--- _id: '14848' abstract: - lang: eng text: Regulating protein states is considered the core function of chaperones. However, despite their importance to all major cellular processes, the conformational changes that chaperones impart on polypeptide chains are difficult to study directly due to their heterogeneous, dynamic, and multi-step nature. Here, we review recent advances towards this aim using single-molecule manipulation methods, which are rapidly revealing new mechanisms of conformational control and helping to define a different perspective on the chaperone function. alternative_title: - New Developments in NMR article_processing_charge: No author: - first_name: F. full_name: Wruck, F. last_name: Wruck - first_name: Mario full_name: Avellaneda Sarrió, Mario id: DC4BA84C-56E6-11EA-AD5D-348C3DDC885E last_name: Avellaneda Sarrió orcid: 0000-0001-6406-524X - first_name: M. M. full_name: Naqvi, M. M. last_name: Naqvi - first_name: E. J. full_name: Koers, E. J. last_name: Koers - first_name: K. full_name: Till, K. last_name: Till - first_name: L. full_name: Gross, L. last_name: Gross - first_name: F. full_name: Moayed, F. last_name: Moayed - first_name: A. full_name: Roland, A. last_name: Roland - first_name: L. W. H. J. full_name: Heling, L. W. H. J. last_name: Heling - first_name: A. full_name: Mashaghi, A. last_name: Mashaghi - first_name: S. J. full_name: Tans, S. J. last_name: Tans citation: ama: 'Wruck F, Avellaneda Sarrió M, Naqvi MM, et al. Probing Single Chaperone Substrates. In: Hiller S, Liu M, He L, eds. Biophysics of Molecular Chaperones. Vol 29. Royal Society of Chemistry; 2023:278-318. doi:10.1039/bk9781839165986-00278' apa: Wruck, F., Avellaneda Sarrió, M., Naqvi, M. M., Koers, E. J., Till, K., Gross, L., … Tans, S. J. (2023). Probing Single Chaperone Substrates. In S. Hiller, M. Liu, & L. He (Eds.), Biophysics of Molecular Chaperones (Vol. 29, pp. 278–318). Royal Society of Chemistry. https://doi.org/10.1039/bk9781839165986-00278 chicago: Wruck, F., Mario Avellaneda Sarrió, M. M. Naqvi, E. J. Koers, K. Till, L. Gross, F. Moayed, et al. “Probing Single Chaperone Substrates.” In Biophysics of Molecular Chaperones, edited by Sebastian Hiller, Maili Liu, and Lichun He, 29:278–318. Royal Society of Chemistry, 2023. https://doi.org/10.1039/bk9781839165986-00278. ieee: F. Wruck et al., “Probing Single Chaperone Substrates,” in Biophysics of Molecular Chaperones, vol. 29, S. Hiller, M. Liu, and L. He, Eds. Royal Society of Chemistry, 2023, pp. 278–318. ista: 'Wruck F, Avellaneda Sarrió M, Naqvi MM, Koers EJ, Till K, Gross L, Moayed F, Roland A, Heling LWHJ, Mashaghi A, Tans SJ. 2023.Probing Single Chaperone Substrates. In: Biophysics of Molecular Chaperones. New Developments in NMR, vol. 29, 278–318.' mla: Wruck, F., et al. “Probing Single Chaperone Substrates.” Biophysics of Molecular Chaperones, edited by Sebastian Hiller et al., vol. 29, Royal Society of Chemistry, 2023, pp. 278–318, doi:10.1039/bk9781839165986-00278. short: F. Wruck, M. Avellaneda Sarrió, M.M. Naqvi, E.J. Koers, K. Till, L. Gross, F. Moayed, A. Roland, L.W.H.J. Heling, A. Mashaghi, S.J. Tans, in:, S. Hiller, M. Liu, L. He (Eds.), Biophysics of Molecular Chaperones, Royal Society of Chemistry, 2023, pp. 278–318. date_created: 2024-01-22T08:07:02Z date_published: 2023-11-01T00:00:00Z date_updated: 2024-01-23T12:01:53Z day: '01' department: - _id: MiSi doi: 10.1039/bk9781839165986-00278 editor: - first_name: Sebastian full_name: Hiller, Sebastian last_name: Hiller - first_name: Maili full_name: Liu, Maili last_name: Liu - first_name: Lichun full_name: He, Lichun last_name: He intvolume: ' 29' language: - iso: eng month: '11' oa_version: None page: 278-318 publication: Biophysics of Molecular Chaperones publication_identifier: eisbn: - '9781839165993' isbn: - '9781839162824' publication_status: published publisher: Royal Society of Chemistry quality_controlled: '1' status: public title: Probing Single Chaperone Substrates type: book_chapter user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 29 year: '2023' ... --- _id: '9794' abstract: - lang: eng text: 'Lymph nodes (LNs) comprise two main structural elements: fibroblastic reticular cells that form dedicated niches for immune cell interaction and capsular fibroblasts that build a shell around the organ. Immunological challenge causes LNs to increase more than tenfold in size within a few days. Here, we characterized the biomechanics of LN swelling on the cellular and organ scale. We identified lymphocyte trapping by influx and proliferation as drivers of an outward pressure force, causing fibroblastic reticular cells of the T-zone (TRCs) and their associated conduits to stretch. After an initial phase of relaxation, TRCs sensed the resulting strain through cell matrix adhesions, which coordinated local growth and remodeling of the stromal network. While the expanded TRC network readopted its typical configuration, a massive fibrotic reaction of the organ capsule set in and countered further organ expansion. Thus, different fibroblast populations mechanically control LN swelling in a multitier fashion.' acknowledged_ssus: - _id: Bio - _id: EM-Fac - _id: PreCl - _id: LifeSc acknowledgement: This research was supported by the Scientific Service Units of IST Austria through resources provided by the Imaging and Optics, Electron Microscopy, Preclinical and Life Science Facilities. We thank C. Moussion for providing anti-PNAd antibody and D. Critchley for Talin1-floxed mice, and E. Papusheva for providing a custom 3D channel alignment script. This work was supported by a European Research Council grant ERC-CoG-72437 to M.S. M.H. was supported by Czech Sciencundation GACR 20-24603Y and Charles University PRIMUS/20/MED/013. article_processing_charge: No article_type: original author: - first_name: Frank P full_name: Assen, Frank P id: 3A8E7F24-F248-11E8-B48F-1D18A9856A87 last_name: Assen orcid: 0000-0003-3470-6119 - first_name: Jun full_name: Abe, Jun last_name: Abe - first_name: Miroslav full_name: Hons, Miroslav id: 4167FE56-F248-11E8-B48F-1D18A9856A87 last_name: Hons orcid: 0000-0002-6625-3348 - first_name: Robert full_name: Hauschild, Robert id: 4E01D6B4-F248-11E8-B48F-1D18A9856A87 last_name: Hauschild orcid: 0000-0001-9843-3522 - first_name: Shayan full_name: Shamipour, Shayan id: 40B34FE2-F248-11E8-B48F-1D18A9856A87 last_name: Shamipour - first_name: Walter full_name: Kaufmann, Walter id: 3F99E422-F248-11E8-B48F-1D18A9856A87 last_name: Kaufmann orcid: 0000-0001-9735-5315 - first_name: Tommaso full_name: Costanzo, Tommaso id: D93824F4-D9BA-11E9-BB12-F207E6697425 last_name: Costanzo orcid: 0000-0001-9732-3815 - first_name: Gabriel full_name: Krens, Gabriel id: 2B819732-F248-11E8-B48F-1D18A9856A87 last_name: Krens orcid: 0000-0003-4761-5996 - first_name: Markus full_name: Brown, Markus id: 3DAB9AFC-F248-11E8-B48F-1D18A9856A87 last_name: Brown - first_name: Burkhard full_name: Ludewig, Burkhard last_name: Ludewig - first_name: Simon full_name: Hippenmeyer, Simon id: 37B36620-F248-11E8-B48F-1D18A9856A87 last_name: Hippenmeyer orcid: 0000-0003-2279-1061 - first_name: Carl-Philipp J full_name: Heisenberg, Carl-Philipp J id: 39427864-F248-11E8-B48F-1D18A9856A87 last_name: Heisenberg orcid: 0000-0002-0912-4566 - first_name: Wolfgang full_name: Weninger, Wolfgang last_name: Weninger - first_name: Edouard B full_name: Hannezo, Edouard B id: 3A9DB764-F248-11E8-B48F-1D18A9856A87 last_name: Hannezo orcid: 0000-0001-6005-1561 - first_name: Sanjiv A. full_name: Luther, Sanjiv A. last_name: Luther - first_name: Jens V. full_name: Stein, Jens V. last_name: Stein - first_name: Michael K full_name: Sixt, Michael K id: 41E9FBEA-F248-11E8-B48F-1D18A9856A87 last_name: Sixt orcid: 0000-0002-4561-241X citation: ama: Assen FP, Abe J, Hons M, et al. Multitier mechanics control stromal adaptations in swelling lymph nodes. Nature Immunology. 2022;23:1246-1255. doi:10.1038/s41590-022-01257-4 apa: Assen, F. P., Abe, J., Hons, M., Hauschild, R., Shamipour, S., Kaufmann, W., … Sixt, M. K. (2022). Multitier mechanics control stromal adaptations in swelling lymph nodes. Nature Immunology. Springer Nature. https://doi.org/10.1038/s41590-022-01257-4 chicago: Assen, Frank P, Jun Abe, Miroslav Hons, Robert Hauschild, Shayan Shamipour, Walter Kaufmann, Tommaso Costanzo, et al. “Multitier Mechanics Control Stromal Adaptations in Swelling Lymph Nodes.” Nature Immunology. Springer Nature, 2022. https://doi.org/10.1038/s41590-022-01257-4. ieee: F. P. Assen et al., “Multitier mechanics control stromal adaptations in swelling lymph nodes,” Nature Immunology, vol. 23. Springer Nature, pp. 1246–1255, 2022. ista: Assen FP, Abe J, Hons M, Hauschild R, Shamipour S, Kaufmann W, Costanzo T, Krens G, Brown M, Ludewig B, Hippenmeyer S, Heisenberg C-PJ, Weninger W, Hannezo EB, Luther SA, Stein JV, Sixt MK. 2022. Multitier mechanics control stromal adaptations in swelling lymph nodes. Nature Immunology. 23, 1246–1255. mla: Assen, Frank P., et al. “Multitier Mechanics Control Stromal Adaptations in Swelling Lymph Nodes.” Nature Immunology, vol. 23, Springer Nature, 2022, pp. 1246–55, doi:10.1038/s41590-022-01257-4. short: F.P. Assen, J. Abe, M. Hons, R. Hauschild, S. Shamipour, W. Kaufmann, T. Costanzo, G. Krens, M. Brown, B. Ludewig, S. Hippenmeyer, C.-P.J. Heisenberg, W. Weninger, E.B. Hannezo, S.A. Luther, J.V. Stein, M.K. Sixt, Nature Immunology 23 (2022) 1246–1255. date_created: 2021-08-06T09:09:11Z date_published: 2022-07-11T00:00:00Z date_updated: 2023-08-02T06:53:07Z day: '11' ddc: - '570' department: - _id: SiHi - _id: CaHe - _id: EdHa - _id: EM-Fac - _id: Bio - _id: MiSi doi: 10.1038/s41590-022-01257-4 ec_funded: 1 external_id: isi: - '000822975900002' file: - access_level: open_access checksum: 628e7b49809f22c75b428842efe70c68 content_type: application/pdf creator: dernst date_created: 2022-07-25T07:11:32Z date_updated: 2022-07-25T07:11:32Z file_id: '11642' file_name: 2022_NatureImmunology_Assen.pdf file_size: 11475325 relation: main_file success: 1 file_date_updated: 2022-07-25T07:11:32Z has_accepted_license: '1' intvolume: ' 23' isi: 1 language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '07' oa: 1 oa_version: Published Version page: 1246-1255 project: - _id: 25FE9508-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '724373' name: Cellular navigation along spatial gradients publication: Nature Immunology publication_identifier: eissn: - 1529-2916 issn: - 1529-2908 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Multitier mechanics control stromal adaptations in swelling lymph nodes tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 23 year: '2022' ... --- _id: '11588' abstract: - lang: eng text: Visualizing cell behavior and effector function on a single cell level has been crucial for understanding key aspects of mammalian biology. Due to their small size, large number and rapid recruitment into thrombi, there is a lack of data on fate and behavior of individual platelets in thrombosis and hemostasis. Here we report the use of platelet lineage restricted multi-color reporter mouse strains to delineate platelet function on a single cell level. We show that genetic labeling allows for single platelet and megakaryocyte (MK) tracking and morphological analysis in vivo and in vitro, while not affecting lineage functions. Using Cre-driven Confetti expression, we provide insights into temporal gene expression patterns as well as spatial clustering of MK in the bone marrow. In the vasculature, shape analysis of activated platelets recruited to thrombi identifies ubiquitous filopodia formation with no evidence of lamellipodia formation. Single cell tracking in complex thrombi reveals prominent myosin-dependent motility of platelets and highlights thrombus formation as a highly dynamic process amenable to modification and intervention of the acto-myosin cytoskeleton. Platelet function assays combining flow cytrometry, as well as in vivo, ex vivo and in vitro imaging show unaltered platelet functions of multicolor reporter mice compared to wild-type controls. In conclusion, platelet lineage multicolor reporter mice prove useful in furthering our understanding of platelet and MK biology on a single cell level. acknowledgement: "This study was supported by the Deutsche Forschungsgemeinschaft (DFG) SFB 914 ( to SM [B02 and Z01]), the DFG SFB 1123 (to SM [B06]), the DFG FOR 2033 (to SM), the German\r\nCenter for Cardiovascular Research (DZHK) (Clinician Scientist Programme), MHA 1.4VD (to SM), Postdoc Start-up Grant, 81X3600213 (to FG), 81X3600222 (to LN), the FP7 program\r\n(project 260309, PRESTIGE [to SM]). This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 83344, ERC-2018-ADG “IMMUNOTHROMBOSIS” [to SM] and the Marie Skłodowska Curie Individual Fellowship (EU project 747687, LamelliActin [to FG]). " article_processing_charge: No article_type: original author: - first_name: Leo full_name: Nicolai, Leo last_name: Nicolai - first_name: Rainer full_name: Kaiser, Rainer last_name: Kaiser - first_name: Raphael full_name: Escaig, Raphael last_name: Escaig - first_name: Marie Louise full_name: Hoffknecht, Marie Louise last_name: Hoffknecht - first_name: Afra full_name: Anjum, Afra last_name: Anjum - first_name: Alexander full_name: Leunig, Alexander last_name: Leunig - first_name: Joachim full_name: Pircher, Joachim last_name: Pircher - first_name: Andreas full_name: Ehrlich, Andreas last_name: Ehrlich - first_name: Michael full_name: Lorenz, Michael last_name: Lorenz - first_name: Hellen full_name: Ishikawa-Ankerhold, Hellen last_name: Ishikawa-Ankerhold - first_name: William C. full_name: Aird, William C. last_name: Aird - first_name: Steffen full_name: Massberg, Steffen last_name: Massberg - first_name: Florian R full_name: Gärtner, Florian R id: 397A88EE-F248-11E8-B48F-1D18A9856A87 last_name: Gärtner orcid: 0000-0001-6120-3723 citation: ama: Nicolai L, Kaiser R, Escaig R, et al. Single platelet and megakaryocyte morpho-dynamics uncovered by multicolor reporter mouse strains in vitro and in vivo. Haematologica. 2022;107(7):1669-1680. doi:10.3324/haematol.2021.278896 apa: Nicolai, L., Kaiser, R., Escaig, R., Hoffknecht, M. L., Anjum, A., Leunig, A., … Gärtner, F. R. (2022). Single platelet and megakaryocyte morpho-dynamics uncovered by multicolor reporter mouse strains in vitro and in vivo. Haematologica. Ferrata Storti Foundation. https://doi.org/10.3324/haematol.2021.278896 chicago: Nicolai, Leo, Rainer Kaiser, Raphael Escaig, Marie Louise Hoffknecht, Afra Anjum, Alexander Leunig, Joachim Pircher, et al. “Single Platelet and Megakaryocyte Morpho-Dynamics Uncovered by Multicolor Reporter Mouse Strains in Vitro and in Vivo.” Haematologica. Ferrata Storti Foundation, 2022. https://doi.org/10.3324/haematol.2021.278896. ieee: L. Nicolai et al., “Single platelet and megakaryocyte morpho-dynamics uncovered by multicolor reporter mouse strains in vitro and in vivo,” Haematologica, vol. 107, no. 7. Ferrata Storti Foundation, pp. 1669–1680, 2022. ista: Nicolai L, Kaiser R, Escaig R, Hoffknecht ML, Anjum A, Leunig A, Pircher J, Ehrlich A, Lorenz M, Ishikawa-Ankerhold H, Aird WC, Massberg S, Gärtner FR. 2022. Single platelet and megakaryocyte morpho-dynamics uncovered by multicolor reporter mouse strains in vitro and in vivo. Haematologica. 107(7), 1669–1680. mla: Nicolai, Leo, et al. “Single Platelet and Megakaryocyte Morpho-Dynamics Uncovered by Multicolor Reporter Mouse Strains in Vitro and in Vivo.” Haematologica, vol. 107, no. 7, Ferrata Storti Foundation, 2022, pp. 1669–80, doi:10.3324/haematol.2021.278896. short: L. Nicolai, R. Kaiser, R. Escaig, M.L. Hoffknecht, A. Anjum, A. Leunig, J. Pircher, A. Ehrlich, M. Lorenz, H. Ishikawa-Ankerhold, W.C. Aird, S. Massberg, F.R. Gärtner, Haematologica 107 (2022) 1669–1680. date_created: 2022-07-17T22:01:54Z date_published: 2022-07-01T00:00:00Z date_updated: 2023-08-03T12:01:01Z day: '01' ddc: - '570' department: - _id: MiSi doi: 10.3324/haematol.2021.278896 ec_funded: 1 external_id: isi: - '000823746100018' file: - access_level: open_access checksum: 9b47830945f3c30428fe9cfee2dc4a8a content_type: application/pdf creator: dernst date_created: 2022-07-18T07:51:55Z date_updated: 2022-07-18T07:51:55Z file_id: '11595' file_name: 2022_Haematologica_Nicolai.pdf file_size: 1722094 relation: main_file success: 1 file_date_updated: 2022-07-18T07:51:55Z has_accepted_license: '1' intvolume: ' 107' isi: 1 issue: '7' language: - iso: eng license: https://creativecommons.org/licenses/by-nc/4.0/ month: '07' oa: 1 oa_version: Published Version page: 1669-1680 project: - _id: 260AA4E2-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '747687' name: Mechanical Adaptation of Lamellipodial Actin Networks in Migrating Cells publication: Haematologica publication_identifier: eissn: - 1592-8721 issn: - 0390-6078 publication_status: published publisher: Ferrata Storti Foundation quality_controlled: '1' scopus_import: '1' status: public title: Single platelet and megakaryocyte morpho-dynamics uncovered by multicolor reporter mouse strains in vitro and in vivo tmp: image: /images/cc_by_nc.png legal_code_url: https://creativecommons.org/licenses/by-nc/4.0/legalcode name: Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) short: CC BY-NC (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 107 year: '2022' ... --- _id: '11843' abstract: - lang: eng text: A key attribute of persistent or recurring bacterial infections is the ability of the pathogen to evade the host’s immune response. Many Enterobacteriaceae express type 1 pili, a pre-adapted virulence trait, to invade host epithelial cells and establish persistent infections. However, the molecular mechanisms and strategies by which bacteria actively circumvent the immune response of the host remain poorly understood. Here, we identified CD14, the major co-receptor for lipopolysaccharide detection, on mouse dendritic cells (DCs) as a binding partner of FimH, the protein located at the tip of the type 1 pilus of Escherichia coli. The FimH amino acids involved in CD14 binding are highly conserved across pathogenic and non-pathogenic strains. Binding of the pathogenic strain CFT073 to CD14 reduced DC migration by overactivation of integrins and blunted expression of co-stimulatory molecules by overactivating the NFAT (nuclear factor of activated T-cells) pathway, both rate-limiting factors of T cell activation. This response was binary at the single-cell level, but averaged in larger populations exposed to both piliated and non-piliated pathogens, presumably via the exchange of immunomodulatory cytokines. While defining an active molecular mechanism of immune evasion by pathogens, the interaction between FimH and CD14 represents a potential target to interfere with persistent and recurrent infections, such as urinary tract infections or Crohn’s disease. acknowledged_ssus: - _id: Bio - _id: PreCl - _id: EM-Fac acknowledgement: We thank Ulrich Dobrindt for providing UPEC strains CFT073, UTI89, and 536, Frank Assen, Vlad Gavra, Maximilian Götz, Bor Kavčič, Jonna Alanko, and Eva Kiermaier for help with experiments and Robert Hauschild, Julian Stopp, and Saren Tasciyan for help with data analysis. We thank the IST Austria Scientific Service Units, especially the Bioimaging facility, the Preclinical facility and the Electron microscopy facility for technical support, Jakob Wallner and all members of the Guet and Sixt lab for fruitful discussions and Daria Siekhaus for critically reading the manuscript. This work was supported by grants from the Austrian Research Promotion Agency (FEMtech 868984) to IG, the European Research Council (CoG 724373), and the Austrian Science Fund (FWF P29911) to MS. article_number: e78995 article_processing_charge: Yes article_type: original author: - first_name: Kathrin full_name: Tomasek, Kathrin id: 3AEC8556-F248-11E8-B48F-1D18A9856A87 last_name: Tomasek - first_name: Alexander F full_name: Leithner, Alexander F id: 3B1B77E4-F248-11E8-B48F-1D18A9856A87 last_name: Leithner - first_name: Ivana full_name: Glatzová, Ivana id: 727b3c7d-4939-11ec-89b3-b9b0750ab74d last_name: Glatzová - first_name: Michael S. full_name: Lukesch, Michael S. last_name: Lukesch - first_name: Calin C full_name: Guet, Calin C id: 47F8433E-F248-11E8-B48F-1D18A9856A87 last_name: Guet orcid: 0000-0001-6220-2052 - first_name: Michael K full_name: Sixt, Michael K id: 41E9FBEA-F248-11E8-B48F-1D18A9856A87 last_name: Sixt orcid: 0000-0002-6620-9179 citation: ama: Tomasek K, Leithner AF, Glatzová I, Lukesch MS, Guet CC, Sixt MK. Type 1 piliated uropathogenic Escherichia coli hijack the host immune response by binding to CD14. eLife. 2022;11. doi:10.7554/eLife.78995 apa: Tomasek, K., Leithner, A. F., Glatzová, I., Lukesch, M. S., Guet, C. C., & Sixt, M. K. (2022). Type 1 piliated uropathogenic Escherichia coli hijack the host immune response by binding to CD14. ELife. eLife Sciences Publications. https://doi.org/10.7554/eLife.78995 chicago: Tomasek, Kathrin, Alexander F Leithner, Ivana Glatzová, Michael S. Lukesch, Calin C Guet, and Michael K Sixt. “Type 1 Piliated Uropathogenic Escherichia Coli Hijack the Host Immune Response by Binding to CD14.” ELife. eLife Sciences Publications, 2022. https://doi.org/10.7554/eLife.78995. ieee: K. Tomasek, A. F. Leithner, I. Glatzová, M. S. Lukesch, C. C. Guet, and M. K. Sixt, “Type 1 piliated uropathogenic Escherichia coli hijack the host immune response by binding to CD14,” eLife, vol. 11. eLife Sciences Publications, 2022. ista: Tomasek K, Leithner AF, Glatzová I, Lukesch MS, Guet CC, Sixt MK. 2022. Type 1 piliated uropathogenic Escherichia coli hijack the host immune response by binding to CD14. eLife. 11, e78995. mla: Tomasek, Kathrin, et al. “Type 1 Piliated Uropathogenic Escherichia Coli Hijack the Host Immune Response by Binding to CD14.” ELife, vol. 11, e78995, eLife Sciences Publications, 2022, doi:10.7554/eLife.78995. short: K. Tomasek, A.F. Leithner, I. Glatzová, M.S. Lukesch, C.C. Guet, M.K. Sixt, ELife 11 (2022). date_created: 2022-08-14T22:01:46Z date_published: 2022-07-26T00:00:00Z date_updated: 2023-08-03T12:54:21Z day: '26' ddc: - '570' department: - _id: MiSi - _id: CaGu doi: 10.7554/eLife.78995 ec_funded: 1 external_id: isi: - '000838410200001' file: - access_level: open_access checksum: 002a3c7c7ea5caa9af9cfbea308f6ea4 content_type: application/pdf creator: cchlebak date_created: 2022-08-16T08:57:37Z date_updated: 2022-08-16T08:57:37Z file_id: '11861' file_name: 2022_eLife_Tomasek.pdf file_size: 2057577 relation: main_file success: 1 file_date_updated: 2022-08-16T08:57:37Z has_accepted_license: '1' intvolume: ' 11' isi: 1 language: - iso: eng month: '07' oa: 1 oa_version: Published Version project: - _id: 25FE9508-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '724373' name: Cellular navigation along spatial gradients - _id: 26018E70-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29911 name: Mechanical adaptation of lamellipodial actin publication: eLife publication_identifier: eissn: - 2050-084X publication_status: published publisher: eLife Sciences Publications quality_controlled: '1' related_material: record: - id: '10316' relation: earlier_version status: public scopus_import: '1' status: public title: Type 1 piliated uropathogenic Escherichia coli hijack the host immune response by binding to CD14 tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 11 year: '2022' ... --- _id: '12085' abstract: - lang: eng text: Molecular catch bonds are ubiquitous in biology and essential for processes like leucocyte extravasion1 and cellular mechanosensing2. Unlike normal (slip) bonds, catch bonds strengthen under tension. The current paradigm is that this feature provides ‘strength on demand3’, thus enabling cells to increase rigidity under stress1,4,5,6. However, catch bonds are often weaker than slip bonds because they have cryptic binding sites that are usually buried7,8. Here we show that catch bonds render reconstituted cytoskeletal actin networks stronger than slip bonds, even though the individual bonds are weaker. Simulations show that slip bonds remain trapped in stress-free areas, whereas weak binding allows catch bonds to mitigate crack initiation by moving to high-tension areas. This ‘dissociation on demand’ explains how cells combine mechanical strength with the adaptability required for shape change, and is relevant to diseases where catch bonding is compromised7,9, including focal segmental glomerulosclerosis10 caused by the α-actinin-4 mutant studied here. We surmise that catch bonds are the key to create life-like materials. acknowledgement: 'We thank M. van Hecke and C. Alkemade for critical reading of the manuscript. We thank P. R. ten Wolde, K. Storm, W. Ellenbroek, C. Broedersz, D. Brueckner and M. Berger for fruitful discussions. We thank W. Brieher and V. Tang from the University of Illinois for the kind gift of purified α-actinin-4 (WT and the K255E point mutant) and their plasmids; M. Kuit-Vinkenoog and J. den Haan for actin and further purification of α-actinin-4; A. Goutou and I. Isturiz-Petitjean for co-sedimentation measurements and V. Sunderlíková for the design, mutagenesis, cloning and purifying of the α-actinin-4 constructs used in the single-molecule experiments. We gratefully acknowledge financial support from the following sources: research program of the Netherlands Organization for Scientific Research (NWO) (S.J.T., A.R. and M.J.A.); ERC Starting Grant (335672-MINICELL) (G.H.K. and Y.M.). ‘BaSyC—Building a Synthetic Cell’ Gravitation grant (024.003.019) of the Netherlands Ministry of Education, Culture and Science (OCW) and the Netherlands Organisation for Scientific Research (G.H.K. and L.B.); and support from the National Institutes of Health (1R01GM126256) (T.K. and W.J.).' article_processing_charge: No article_type: original author: - first_name: Yuval full_name: Mulla, Yuval last_name: Mulla - first_name: Mario full_name: Avellaneda Sarrió, Mario id: DC4BA84C-56E6-11EA-AD5D-348C3DDC885E last_name: Avellaneda Sarrió orcid: 0000-0001-6406-524X - first_name: Antoine full_name: Roland, Antoine last_name: Roland - first_name: Lucia full_name: Baldauf, Lucia last_name: Baldauf - first_name: Wonyeong full_name: Jung, Wonyeong last_name: Jung - first_name: Taeyoon full_name: Kim, Taeyoon last_name: Kim - first_name: Sander J. full_name: Tans, Sander J. last_name: Tans - first_name: Gijsje H. full_name: Koenderink, Gijsje H. last_name: Koenderink citation: ama: Mulla Y, Avellaneda Sarrió M, Roland A, et al. Weak catch bonds make strong networks. Nature Materials. 2022;21(9):1019-1023. doi:10.1038/s41563-022-01288-0 apa: Mulla, Y., Avellaneda Sarrió, M., Roland, A., Baldauf, L., Jung, W., Kim, T., … Koenderink, G. H. (2022). Weak catch bonds make strong networks. Nature Materials. Springer Nature. https://doi.org/10.1038/s41563-022-01288-0 chicago: Mulla, Yuval, Mario Avellaneda Sarrió, Antoine Roland, Lucia Baldauf, Wonyeong Jung, Taeyoon Kim, Sander J. Tans, and Gijsje H. Koenderink. “Weak Catch Bonds Make Strong Networks.” Nature Materials. Springer Nature, 2022. https://doi.org/10.1038/s41563-022-01288-0. ieee: Y. Mulla et al., “Weak catch bonds make strong networks,” Nature Materials, vol. 21, no. 9. Springer Nature, pp. 1019–1023, 2022. ista: Mulla Y, Avellaneda Sarrió M, Roland A, Baldauf L, Jung W, Kim T, Tans SJ, Koenderink GH. 2022. Weak catch bonds make strong networks. Nature Materials. 21(9), 1019–1023. mla: Mulla, Yuval, et al. “Weak Catch Bonds Make Strong Networks.” Nature Materials, vol. 21, no. 9, Springer Nature, 2022, pp. 1019–23, doi:10.1038/s41563-022-01288-0. short: Y. Mulla, M. Avellaneda Sarrió, A. Roland, L. Baldauf, W. Jung, T. Kim, S.J. Tans, G.H. Koenderink, Nature Materials 21 (2022) 1019–1023. date_created: 2022-09-11T22:01:57Z date_published: 2022-09-01T00:00:00Z date_updated: 2023-08-03T14:08:47Z day: '01' department: - _id: MiSi doi: 10.1038/s41563-022-01288-0 external_id: isi: - '000844592000002' pmid: - '36008604' intvolume: ' 21' isi: 1 issue: '9' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1101/2020.07.27.219618 month: '09' oa: 1 oa_version: Preprint page: 1019-1023 pmid: 1 publication: Nature Materials publication_identifier: eissn: - 1476-4660 issn: - 1476-1122 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Weak catch bonds make strong networks type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 21 year: '2022' ...