_updated: 2020-07-14T12:45:01Z file_id: '5244' file_name: IST-2016-483-v1+1_1-s2.0-S0022519315003409-main.pdf file_size: 595307 relation: main_file file_date_updated: 2020-07-14T12:45:01Z has_accepted_license: '1' intvolume: ' 383' language: - iso: eng license: https://creativecommons.org/licenses/by-nc-nd/4.0/ month: '10' oa: 1 oa_version: Published Version page: 28 - 43 project: - _id: 25B1EC9E-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '618091' name: Speed of Adaptation in Population Genetics and Evolutionary Computation - _id: 25B07788-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '250152' name: Limits to selection in biology and in evolutionary computation publication: ' Journal of Theoretical Biology' publication_status: published publisher: Elsevier publist_id: '5629' pubrep_id: '483' quality_controlled: '1' scopus_import: 1 status: public title: Toward a unifying framework for evolutionary processes tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 383 year: '2015' ... --- _id: '1699' abstract: - lang: eng text: By hybridization and backcrossing, alleles can surmount species boundaries and be incorporated into the genome of a related species. This introgression of genes is of particular evolutionary relevance if it involves the transfer of adaptations between populations. However, any beneficial allele will typically be associated with other alien alleles that are often deleterious and hamper the introgression process. In order to describe the introgression of an adaptive allele, we set up a stochastic model with an explicit genetic makeup of linked and unlinked deleterious alleles. Based on the theory of reducible multitype branching processes, we derive a recursive expression for the establishment probability of the beneficial allele after a single hybridization event. We furthermore study the probability that slightly deleterious alleles hitchhike to fixation. The key to the analysis is a split of the process into a stochastic phase in which the advantageous alleles establishes and a deterministic phase in which it sweeps to fixation. We thereafter apply the theory to a set of biologically relevant scenarios such as introgression in the presence of many unlinked or few closely linked deleterious alleles. A comparison to computer simulations shows that the approximations work well over a large parameter range. acknowledgement: This work was made possible with financial support by the Vienna Science and Technology Fund (WWTF), by the Deutsche Forschungsgemeinschaft (DFG), Research Unit 1078 Natural selection in structured populations, by the Austrian Science Fund (FWF) via funding for the Vienna Graduate School for Population Genetics, and by a “For Women in Science” fellowship (L’Oréal Österreich in cooperation with the Austrian Commission for UNESCO and the Austrian Academy of Sciences with financial support from the Federal Ministry for Science and Research Austria). author: - first_name: Hildegard full_name: Uecker, Hildegard id: 2DB8F68A-F248-11E8-B48F-1D18A9856A87 last_name: Uecker orcid: 0000-0001-9435-2813 - first_name: Derek full_name: Setter, Derek last_name: Setter - first_name: Joachim full_name: Hermisson, Joachim last_name: Hermisson citation: ama: Uecker H, Setter D, Hermisson J. Adaptive gene introgression after secondary contact. Journal of Mathematical Biology. 2015;70(7):1523-1580. doi:10.1007/s00285-014-0802-y apa: Uecker, H., Setter, D., & Hermisson, J. (2015). Adaptive gene introgression after secondary contact. Journal of Mathematical Biology. Springer. https://doi.org/10.1007/s00285-014-0802-y chicago: Uecker, Hildegard, Derek Setter, and Joachim Hermisson. “Adaptive Gene Introgression after Secondary Contact.” Journal of Mathematical Biology. Springer, 2015. https://doi.org/10.1007/s00285-014-0802-y. ieee: H. Uecker, D. Setter, and J. Hermisson, “Adaptive gene introgression after secondary contact,” Journal of Mathematical Biology, vol. 70, no. 7. Springer, pp. 1523–1580, 2015. ista: Uecker H, Setter D, Hermisson J. 2015. Adaptive gene introgression after secondary contact. Journal of Mathematical Biology. 70(7), 1523–1580. mla: Uecker, Hildegard, et al. “Adaptive Gene Introgression after Secondary Contact.” Journal of Mathematical Biology, vol. 70, no. 7, Springer, 2015, pp. 1523–80, doi:10.1007/s00285-014-0802-y. short: H. Uecker, D. Setter, J. Hermisson, Journal of Mathematical Biology 70 (2015) 1523–1580. date_created: 2018-12-11T11:53:32Z date_published: 2015-06-01T00:00:00Z date_updated: 2023-02-23T10:10:36Z day: '01' ddc: - '576' department: - _id: NiBa doi: 10.1007/s00285-014-0802-y file: - access_level: open_access checksum: 00e3a67bda05d4cc165b3a48b41ef9ad content_type: application/pdf creator: system date_created: 2018-12-12T10:14:27Z date_updated: 2020-07-14T12:45:12Z file_id: '5079' file_name: IST-2016-458-v1+1_s00285-014-0802-y.pdf file_size: 1321527 relation: main_file file_date_updated: 2020-07-14T12:45:12Z has_accepted_license: '1' intvolume: ' 70' issue: '7' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: 1523 - 1580 project: - _id: 25B67606-B435-11E9-9278-68D0E5697425 name: L'OREAL Fellowship publication: Journal of Mathematical Biology publication_status: published publisher: Springer publist_id: '5442' pubrep_id: '458' quality_controlled: '1' scopus_import: 1 status: public title: Adaptive gene introgression after secondary contact tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 70 year: '2015' ... --- _id: '1703' abstract: - lang: eng text: Vegetation clearing and land-use change have depleted many natural plant communities to the point where restoration is required. A major impediment to the success of rebuilding complex vegetation communities is having regular access to sufficient quantities of high-quality seed. Seed-production areas (SPAs) can help generate this seed, but these must be underpinned by a broad genetic base to maximise the evolutionary potential of restored populations. However, genetic bottlenecks can occur at the collection, establishment and production stages in SPAs, requiring genetic evaluation. This is especially relevant for species that may take many years before a return on SPA investment is realised. Two recently established yellow box (Eucalyptus melliodora A.Cunn. ex Schauer, Myrtaceae) SPAs were evaluated to determine whether genetic bottlenecks had occurred between seed collection and SPA establishment. No evidence was found to suggest that a significant loss of genetic diversity had occurred at this stage, although there was a significant difference in diversity between the two SPAs. Complex population genetic structure was also observed in the seed used to source the SPAs, with up to eight groups identified. Plant survival in the SPAs was influenced by seed collection location but not by SPA location and was not associated with genetic diversity. There were also no associations between genetic diversity and plant growth. These data highlighted the importance of chance events when establishing SPAs and indicated that the two yellow box SPAs are likely to provide genetically diverse seed sources for future restoration projects, especially by pooling seed from both SPAs. author: - first_name: Linda full_name: Broadhurst, Linda last_name: Broadhurst - first_name: Graham full_name: Fifield, Graham last_name: Fifield - first_name: Bindi full_name: Vanzella, Bindi last_name: Vanzella - first_name: Melinda full_name: Pickup, Melinda id: 2C78037E-F248-11E8-B48F-1D18A9856A87 last_name: Pickup orcid: 0000-0001-6118-0541 citation: ama: Broadhurst L, Fifield G, Vanzella B, Pickup M. An evaluation of the genetic structure of seed sources and the maintenance of genetic diversity during establishment of two yellow box (Eucalyptus melliodora) seed-production areas. Australian Journal of Botany. 2015;63(5):455-466. doi:10.1071/BT15023 apa: Broadhurst, L., Fifield, G., Vanzella, B., & Pickup, M. (2015). An evaluation of the genetic structure of seed sources and the maintenance of genetic diversity during establishment of two yellow box (Eucalyptus melliodora) seed-production areas. Australian Journal of Botany. CSIRO. https://doi.org/10.1071/BT15023 chicago: Broadhurst, Linda, Graham Fifield, Bindi Vanzella, and Melinda Pickup. “An Evaluation of the Genetic Structure of Seed Sources and the Maintenance of Genetic Diversity during Establishment of Two Yellow Box (Eucalyptus Melliodora) Seed-Production Areas.” Australian Journal of Botany. CSIRO, 2015. https://doi.org/10.1071/BT15023. ieee: L. Broadhurst, G. Fifield, B. Vanzella, and M. Pickup, “An evaluation of the genetic structure of seed sources and the maintenance of genetic diversity during establishment of two yellow box (Eucalyptus melliodora) seed-production areas,” Australian Journal of Botany, vol. 63, no. 5. CSIRO, pp. 455–466, 2015. ista: Broadhurst L, Fifield G, Vanzella B, Pickup M. 2015. An evaluation of the genetic structure of seed sources and the maintenance of genetic diversity during establishment of two yellow box (Eucalyptus melliodora) seed-production areas. Australian Journal of Botany. 63(5), 455–466. mla: Broadhurst, Linda, et al. “An Evaluation of the Genetic Structure of Seed Sources and the Maintenance of Genetic Diversity during Establishment of Two Yellow Box (Eucalyptus Melliodora) Seed-Production Areas.” Australian Journal of Botany, vol. 63, no. 5, CSIRO, 2015, pp. 455–66, doi:10.1071/BT15023. short: L. Broadhurst, G. Fifield, B. Vanzella, M. Pickup, Australian Journal of Botany 63 (2015) 455–466. date_created: 2018-12-11T11:53:34Z date_published: 2015-05-26T00:00:00Z date_updated: 2021-01-12T06:52:38Z day: '26' department: - _id: NiBa doi: 10.1071/BT15023 intvolume: ' 63' issue: '5' language: - iso: eng month: '05' oa_version: None page: 455 - 466 publication: Australian Journal of Botany publication_status: published publisher: CSIRO publist_id: '5434' quality_controlled: '1' scopus_import: 1 status: public title: An evaluation of the genetic structure of seed sources and the maintenance of genetic diversity during establishment of two yellow box (Eucalyptus melliodora) seed-production areas type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 63 year: '2015' ... --- _id: '1818' abstract: - lang: eng text: 'Why do species not adapt to ever-wider ranges of conditions, gradually expanding their ecological niche and geographic range? Gene flow across environments has two conflicting effects: although it increases genetic variation, which is a prerequisite for adaptation, gene flow may swamp adaptation to local conditions. In 1956, Haldane proposed that, when the environment varies across space, "swamping" by gene flow creates a positive feedback between low population size and maladaptation, leading to a sharp range margin. However, current deterministic theory shows that, when variance can evolve, there is no such limit. Using simple analytical tools and simulations, we show that genetic drift can generate a sharp margin to a species'' range, by reducing genetic variance below the level needed for adaptation to spatially variable conditions. Aided by separation of ecological and evolutionary timescales, the identified effective dimensionless parameters reveal a simple threshold that predicts when adaptation at the range margin fails. Two observable parameters determine the threshold: (i) the effective environmental gradient, which can be measured by the loss of fitness due to dispersal to a different environment; and (ii) the efficacy of selection relative to genetic drift. The theory predicts sharp range margins even in the absence of abrupt changes in the environment. Furthermore, it implies that gradual worsening of conditions across a species'' habitat may lead to a sudden range fragmentation, when adaptation to a wide span of conditions within a single species becomes impossible.' author: - first_name: Jitka full_name: Polechova, Jitka id: 3BBFB084-F248-11E8-B48F-1D18A9856A87 last_name: Polechova orcid: 0000-0003-0951-3112 - first_name: Nicholas H full_name: Barton, Nicholas H id: 4880FE40-F248-11E8-B48F-1D18A9856A87 last_name: Barton orcid: 0000-0002-8548-5240 citation: ama: Polechova J, Barton NH. Limits to adaptation along environmental gradients. PNAS. 2015;112(20):6401-6406. doi:10.1073/pnas.1421515112 apa: Polechova, J., & Barton, N. H. (2015). Limits to adaptation along environmental gradients. PNAS. National Academy of Sciences. https://doi.org/10.1073/pnas.1421515112 chicago: Polechova, Jitka, and Nicholas H Barton. “Limits to Adaptation along Environmental Gradients.” PNAS. National Academy of Sciences, 2015. https://doi.org/10.1073/pnas.1421515112. ieee: J. Polechova and N. H. Barton, “Limits to adaptation along environmental gradients,” PNAS, vol. 112, no. 20. National Academy of Sciences, pp. 6401–6406, 2015. ista: Polechova J, Barton NH. 2015. Limits to adaptation along environmental gradients. PNAS. 112(20), 6401–6406. mla: Polechova, Jitka, and Nicholas H. Barton. “Limits to Adaptation along Environmental Gradients.” PNAS, vol. 112, no. 20, National Academy of Sciences, 2015, pp. 6401–06, doi:10.1073/pnas.1421515112. short: J. Polechova, N.H. Barton, PNAS 112 (2015) 6401–6406. date_created: 2018-12-11T11:54:11Z date_published: 2015-05-19T00:00:00Z date_updated: 2021-01-12T06:53:24Z day: '19' department: - _id: NiBa doi: 10.1073/pnas.1421515112 ec_funded: 1 external_id: pmid: - '25941385' intvolume: ' 112' issue: '20' language: - iso: eng main_file_link: - open_access: '1' url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4443383/ month: '05' oa: 1 oa_version: Submitted Version page: 6401 - 6406 pmid: 1 project: - _id: 25B07788-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '250152' name: Limits to selection in biology and in evolutionary computation publication: PNAS publication_status: published publisher: National Academy of Sciences publist_id: '5288' quality_controlled: '1' scopus_import: 1 status: public title: Limits to adaptation along environmental gradients type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 112 year: '2015' ... --- _id: '1850' abstract: - lang: eng text: 'Entomopathogenic fungi are potent biocontrol agents that are widely used against insect pests, many of which are social insects. Nevertheless, theoretical investigations of their particular life history are scarce. We develop a model that takes into account the main distinguishing features between traditionally studied diseases and obligate killing pathogens, like the (biocontrol-relevant) insect-pathogenic fungi Metarhizium and Beauveria. First, obligate killing entomopathogenic fungi produce new infectious particles (conidiospores) only after host death and not yet on the living host. Second, the killing rates of entomopathogenic fungi depend strongly on the initial exposure dosage, thus we explicitly consider the pathogen load of individual hosts. Further, we make the model applicable not only to solitary host species, but also to group living species by incorporating social interactions between hosts, like the collective disease defences of insect societies. Our results identify the optimal killing rate for the pathogen that minimises its invasion threshold. Furthermore, we find that the rate of contact between hosts has an ambivalent effect: dense interaction networks between individuals are considered to facilitate disease outbreaks because of increased pathogen transmission. In social insects, this is compensated by their collective disease defences, i.e., social immunity. For the type of pathogens considered here, we show that even without social immunity, high contact rates between live individuals dilute the pathogen in the host colony and hence can reduce individual pathogen loads below disease-causing levels.' author: - first_name: Sebastian full_name: Novak, Sebastian id: 461468AE-F248-11E8-B48F-1D18A9856A87 last_name: Novak - first_name: Sylvia full_name: Cremer, Sylvia id: 2F64EC8C-F248-11E8-B48F-1D18A9856A87 last_name: Cremer orcid: 0000-0002-2193-3868 citation: ama: 'Novak S, Cremer S. Fungal disease dynamics in insect societies: Optimal killing rates and the ambivalent effect of high social interaction rates. Journal of Theoretical Biology. 2015;372(5):54-64. doi:10.1016/j.jtbi.2015.02.018' apa: 'Novak, S., & Cremer, S. (2015). Fungal disease dynamics in insect societies: Optimal killing rates and the ambivalent effect of high social interaction rates. Journal of Theoretical Biology. Elsevier. https://doi.org/10.1016/j.jtbi.2015.02.018' chicago: 'Novak, Sebastian, and Sylvia Cremer. “Fungal Disease Dynamics in Insect Societies: Optimal Killing Rates and the Ambivalent Effect of High Social Interaction Rates.” Journal of Theoretical Biology. Elsevier, 2015. https://doi.org/10.1016/j.jtbi.2015.02.018.' ieee: 'S. Novak and S. Cremer, “Fungal disease dynamics in insect societies: Optimal killing rates and the ambivalent effect of high social interaction rates,” Journal of Theoretical Biology, vol. 372, no. 5. Elsevier, pp. 54–64, 2015.' ista: 'Novak S, Cremer S. 2015. Fungal disease dynamics in insect societies: Optimal killing rates and the ambivalent effect of high social interaction rates. Journal of Theoretical Biology. 372(5), 54–64.' mla: 'Novak, Sebastian, and Sylvia Cremer. “Fungal Disease Dynamics in Insect Societies: Optimal Killing Rates and the Ambivalent Effect of High Social Interaction Rates.” Journal of Theoretical Biology, vol. 372, no. 5, Elsevier, 2015, pp. 54–64, doi:10.1016/j.jtbi.2015.02.018.' short: S. Novak, S. Cremer, Journal of Theoretical Biology 372 (2015) 54–64. date_created: 2018-12-11T11:54:21Z date_published: 2015-05-07T00:00:00Z date_updated: 2021-01-12T06:53:37Z day: '07' ddc: - '576' department: - _id: NiBa - _id: SyCr doi: 10.1016/j.jtbi.2015.02.018 ec_funded: 1 file: - access_level: open_access checksum: 3c0dcacc900bc45cc65a453dfda4ca43 content_type: application/pdf creator: system date_created: 2018-12-12T10:18:07Z date_updated: 2020-07-14T12:45:19Z file_id: '5326' file_name: IST-2015-329-v1+1_manuscript.pdf file_size: 1546914 relation: main_file file_date_updated: 2020-07-14T12:45:19Z has_accepted_license: '1' intvolume: ' 372' issue: '5' language: - iso: eng month: '05' oa: 1 oa_version: Submitted Version page: 54 - 64 project: - _id: 25B07788-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '250152' name: Limits to selection in biology and in evolutionary computation - _id: 25DC711C-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '243071' name: 'Social Vaccination in Ant Colonies: from Individual Mechanisms to Society Effects' publication: Journal of Theoretical Biology publication_status: published publisher: Elsevier publist_id: '5251' pubrep_id: '329' quality_controlled: '1' scopus_import: 1 status: public title: 'Fungal disease dynamics in insect societies: Optimal killing rates and the ambivalent effect of high social interaction rates' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 372 year: '2015' ... --- _id: '1851' abstract: - lang: eng text: We consider mating strategies for females who search for males sequentially during a season of limited length. We show that the best strategy rejects a given male type if encountered before a time-threshold but accepts him after. For frequency-independent benefits, we obtain the optimal time-thresholds explicitly for both discrete and continuous distributions of males, and allow for mistakes being made in assessing the correct male type. When the benefits are indirect (genes for the offspring) and the population is under frequency-dependent ecological selection, the benefits depend on the mating strategy of other females as well. This case is particularly relevant to speciation models that seek to explore the stability of reproductive isolation by assortative mating under frequency-dependent ecological selection. We show that the indirect benefits are to be quantified by the reproductive values of couples, and describe how the evolutionarily stable time-thresholds can be found. We conclude with an example based on the Levene model, in which we analyze the evolutionarily stable assortative mating strategies and the strength of reproductive isolation provided by them. article_processing_charge: No article_type: original author: - first_name: Tadeas full_name: Priklopil, Tadeas id: 3C869AA0-F248-11E8-B48F-1D18A9856A87 last_name: Priklopil - first_name: Eva full_name: Kisdi, Eva last_name: Kisdi - first_name: Mats full_name: Gyllenberg, Mats last_name: Gyllenberg citation: ama: Priklopil T, Kisdi E, Gyllenberg M. Evolutionarily stable mating decisions for sequentially searching females and the stability of reproductive isolation by assortative mating. Evolution. 2015;69(4):1015-1026. doi:10.1111/evo.12618 apa: Priklopil, T., Kisdi, E., & Gyllenberg, M. (2015). Evolutionarily stable mating decisions for sequentially searching females and the stability of reproductive isolation by assortative mating. Evolution. Wiley. https://doi.org/10.1111/evo.12618 chicago: Priklopil, Tadeas, Eva Kisdi, and Mats Gyllenberg. “Evolutionarily Stable Mating Decisions for Sequentially Searching Females and the Stability of Reproductive Isolation by Assortative Mating.” Evolution. Wiley, 2015. https://doi.org/10.1111/evo.12618. ieee: T. Priklopil, E. Kisdi, and M. Gyllenberg, “Evolutionarily stable mating decisions for sequentially searching females and the stability of reproductive isolation by assortative mating,” Evolution, vol. 69, no. 4. Wiley, pp. 1015–1026, 2015. ista: Priklopil T, Kisdi E, Gyllenberg M. 2015. Evolutionarily stable mating decisions for sequentially searching females and the stability of reproductive isolation by assortative mating. Evolution. 69(4), 1015–1026. mla: Priklopil, Tadeas, et al. “Evolutionarily Stable Mating Decisions for Sequentially Searching Females and the Stability of Reproductive Isolation by Assortative Mating.” Evolution, vol. 69, no. 4, Wiley, 2015, pp. 1015–26, doi:10.1111/evo.12618. short: T. Priklopil, E. Kisdi, M. Gyllenberg, Evolution 69 (2015) 1015–1026. date_created: 2018-12-11T11:54:21Z date_published: 2015-02-09T00:00:00Z date_updated: 2022-06-07T10:52:37Z day: '09' ddc: - '570' department: - _id: NiBa - _id: KrCh doi: 10.1111/evo.12618 ec_funded: 1 external_id: pmid: - '25662095' file: - access_level: open_access checksum: 1e8be0b1d7598a78cd2623d8ee8e7798 content_type: application/pdf creator: dernst date_created: 2020-05-15T09:05:34Z date_updated: 2020-07-14T12:45:19Z file_id: '7855' file_name: 2015_Evolution_Priklopil.pdf file_size: 967214 relation: main_file file_date_updated: 2020-07-14T12:45:19Z has_accepted_license: '1' intvolume: ' 69' issue: '4' language: - iso: eng month: '02' oa: 1 oa_version: Submitted Version page: 1015 - 1026 pmid: 1 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Evolution publication_identifier: eissn: - 1558-5646 issn: - 0014-3820 publication_status: published publisher: Wiley publist_id: '5249' quality_controlled: '1' scopus_import: '1' status: public title: Evolutionarily stable mating decisions for sequentially searching females and the stability of reproductive isolation by assortative mating type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 69 year: '2015' ...