TY - JOUR AB - One of the most striking and consistent results in speciation genomics is the heterogeneous divergence observed across the genomes of closely related species. This pattern was initially attributed to different levels of gene exchange—with divergence preserved at loci generating a barrier to gene flow but homogenized at unlinked neutral loci. Although there is evidence to support this model, it is now recognized that interpreting patterns of divergence across genomes is not so straightforward. One problem is that heterogenous divergence between populations can also be generated by other processes (e.g. recurrent selective sweeps or background selection) without any involvement of differential gene flow. Thus, integrated studies that identify which loci are likely subject to divergent selection are required to shed light on the interplay between selection and gene flow during the early phases of speciation. In this issue of Molecular Ecology, Rifkin et al. (2019) confront this challenge using a pair of sister morning glory species. They wisely design their sampling to take the geographic context of individuals into account, including geographically isolated (allopatric) and co‐occurring (sympatric) populations. This enabled them to show that individuals are phenotypically less differentiated in sympatry. They also found that the loci that resist introgression are enriched for those most differentiated in allopatry and loci that exhibit signals of divergent selection. One great strength of the study is the combination of methods from population genetics and molecular evolution, including the development of a model to simultaneously infer admixture proportions and selfing rates. AU - Field, David AU - Fraisse, Christelle ID - 6466 IS - 7 JF - Molecular ecology TI - Breaking down barriers in morning glories VL - 28 ER - TY - JOUR AB - Fitness interactions between mutations can influence a population’s evolution in many different ways. While epistatic effects are difficult to measure precisely, important information is captured by the mean and variance of log fitnesses for individuals carrying different numbers of mutations. We derive predictions for these quantities from a class of simple fitness landscapes, based on models of optimizing selection on quantitative traits. We also explore extensions to the models, including modular pleiotropy, variable effect sizes, mutational bias and maladaptation of the wild type. We illustrate our approach by reanalysing a large dataset of mutant effects in a yeast snoRNA (small nucleolar RNA). Though characterized by some large epistatic effects, these data give a good overall fit to the non-epistatic null model, suggesting that epistasis might have limited influence on the evolutionary dynamics in this system. We also show how the amount of epistasis depends on both the underlying fitness landscape and the distribution of mutations, and so is expected to vary in consistent ways between new mutations, standing variation and fixed mutations. AU - Fraisse, Christelle AU - Welch, John J. ID - 6467 IS - 4 JF - Biology Letters SN - 17449561 TI - The distribution of epistasis on simple fitness landscapes VL - 15 ER - TY - JOUR AB - The environment changes constantly at various time scales and, in order to survive, species need to keep adapting. Whether these species succeed in avoiding extinction is a major evolutionary question. Using a multilocus evolutionary model of a mutation‐limited population adapting under strong selection, we investigate the effects of the frequency of environmental fluctuations on adaptation. Our results rely on an “adaptive‐walk” approximation and use mathematical methods from evolutionary computation theory to investigate the interplay between fluctuation frequency, the similarity of environments, and the number of loci contributing to adaptation. First, we assume a linear additive fitness function, but later generalize our results to include several types of epistasis. We show that frequent environmental changes prevent populations from reaching a fitness peak, but they may also prevent the large fitness loss that occurs after a single environmental change. Thus, the population can survive, although not thrive, in a wide range of conditions. Furthermore, we show that in a frequently changing environment, the similarity of threats that a population faces affects the level of adaptation that it is able to achieve. We check and supplement our analytical results with simulations. AU - Trubenova, Barbora AU - Krejca, Martin AU - Lehre, Per Kristian AU - Kötzing, Timo ID - 6637 IS - 7 JF - Evolution TI - Surfing on the seascape: Adaptation in a changing environment VL - 73 ER - TY - JOUR AB - This paper analyzes how partial selfing in a large source population influences its ability to colonize a new habitat via the introduction of a few founder individuals. Founders experience inbreeding depression due to partially recessive deleterious alleles as well as maladaptation to the new environment due to selection on a large number of additive loci. I first introduce a simplified version of the Inbreeding History Model (Kelly, 2007) in order to characterize mutation‐selection balance in a large, partially selfing source population under selection involving multiple non‐identical loci. I then use individual‐based simulations to study the eco‐evolutionary dynamics of founders establishing in the new habitat under a model of hard selection. The study explores how selfing rate shapes establishment probabilities of founders via effects on both inbreeding depression and adaptability to the new environment, and also distinguishes the effects of selfing on the initial fitness of founders from its effects on the long‐term adaptive response of the populations they found. A high rate of (but not complete) selfing is found to aid establishment over a wide range of parameters, even in the absence of mate limitation. The sensitivity of the results to assumptions about the nature of polygenic selection are discussed. AU - Sachdeva, Himani ID - 6680 IS - 9 JF - Evolution SN - 0014-3820 TI - Effect of partial selfing and polygenic selection on establishment in a new habitat VL - 73 ER - TY - GEN AB - Evolutionary studies are often limited by missing data that are critical to understanding the history of selection. Selection experiments, which reproduce rapid evolution under controlled conditions, are excellent tools to study how genomes evolve under selection. Here we present a genomic dissection of the Longshanks selection experiment, in which mice were selectively bred over 20 generations for longer tibiae relative to body mass, resulting in 13% longer tibiae in two replicates. We synthesized evolutionary theory, genome sequences and molecular genetics to understand the selection response and found that it involved both polygenic adaptation and discrete loci of major effect, with the strongest loci tending to be selected in parallel between replicates. We show that selection may favor de-repression of bone growth through inactivating two limb enhancers of an inhibitor, Nkx3-2. Our integrative genomic analyses thus show that it is possible to connect individual base-pair changes to the overall selection response. AU - Castro, João Pl AU - Yancoskie, Michelle N. AU - Marchini, Marta AU - Belohlavy, Stefanie AU - Hiramatsu, Layla AU - Kučka, Marek AU - Beluch, William H. AU - Naumann, Ronald AU - Skuplik, Isabella AU - Cobb, John AU - Barton, Nicholas H AU - Rolian, Campbell AU - Chan, Yingguang Frank ID - 9804 TI - Data from: An integrative genomic analysis of the Longshanks selection experiment for longer limbs in mice ER - TY - GEN AB - This paper analyzes how partial selfing in a large source population influences its ability to colonize a new habitat via the introduction of a few founder individuals. Founders experience inbreeding depression due to partially recessive deleterious alleles as well as maladaptation to the new environment due to selection on a large number of additive loci. I first introduce a simplified version of the Inbreeding History Model (Kelly, 2007) in order to characterize mutation-selection balance in a large, partially selfing source population under selection involving multiple non-identical loci. I then use individual-based simulations to study the eco-evolutionary dynamics of founders establishing in the new habitat under a model of hard selection. The study explores how selfing rate shapes establishment probabilities of founders via effects on both inbreeding depression and adaptability to the new environment, and also distinguishes the effects of selfing on the initial fitness of founders from its effects on the long-term adaptive response of the populations they found. A high rate of (but not complete) selfing is found to aid establishment over a wide range of parameters, even in the absence of mate limitation. The sensitivity of the results to assumptions about the nature of polygenic selection are discussed. AU - Sachdeva, Himani ID - 9802 TI - Data from: Effect of partial selfing and polygenic selection on establishment in a new habitat ER - TY - JOUR AB - The green‐beard effect is one proposed mechanism predicted to underpin the evolu‐tion of altruistic behavior. It relies on the recognition and the selective help of altruists to each other in order to promote and sustain altruistic behavior. However, this mechanism has often been dismissed as unlikely or uncommon, as it is assumed that both the signaling trait and altruistic trait need to be encoded by the same gene or through tightly linked genes. Here, we use models of indirect genetic effects (IGEs) to find the minimum correlation between the signaling and altruistic trait required for the evolution of the latter. We show that this correlation threshold depends on the strength of the interaction (influence of the green beard on the expression of the altruistic trait), as well as the costs and benefits of the altruistic behavior. We further show that this correlation does not necessarily have to be high and support our analytical results by simulations. AU - Trubenova, Barbora AU - Hager, Reinmar ID - 6795 IS - 17 JF - Ecology and Evolution TI - Green beards in the light of indirect genetic effects VL - 9 ER - TY - JOUR AB - * Understanding the mechanisms causing phenotypic differences between females and males has long fascinated evolutionary biologists. An extensive literature exists on animal sexual dimorphism but less information is known about sex differences in plants, particularly the extent of geographical variation in sexual dimorphism and its life‐cycle dynamics. * Here, we investigated patterns of genetically based sexual dimorphism in vegetative and reproductive traits of a wind‐pollinated dioecious plant, Rumex hastatulus, across three life‐cycle stages using open‐pollinated families from 30 populations spanning the geographic range and chromosomal variation (XY and XY1Y2) of the species. * The direction and degree of sexual dimorphism was highly variable among populations and life‐cycle stages. Sex‐specific differences in reproductive function explained a significant amount of temporal change in sexual dimorphism. For several traits, geographical variation in sexual dimorphism was associated with bioclimatic parameters, likely due to the differential responses of the sexes to climate. We found no systematic differences in sexual dimorphism between chromosome races. * Sex‐specific trait differences in dioecious plants largely result from a balance between sexual and natural selection on resource allocation. Our results indicate that abiotic factors associated with geographical context also play a role in modifying sexual dimorphism during the plant life‐cycle. AU - Puixeu Sala, Gemma AU - Pickup, Melinda AU - Field, David AU - Barrett, Spencer C.H. ID - 6831 IS - 3 JF - New Phytologist TI - Variation in sexual dimorphism in a wind-pollinated plant: The influence of geographical context and life-cycle dynamics VL - 224 ER - TY - GEN AB - Understanding the mechanisms causing phenotypic differences between females and males has long fascinated evolutionary biologists. An extensive literature exists on animal sexual dimorphism but less is known about sex differences in plants, particularly the extent of geographical variation in sexual dimorphism and its life-cycle dynamics. Here, we investigate patterns of genetically-based sexual dimorphism in vegetative and reproductive traits of a wind-pollinated dioecious plant, Rumex hastatulus, across three life-cycle stages using open-pollinated families from 30 populations spanning the geographic range and chromosomal variation (XY and XY1Y2) of the species. The direction and degree of sexual dimorphism was highly variable among populations and life-cycle stages. Sex-specific differences in reproductive function explained a significant amount of temporal change in sexual dimorphism. For several traits, geographical variation in sexual dimorphism was associated with bioclimatic parameters, likely due to the differential responses of the sexes to climate. We found no systematic differences in sexual dimorphism between chromosome races. Sex-specific trait differences in dioecious plants largely result from a balance between sexual and natural selection on resource allocation. Our results indicate that abiotic factors associated with geographical context also play a role in modifying sexual dimorphism during the plant life cycle. AU - Puixeu Sala, Gemma AU - Pickup, Melinda AU - Field, David AU - Barrett, Spencer C.H. ID - 9803 TI - Data from: Variation in sexual dimorphism in a wind-pollinated plant: the influence of geographical context and life-cycle dynamics ER - TY - JOUR AB - Many traits of interest are highly heritable and genetically complex, meaning that much of the variation they exhibit arises from differences at numerous loci in the genome. Complex traits and their evolution have been studied for more than a century, but only in the last decade have genome-wide association studies (GWASs) in humans begun to reveal their genetic basis. Here, we bring these threads of research together to ask how findings from GWASs can further our understanding of the processes that give rise to heritable variation in complex traits and of the genetic basis of complex trait evolution in response to changing selection pressures (i.e., of polygenic adaptation). Conversely, we ask how evolutionary thinking helps us to interpret findings from GWASs and informs related efforts of practical importance. AU - Sella, Guy AU - Barton, Nicholas H ID - 6855 JF - Annual Review of Genomics and Human Genetics SN - 1527-8204 TI - Thinking about the evolution of complex traits in the era of genome-wide association studies VL - 20 ER -