--- _id: '6354' abstract: - lang: eng text: Blood platelets are critical for hemostasis and thrombosis, but also play diverse roles during immune responses. We have recently reported that platelets migrate at sites of infection in vitro and in vivo. Importantly, platelets use their ability to migrate to collect and bundle fibrin (ogen)-bound bacteria accomplishing efficient intravascular bacterial trapping. Here, we describe a method that allows analyzing platelet migration in vitro, focusing on their ability to collect bacteria and trap bacteria under flow. acknowledgement: ' FöFoLe project 947 (F.G.), the Friedrich-Baur-Stiftung project 41/16 (F.G.)' article_number: e3018 author: - first_name: Shuxia full_name: Fan, Shuxia last_name: Fan - first_name: Michael full_name: Lorenz, Michael last_name: Lorenz - first_name: Steffen full_name: Massberg, Steffen last_name: Massberg - first_name: Florian R full_name: Gärtner, Florian R id: 397A88EE-F248-11E8-B48F-1D18A9856A87 last_name: Gärtner orcid: 0000-0001-6120-3723 citation: ama: Fan S, Lorenz M, Massberg S, Gärtner FR. Platelet migration and bacterial trapping assay under flow. Bio-Protocol. 2018;8(18). doi:10.21769/bioprotoc.3018 apa: Fan, S., Lorenz, M., Massberg, S., & Gärtner, F. R. (2018). Platelet migration and bacterial trapping assay under flow. Bio-Protocol. Bio-Protocol. https://doi.org/10.21769/bioprotoc.3018 chicago: Fan, Shuxia, Michael Lorenz, Steffen Massberg, and Florian R Gärtner. “Platelet Migration and Bacterial Trapping Assay under Flow.” Bio-Protocol. Bio-Protocol, 2018. https://doi.org/10.21769/bioprotoc.3018. ieee: S. Fan, M. Lorenz, S. Massberg, and F. R. Gärtner, “Platelet migration and bacterial trapping assay under flow,” Bio-Protocol, vol. 8, no. 18. Bio-Protocol, 2018. ista: Fan S, Lorenz M, Massberg S, Gärtner FR. 2018. Platelet migration and bacterial trapping assay under flow. Bio-Protocol. 8(18), e3018. mla: Fan, Shuxia, et al. “Platelet Migration and Bacterial Trapping Assay under Flow.” Bio-Protocol, vol. 8, no. 18, e3018, Bio-Protocol, 2018, doi:10.21769/bioprotoc.3018. short: S. Fan, M. Lorenz, S. Massberg, F.R. Gärtner, Bio-Protocol 8 (2018). date_created: 2019-04-29T09:40:33Z date_published: 2018-09-20T00:00:00Z date_updated: 2021-01-12T08:07:12Z day: '20' ddc: - '570' department: - _id: MiSi doi: 10.21769/bioprotoc.3018 ec_funded: 1 file: - access_level: open_access checksum: d4588377e789da7f360b553ae02c5119 content_type: application/pdf creator: dernst date_created: 2019-04-30T08:04:33Z date_updated: 2020-07-14T12:47:28Z file_id: '6360' file_name: 2018_BioProtocol_Fan.pdf file_size: 2928337 relation: main_file file_date_updated: 2020-07-14T12:47:28Z has_accepted_license: '1' intvolume: ' 8' issue: '18' keyword: - Platelets - Cell migration - Bacteria - Shear flow - Fibrinogen - E. coli language: - iso: eng month: '09' oa: 1 oa_version: Published Version project: - _id: 260AA4E2-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '747687' name: Mechanical Adaptation of Lamellipodial Actin Networks in Migrating Cells publication: Bio-Protocol publication_identifier: issn: - 2331-8325 publication_status: published publisher: Bio-Protocol quality_controlled: '1' status: public title: Platelet migration and bacterial trapping assay under flow tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 8 year: '2018' ... --- _id: '318' abstract: - lang: eng text: The insect’s fat body combines metabolic and immunological functions. In this issue of Developmental Cell, Franz et al. (2018) show that in Drosophila, cells of the fat body are not static, but can actively “swim” toward sites of epithelial injury, where they physically clog the wound and locally secrete antimicrobial peptides. acknowledgement: Short Survey article_processing_charge: No author: - first_name: Alessandra M full_name: Casano, Alessandra M id: 3DBA3F4E-F248-11E8-B48F-1D18A9856A87 last_name: Casano orcid: 0000-0002-6009-6804 - first_name: Michael K full_name: Sixt, Michael K id: 41E9FBEA-F248-11E8-B48F-1D18A9856A87 last_name: Sixt orcid: 0000-0002-6620-9179 citation: ama: Casano AM, Sixt MK. A fat lot of good for wound healing. Developmental Cell. 2018;44(4):405-406. doi:10.1016/j.devcel.2018.02.009 apa: Casano, A. M., & Sixt, M. K. (2018). A fat lot of good for wound healing. Developmental Cell. Cell Press. https://doi.org/10.1016/j.devcel.2018.02.009 chicago: Casano, Alessandra M, and Michael K Sixt. “A Fat Lot of Good for Wound Healing.” Developmental Cell. Cell Press, 2018. https://doi.org/10.1016/j.devcel.2018.02.009. ieee: A. M. Casano and M. K. Sixt, “A fat lot of good for wound healing,” Developmental Cell, vol. 44, no. 4. Cell Press, pp. 405–406, 2018. ista: Casano AM, Sixt MK. 2018. A fat lot of good for wound healing. Developmental Cell. 44(4), 405–406. mla: Casano, Alessandra M., and Michael K. Sixt. “A Fat Lot of Good for Wound Healing.” Developmental Cell, vol. 44, no. 4, Cell Press, 2018, pp. 405–06, doi:10.1016/j.devcel.2018.02.009. short: A.M. Casano, M.K. Sixt, Developmental Cell 44 (2018) 405–406. date_created: 2018-12-11T11:45:47Z date_published: 2018-02-26T00:00:00Z date_updated: 2023-09-08T11:42:28Z day: '26' department: - _id: MiSi doi: 10.1016/j.devcel.2018.02.009 external_id: isi: - '000426150700002' pmid: - '29486189' intvolume: ' 44' isi: 1 issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://www.ncbi.nlm.nih.gov/pubmed/29486189 month: '02' oa: 1 oa_version: Published Version page: 405 - 406 pmid: 1 publication: Developmental Cell publication_status: published publisher: Cell Press publist_id: '7547' quality_controlled: '1' scopus_import: '1' status: public title: A fat lot of good for wound healing type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 44 year: '2018' ... --- _id: '308' abstract: - lang: eng text: Migrating cells penetrate tissue barriers during development, inflammatory responses, and tumor metastasis. We study if migration in vivo in such three-dimensionally confined environments requires changes in the mechanical properties of the surrounding cells using embryonic Drosophila melanogaster hemocytes, also called macrophages, as a model. We find that macrophage invasion into the germband through transient separation of the apposing ectoderm and mesoderm requires cell deformations and reductions in apical tension in the ectoderm. Interestingly, the genetic pathway governing these mechanical shifts acts downstream of the only known tumor necrosis factor superfamily member in Drosophila, Eiger, and its receptor, Grindelwald. Eiger-Grindelwald signaling reduces levels of active Myosin in the germband ectodermal cortex through the localization of a Crumbs complex component, Patj (Pals-1-associated tight junction protein). We therefore elucidate a distinct molecular pathway that controls tissue tension and demonstrate the importance of such regulation for invasive migration in vivo. acknowledged_ssus: - _id: SSU article_processing_charge: No article_type: original author: - first_name: Aparna full_name: Ratheesh, Aparna id: 2F064CFE-F248-11E8-B48F-1D18A9856A87 last_name: Ratheesh orcid: 0000-0001-7190-0776 - first_name: Julia full_name: Biebl, Julia id: 3CCBB46E-F248-11E8-B48F-1D18A9856A87 last_name: Biebl - first_name: Michael full_name: Smutny, Michael last_name: Smutny - first_name: Jana full_name: Veselá, Jana id: 433253EE-F248-11E8-B48F-1D18A9856A87 last_name: Veselá - first_name: Ekaterina full_name: Papusheva, Ekaterina id: 41DB591E-F248-11E8-B48F-1D18A9856A87 last_name: Papusheva - first_name: Gabriel full_name: Krens, Gabriel id: 2B819732-F248-11E8-B48F-1D18A9856A87 last_name: Krens orcid: 0000-0003-4761-5996 - first_name: Walter full_name: Kaufmann, Walter id: 3F99E422-F248-11E8-B48F-1D18A9856A87 last_name: Kaufmann orcid: 0000-0001-9735-5315 - first_name: Attila full_name: György, Attila id: 3BCEDBE0-F248-11E8-B48F-1D18A9856A87 last_name: György orcid: 0000-0002-1819-198X - first_name: Alessandra M full_name: Casano, Alessandra M id: 3DBA3F4E-F248-11E8-B48F-1D18A9856A87 last_name: Casano orcid: 0000-0002-6009-6804 - first_name: Daria E full_name: Siekhaus, Daria E id: 3D224B9E-F248-11E8-B48F-1D18A9856A87 last_name: Siekhaus orcid: 0000-0001-8323-8353 citation: ama: Ratheesh A, Bicher J, Smutny M, et al. Drosophila TNF modulates tissue tension in the embryo to facilitate macrophage invasive migration. Developmental Cell. 2018;45(3):331-346. doi:10.1016/j.devcel.2018.04.002 apa: Ratheesh, A., Bicher, J., Smutny, M., Veselá, J., Papusheva, E., Krens, G., … Siekhaus, D. E. (2018). Drosophila TNF modulates tissue tension in the embryo to facilitate macrophage invasive migration. Developmental Cell. Elsevier. https://doi.org/10.1016/j.devcel.2018.04.002 chicago: Ratheesh, Aparna, Julia Bicher, Michael Smutny, Jana Veselá, Ekaterina Papusheva, Gabriel Krens, Walter Kaufmann, Attila György, Alessandra M Casano, and Daria E Siekhaus. “Drosophila TNF Modulates Tissue Tension in the Embryo to Facilitate Macrophage Invasive Migration.” Developmental Cell. Elsevier, 2018. https://doi.org/10.1016/j.devcel.2018.04.002. ieee: A. Ratheesh et al., “Drosophila TNF modulates tissue tension in the embryo to facilitate macrophage invasive migration,” Developmental Cell, vol. 45, no. 3. Elsevier, pp. 331–346, 2018. ista: Ratheesh A, Bicher J, Smutny M, Veselá J, Papusheva E, Krens G, Kaufmann W, György A, Casano AM, Siekhaus DE. 2018. Drosophila TNF modulates tissue tension in the embryo to facilitate macrophage invasive migration. Developmental Cell. 45(3), 331–346. mla: Ratheesh, Aparna, et al. “Drosophila TNF Modulates Tissue Tension in the Embryo to Facilitate Macrophage Invasive Migration.” Developmental Cell, vol. 45, no. 3, Elsevier, 2018, pp. 331–46, doi:10.1016/j.devcel.2018.04.002. short: A. Ratheesh, J. Bicher, M. Smutny, J. Veselá, E. Papusheva, G. Krens, W. Kaufmann, A. György, A.M. Casano, D.E. Siekhaus, Developmental Cell 45 (2018) 331–346. date_created: 2018-12-11T11:45:44Z date_published: 2018-05-07T00:00:00Z date_updated: 2023-09-11T13:22:13Z day: '07' department: - _id: DaSi - _id: CaHe - _id: Bio - _id: EM-Fac - _id: MiSi doi: 10.1016/j.devcel.2018.04.002 ec_funded: 1 external_id: isi: - '000432461400009' pmid: - '29738712' intvolume: ' 45' isi: 1 issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1016/j.devcel.2018.04.002 month: '05' oa: 1 oa_version: Published Version page: 331 - 346 pmid: 1 project: - _id: 253B6E48-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29638 name: Drosophila TNFa´s Funktion in Immunzellen - _id: 2536F660-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '334077' name: Investigating the role of transporters in invasive migration through junctions publication: Developmental Cell publication_status: published publisher: Elsevier quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/cells-change-tension-to-make-tissue-barriers-easier-to-get-through/ scopus_import: '1' status: public title: Drosophila TNF modulates tissue tension in the embryo to facilitate macrophage invasive migration type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 45 year: '2018' ... --- _id: '437' abstract: - lang: eng text: Dendritic cells (DCs) are sentinels of the adaptive immune system that reside in peripheral organs of mammals. Upon pathogen encounter, they undergo maturation and up-regulate the chemokine receptor CCR7 that guides them along gradients of its chemokine ligands CCL19 and 21 to the next draining lymph node. There, DCs present peripherally acquired antigen to naïve T cells, thereby triggering adaptive immunity. acknowledged_ssus: - _id: SSU acknowledgement: "This work was supported by grants of the European Research Council (ERC CoG 724373) and the Austrian Science Fund (FWF) to M.S. We thank the scientific support units at IST Austria for excellent technical support.\r\nWe thank the scientific \ support units at IST Austria for excellent technical support. " article_processing_charge: Yes (via OA deal) author: - first_name: Alexander F full_name: Leithner, Alexander F id: 3B1B77E4-F248-11E8-B48F-1D18A9856A87 last_name: Leithner orcid: 0000-0002-1073-744X - first_name: Jörg full_name: Renkawitz, Jörg id: 3F0587C8-F248-11E8-B48F-1D18A9856A87 last_name: Renkawitz orcid: 0000-0003-2856-3369 - first_name: Ingrid full_name: De Vries, Ingrid id: 4C7D837E-F248-11E8-B48F-1D18A9856A87 last_name: De Vries - first_name: Robert full_name: Hauschild, Robert id: 4E01D6B4-F248-11E8-B48F-1D18A9856A87 last_name: Hauschild orcid: 0000-0001-9843-3522 - first_name: Hans full_name: Haecker, Hans last_name: Haecker - first_name: Michael K full_name: Sixt, Michael K id: 41E9FBEA-F248-11E8-B48F-1D18A9856A87 last_name: Sixt orcid: 0000-0002-6620-9179 citation: ama: Leithner AF, Renkawitz J, de Vries I, Hauschild R, Haecker H, Sixt MK. Fast and efficient genetic engineering of hematopoietic precursor cells for the study of dendritic cell migration. European Journal of Immunology. 2018;48(6):1074-1077. doi:10.1002/eji.201747358 apa: Leithner, A. F., Renkawitz, J., de Vries, I., Hauschild, R., Haecker, H., & Sixt, M. K. (2018). Fast and efficient genetic engineering of hematopoietic precursor cells for the study of dendritic cell migration. European Journal of Immunology. Wiley-Blackwell. https://doi.org/10.1002/eji.201747358 chicago: Leithner, Alexander F, Jörg Renkawitz, Ingrid de Vries, Robert Hauschild, Hans Haecker, and Michael K Sixt. “Fast and Efficient Genetic Engineering of Hematopoietic Precursor Cells for the Study of Dendritic Cell Migration.” European Journal of Immunology. Wiley-Blackwell, 2018. https://doi.org/10.1002/eji.201747358. ieee: A. F. Leithner, J. Renkawitz, I. de Vries, R. Hauschild, H. Haecker, and M. K. Sixt, “Fast and efficient genetic engineering of hematopoietic precursor cells for the study of dendritic cell migration,” European Journal of Immunology, vol. 48, no. 6. Wiley-Blackwell, pp. 1074–1077, 2018. ista: Leithner AF, Renkawitz J, de Vries I, Hauschild R, Haecker H, Sixt MK. 2018. Fast and efficient genetic engineering of hematopoietic precursor cells for the study of dendritic cell migration. European Journal of Immunology. 48(6), 1074–1077. mla: Leithner, Alexander F., et al. “Fast and Efficient Genetic Engineering of Hematopoietic Precursor Cells for the Study of Dendritic Cell Migration.” European Journal of Immunology, vol. 48, no. 6, Wiley-Blackwell, 2018, pp. 1074–77, doi:10.1002/eji.201747358. short: A.F. Leithner, J. Renkawitz, I. de Vries, R. Hauschild, H. Haecker, M.K. Sixt, European Journal of Immunology 48 (2018) 1074–1077. date_created: 2018-12-11T11:46:28Z date_published: 2018-02-13T00:00:00Z date_updated: 2023-09-11T14:01:18Z day: '13' ddc: - '570' department: - _id: MiSi - _id: Bio doi: 10.1002/eji.201747358 ec_funded: 1 external_id: isi: - '000434963700016' file: - access_level: open_access checksum: 9d5b74cd016505aeb9a4c2d33bbedaeb content_type: application/pdf creator: system date_created: 2018-12-12T10:13:56Z date_updated: 2020-07-14T12:46:27Z file_id: '5044' file_name: IST-2018-1067-v1+2_Leithner_et_al-2018-European_Journal_of_Immunology.pdf file_size: 590106 relation: main_file file_date_updated: 2020-07-14T12:46:27Z has_accepted_license: '1' intvolume: ' 48' isi: 1 issue: '6' language: - iso: eng license: https://creativecommons.org/licenses/by-nc/4.0/ month: '02' oa: 1 oa_version: Published Version page: 1074 - 1077 project: - _id: 25FE9508-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '724373' name: Cellular navigation along spatial gradients publication: European Journal of Immunology publication_status: published publisher: Wiley-Blackwell publist_id: '7386' pubrep_id: '1067' quality_controlled: '1' scopus_import: '1' status: public title: Fast and efficient genetic engineering of hematopoietic precursor cells for the study of dendritic cell migration tmp: image: /images/cc_by_nc.png legal_code_url: https://creativecommons.org/licenses/by-nc/4.0/legalcode name: Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) short: CC BY-NC (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 48 year: '2018' ... --- _id: '5672' abstract: - lang: eng text: The release of IgM is the first line of an antibody response and precedes the generation of high affinity IgG in germinal centers. Once secreted by freshly activated plasmablasts, IgM is released into the efferent lymph of reactive lymph nodes as early as 3 d after immunization. As pentameric IgM has an enormous size of 1,000 kD, its diffusibility is low, and one might wonder how it can pass through the densely lymphocyte-packed environment of a lymph node parenchyma in order to reach its exit. In this issue of JEM, Thierry et al. show that, in order to reach the blood stream, IgM molecules take a specific micro-anatomical route via lymph node conduits. article_processing_charge: No author: - first_name: Anne full_name: Reversat, Anne id: 35B76592-F248-11E8-B48F-1D18A9856A87 last_name: Reversat orcid: 0000-0003-0666-8928 - first_name: Michael K full_name: Sixt, Michael K id: 41E9FBEA-F248-11E8-B48F-1D18A9856A87 last_name: Sixt orcid: 0000-0002-6620-9179 citation: ama: Reversat A, Sixt MK. IgM’s exit route. Journal of Experimental Medicine. 2018;215(12):2959-2961. doi:10.1084/jem.20181934 apa: Reversat, A., & Sixt, M. K. (2018). IgM’s exit route. Journal of Experimental Medicine. Rockefeller University Press. https://doi.org/10.1084/jem.20181934 chicago: Reversat, Anne, and Michael K Sixt. “IgM’s Exit Route.” Journal of Experimental Medicine. Rockefeller University Press, 2018. https://doi.org/10.1084/jem.20181934. ieee: A. Reversat and M. K. Sixt, “IgM’s exit route,” Journal of Experimental Medicine, vol. 215, no. 12. Rockefeller University Press, pp. 2959–2961, 2018. ista: Reversat A, Sixt MK. 2018. IgM’s exit route. Journal of Experimental Medicine. 215(12), 2959–2961. mla: Reversat, Anne, and Michael K. Sixt. “IgM’s Exit Route.” Journal of Experimental Medicine, vol. 215, no. 12, Rockefeller University Press, 2018, pp. 2959–61, doi:10.1084/jem.20181934. short: A. Reversat, M.K. Sixt, Journal of Experimental Medicine 215 (2018) 2959–2961. date_created: 2018-12-16T22:59:18Z date_published: 2018-11-20T00:00:00Z date_updated: 2023-09-11T14:12:06Z day: '20' ddc: - '570' department: - _id: MiSi doi: 10.1084/jem.20181934 external_id: isi: - '000451920600002' file: - access_level: open_access checksum: 687beea1d64c213f4cb9e3c29ec11a14 content_type: application/pdf creator: dernst date_created: 2019-02-06T08:49:52Z date_updated: 2020-07-14T12:47:09Z file_id: '5931' file_name: 2018_JournalExperMed_Reversat.pdf file_size: 1216437 relation: main_file file_date_updated: 2020-07-14T12:47:09Z has_accepted_license: '1' intvolume: ' 215' isi: 1 issue: '12' language: - iso: eng license: https://creativecommons.org/licenses/by-nc-sa/4.0/ month: '11' oa: 1 oa_version: Published Version page: 2959-2961 publication: Journal of Experimental Medicine publication_identifier: issn: - '00221007' publication_status: published publisher: Rockefeller University Press quality_controlled: '1' scopus_import: '1' status: public title: IgM's exit route tmp: image: /images/cc_by_nc_sa.png legal_code_url: https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode name: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) short: CC BY-NC-SA (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 215 year: '2018' ... --- _id: '275' abstract: - lang: eng text: Lymphatic endothelial cells (LECs) release extracellular chemokines to guide the migration of dendritic cells. In this study, we report that LECs also release basolateral exosome-rich endothelial vesicles (EEVs) that are secreted in greater numbers in the presence of inflammatory cytokines and accumulate in the perivascular stroma of small lymphatic vessels in human chronic inflammatory diseases. Proteomic analyses of EEV fractions identified > 1,700 cargo proteins and revealed a dominant motility-promoting protein signature. In vitro and ex vivo EEV fractions augmented cellular protrusion formation in a CX3CL1/fractalkine-dependent fashion and enhanced the directional migratory response of human dendritic cells along guidance cues. We conclude that perilymphatic LEC exosomes enhance exploratory behavior and thus promote directional migration of CX3CR1-expressing cells in complex tissue environments. acknowledgement: M. Brown was supported by the Cell Communication in Health and Disease Graduate Study Program of the Austrian Science Fund and Medizinische Universität Wien, M. Sixt by the European Research Council (ERC GA 281556) and an Austrian Science Fund START award, K.L. Bennett by the Austrian Academy of Sciences, D.G. Jackson and L.A. Johnson by Unit Funding (MC_UU_12010/2) and project grants from the Medical Research Council (G1100134 and MR/L008610/1), and M. Detmar by the Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung and Advanced European Research Council grant LYVICAM. K. Vaahtomeri was supported by an Academy of Finland postdoctoral research grant (287853). This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 668036 (RELENT). article_processing_charge: No author: - first_name: Markus full_name: Brown, Markus id: 3DAB9AFC-F248-11E8-B48F-1D18A9856A87 last_name: Brown - first_name: Louise full_name: Johnson, Louise last_name: Johnson - first_name: Dario full_name: Leone, Dario last_name: Leone - first_name: Peter full_name: Májek, Peter last_name: Májek - first_name: Kari full_name: Vaahtomeri, Kari id: 368EE576-F248-11E8-B48F-1D18A9856A87 last_name: Vaahtomeri orcid: 0000-0001-7829-3518 - first_name: Daniel full_name: Senfter, Daniel last_name: Senfter - first_name: Nora full_name: Bukosza, Nora last_name: Bukosza - first_name: Helga full_name: Schachner, Helga last_name: Schachner - first_name: Gabriele full_name: Asfour, Gabriele last_name: Asfour - first_name: Brigitte full_name: Langer, Brigitte last_name: Langer - first_name: Robert full_name: Hauschild, Robert id: 4E01D6B4-F248-11E8-B48F-1D18A9856A87 last_name: Hauschild orcid: 0000-0001-9843-3522 - first_name: Katja full_name: Parapatics, Katja last_name: Parapatics - first_name: Young full_name: Hong, Young last_name: Hong - first_name: Keiryn full_name: Bennett, Keiryn last_name: Bennett - first_name: Renate full_name: Kain, Renate last_name: Kain - first_name: Michael full_name: Detmar, Michael last_name: Detmar - first_name: Michael K full_name: Sixt, Michael K id: 41E9FBEA-F248-11E8-B48F-1D18A9856A87 last_name: Sixt orcid: 0000-0002-6620-9179 - first_name: David full_name: Jackson, David last_name: Jackson - first_name: Dontscho full_name: Kerjaschki, Dontscho last_name: Kerjaschki citation: ama: Brown M, Johnson L, Leone D, et al. Lymphatic exosomes promote dendritic cell migration along guidance cues. Journal of Cell Biology. 2018;217(6):2205-2221. doi:10.1083/jcb.201612051 apa: Brown, M., Johnson, L., Leone, D., Májek, P., Vaahtomeri, K., Senfter, D., … Kerjaschki, D. (2018). Lymphatic exosomes promote dendritic cell migration along guidance cues. Journal of Cell Biology. Rockefeller University Press. https://doi.org/10.1083/jcb.201612051 chicago: Brown, Markus, Louise Johnson, Dario Leone, Peter Májek, Kari Vaahtomeri, Daniel Senfter, Nora Bukosza, et al. “Lymphatic Exosomes Promote Dendritic Cell Migration along Guidance Cues.” Journal of Cell Biology. Rockefeller University Press, 2018. https://doi.org/10.1083/jcb.201612051. ieee: M. Brown et al., “Lymphatic exosomes promote dendritic cell migration along guidance cues,” Journal of Cell Biology, vol. 217, no. 6. Rockefeller University Press, pp. 2205–2221, 2018. ista: Brown M, Johnson L, Leone D, Májek P, Vaahtomeri K, Senfter D, Bukosza N, Schachner H, Asfour G, Langer B, Hauschild R, Parapatics K, Hong Y, Bennett K, Kain R, Detmar M, Sixt MK, Jackson D, Kerjaschki D. 2018. Lymphatic exosomes promote dendritic cell migration along guidance cues. Journal of Cell Biology. 217(6), 2205–2221. mla: Brown, Markus, et al. “Lymphatic Exosomes Promote Dendritic Cell Migration along Guidance Cues.” Journal of Cell Biology, vol. 217, no. 6, Rockefeller University Press, 2018, pp. 2205–21, doi:10.1083/jcb.201612051. short: M. Brown, L. Johnson, D. Leone, P. Májek, K. Vaahtomeri, D. Senfter, N. Bukosza, H. Schachner, G. Asfour, B. Langer, R. Hauschild, K. Parapatics, Y. Hong, K. Bennett, R. Kain, M. Detmar, M.K. Sixt, D. Jackson, D. Kerjaschki, Journal of Cell Biology 217 (2018) 2205–2221. date_created: 2018-12-11T11:45:33Z date_published: 2018-04-12T00:00:00Z date_updated: 2023-09-13T08:51:29Z day: '12' ddc: - '570' department: - _id: MiSi - _id: Bio doi: 10.1083/jcb.201612051 ec_funded: 1 external_id: isi: - '000438077800026' pmid: - '29650776' file: - access_level: open_access checksum: 9c7eba51a35c62da8c13f98120b64df4 content_type: application/pdf creator: dernst date_created: 2018-12-17T12:50:07Z date_updated: 2020-07-14T12:45:45Z file_id: '5704' file_name: 2018_JournalCellBiology_Brown.pdf file_size: 2252043 relation: main_file file_date_updated: 2020-07-14T12:45:45Z has_accepted_license: '1' intvolume: ' 217' isi: 1 issue: '6' language: - iso: eng month: '04' oa: 1 oa_version: Published Version page: 2205 - 2221 pmid: 1 project: - _id: 25A8E5EA-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Y 564-B12 name: Cytoskeletal force generation and transduction of leukocytes (FWF) - _id: 25A603A2-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '281556' name: Cytoskeletal force generation and force transduction of migrating leukocytes (EU) publication: Journal of Cell Biology publication_status: published publisher: Rockefeller University Press publist_id: '7627' quality_controlled: '1' scopus_import: '1' status: public title: Lymphatic exosomes promote dendritic cell migration along guidance cues tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 217 year: '2018' ... --- _id: '5858' abstract: - lang: eng text: Spatial patterns are ubiquitous on the subcellular, cellular and tissue level, and can be studied using imaging techniques such as light and fluorescence microscopy. Imaging data provide quantitative information about biological systems; however, mechanisms causing spatial patterning often remain elusive. In recent years, spatio-temporal mathematical modelling has helped to overcome this problem. Yet, outliers and structured noise limit modelling of whole imaging data, and models often consider spatial summary statistics. Here, we introduce an integrated data-driven modelling approach that can cope with measurement artefacts and whole imaging data. Our approach combines mechanistic models of the biological processes with robust statistical models of the measurement process. The parameters of the integrated model are calibrated using a maximum-likelihood approach. We used this integrated modelling approach to study in vivo gradients of the chemokine (C-C motif) ligand 21 (CCL21). CCL21 gradients guide dendritic cells and are important in the adaptive immune response. Using artificial data, we verified that the integrated modelling approach provides reliable parameter estimates in the presence of measurement noise and that bias and variance of these estimates are reduced compared to conventional approaches. The application to experimental data allowed the parametrization and subsequent refinement of the model using additional mechanisms. Among other results, model-based hypothesis testing predicted lymphatic vessel-dependent concentration of heparan sulfate, the binding partner of CCL21. The selected model provided an accurate description of the experimental data and was partially validated using published data. Our findings demonstrate that integrated statistical modelling of whole imaging data is computationally feasible and can provide novel biological insights. article_number: '20180600' article_processing_charge: No author: - first_name: Sabrina full_name: Hross, Sabrina last_name: Hross - first_name: Fabian J. full_name: Theis, Fabian J. last_name: Theis - first_name: Michael K full_name: Sixt, Michael K id: 41E9FBEA-F248-11E8-B48F-1D18A9856A87 last_name: Sixt orcid: 0000-0002-6620-9179 - first_name: Jan full_name: Hasenauer, Jan last_name: Hasenauer citation: ama: Hross S, Theis FJ, Sixt MK, Hasenauer J. Mechanistic description of spatial processes using integrative modelling of noise-corrupted imaging data. Journal of the Royal Society Interface. 2018;15(149). doi:10.1098/rsif.2018.0600 apa: Hross, S., Theis, F. J., Sixt, M. K., & Hasenauer, J. (2018). Mechanistic description of spatial processes using integrative modelling of noise-corrupted imaging data. Journal of the Royal Society Interface. Royal Society Publishing. https://doi.org/10.1098/rsif.2018.0600 chicago: Hross, Sabrina, Fabian J. Theis, Michael K Sixt, and Jan Hasenauer. “Mechanistic Description of Spatial Processes Using Integrative Modelling of Noise-Corrupted Imaging Data.” Journal of the Royal Society Interface. Royal Society Publishing, 2018. https://doi.org/10.1098/rsif.2018.0600. ieee: S. Hross, F. J. Theis, M. K. Sixt, and J. Hasenauer, “Mechanistic description of spatial processes using integrative modelling of noise-corrupted imaging data,” Journal of the Royal Society Interface, vol. 15, no. 149. Royal Society Publishing, 2018. ista: Hross S, Theis FJ, Sixt MK, Hasenauer J. 2018. Mechanistic description of spatial processes using integrative modelling of noise-corrupted imaging data. Journal of the Royal Society Interface. 15(149), 20180600. mla: Hross, Sabrina, et al. “Mechanistic Description of Spatial Processes Using Integrative Modelling of Noise-Corrupted Imaging Data.” Journal of the Royal Society Interface, vol. 15, no. 149, 20180600, Royal Society Publishing, 2018, doi:10.1098/rsif.2018.0600. short: S. Hross, F.J. Theis, M.K. Sixt, J. Hasenauer, Journal of the Royal Society Interface 15 (2018). date_created: 2019-01-20T22:59:18Z date_published: 2018-12-05T00:00:00Z date_updated: 2023-09-13T08:55:05Z day: '05' ddc: - '570' department: - _id: MiSi doi: 10.1098/rsif.2018.0600 external_id: isi: - '000456783800011' file: - access_level: open_access checksum: 56eb4308a15b7190bff938fab1f780e8 content_type: application/pdf creator: dernst date_created: 2019-02-05T14:46:44Z date_updated: 2020-07-14T12:47:13Z file_id: '5925' file_name: 2018_Interface_Hross.pdf file_size: 1464288 relation: main_file file_date_updated: 2020-07-14T12:47:13Z has_accepted_license: '1' intvolume: ' 15' isi: 1 issue: '149' language: - iso: eng month: '12' oa: 1 oa_version: Published Version publication: Journal of the Royal Society Interface publication_identifier: issn: - '17425689' publication_status: published publisher: Royal Society Publishing quality_controlled: '1' scopus_import: '1' status: public title: Mechanistic description of spatial processes using integrative modelling of noise-corrupted imaging data tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 15 year: '2018' ... --- _id: '153' abstract: - lang: eng text: Cells migrating in multicellular organisms steadily traverse complex three-dimensional (3D) environments. To decipher the underlying cell biology, current experimental setups either use simplified 2D, tissue-mimetic 3D (e.g., collagen matrices) or in vivo environments. While only in vivo experiments are truly physiological, they do not allow for precise manipulation of environmental parameters. 2D in vitro experiments do allow mechanical and chemical manipulations, but increasing evidence demonstrates substantial differences of migratory mechanisms in 2D and 3D. Here, we describe simple, robust, and versatile “pillar forests” to investigate cell migration in complex but fully controllable 3D environments. Pillar forests are polydimethylsiloxane-based setups, in which two closely adjacent surfaces are interconnected by arrays of micrometer-sized pillars. Changing the pillar shape, size, height and the inter-pillar distance precisely manipulates microenvironmental parameters (e.g., pore sizes, micro-geometry, micro-topology), while being easily combined with chemotactic cues, surface coatings, diverse cell types and advanced imaging techniques. Thus, pillar forests combine the advantages of 2D cell migration assays with the precise definition of 3D environmental parameters. article_processing_charge: No author: - first_name: Jörg full_name: Renkawitz, Jörg id: 3F0587C8-F248-11E8-B48F-1D18A9856A87 last_name: Renkawitz orcid: 0000-0003-2856-3369 - first_name: Anne full_name: Reversat, Anne id: 35B76592-F248-11E8-B48F-1D18A9856A87 last_name: Reversat orcid: 0000-0003-0666-8928 - first_name: Alexander F full_name: Leithner, Alexander F id: 3B1B77E4-F248-11E8-B48F-1D18A9856A87 last_name: Leithner orcid: 0000-0002-1073-744X - first_name: Jack full_name: Merrin, Jack id: 4515C308-F248-11E8-B48F-1D18A9856A87 last_name: Merrin orcid: 0000-0001-5145-4609 - first_name: Michael K full_name: Sixt, Michael K id: 41E9FBEA-F248-11E8-B48F-1D18A9856A87 last_name: Sixt orcid: 0000-0002-6620-9179 citation: ama: 'Renkawitz J, Reversat A, Leithner AF, Merrin J, Sixt MK. Micro-engineered “pillar forests” to study cell migration in complex but controlled 3D environments. In: Methods in Cell Biology. Vol 147. Academic Press; 2018:79-91. doi:10.1016/bs.mcb.2018.07.004' apa: Renkawitz, J., Reversat, A., Leithner, A. F., Merrin, J., & Sixt, M. K. (2018). Micro-engineered “pillar forests” to study cell migration in complex but controlled 3D environments. In Methods in Cell Biology (Vol. 147, pp. 79–91). Academic Press. https://doi.org/10.1016/bs.mcb.2018.07.004 chicago: Renkawitz, Jörg, Anne Reversat, Alexander F Leithner, Jack Merrin, and Michael K Sixt. “Micro-Engineered ‘Pillar Forests’ to Study Cell Migration in Complex but Controlled 3D Environments.” In Methods in Cell Biology, 147:79–91. Academic Press, 2018. https://doi.org/10.1016/bs.mcb.2018.07.004. ieee: J. Renkawitz, A. Reversat, A. F. Leithner, J. Merrin, and M. K. Sixt, “Micro-engineered ‘pillar forests’ to study cell migration in complex but controlled 3D environments,” in Methods in Cell Biology, vol. 147, Academic Press, 2018, pp. 79–91. ista: 'Renkawitz J, Reversat A, Leithner AF, Merrin J, Sixt MK. 2018.Micro-engineered “pillar forests” to study cell migration in complex but controlled 3D environments. In: Methods in Cell Biology. vol. 147, 79–91.' mla: Renkawitz, Jörg, et al. “Micro-Engineered ‘Pillar Forests’ to Study Cell Migration in Complex but Controlled 3D Environments.” Methods in Cell Biology, vol. 147, Academic Press, 2018, pp. 79–91, doi:10.1016/bs.mcb.2018.07.004. short: J. Renkawitz, A. Reversat, A.F. Leithner, J. Merrin, M.K. Sixt, in:, Methods in Cell Biology, Academic Press, 2018, pp. 79–91. date_created: 2018-12-11T11:44:54Z date_published: 2018-07-27T00:00:00Z date_updated: 2023-09-13T08:56:35Z day: '27' department: - _id: MiSi - _id: NanoFab doi: 10.1016/bs.mcb.2018.07.004 external_id: isi: - '000452412300006' pmid: - '30165964' intvolume: ' 147' isi: 1 language: - iso: eng month: '07' oa_version: None page: 79 - 91 pmid: 1 publication: Methods in Cell Biology publication_identifier: issn: - 0091679X publication_status: published publisher: Academic Press publist_id: '7768' quality_controlled: '1' scopus_import: '1' status: public title: Micro-engineered “pillar forests” to study cell migration in complex but controlled 3D environments type: book_chapter user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 147 year: '2018' ... --- _id: '276' abstract: - lang: eng text: Directed migration of cells relies on their ability to sense directional guidance cues and to interact with pericellular structures in order to transduce contractile cytoskeletal- into mechanical forces. These biomechanical processes depend highly on microenvironmental factors such as exposure to 2D surfaces or 3D matrices. In vivo, the majority of cells are exposed to 3D environments. Data on 3D cell migration are mostly derived from intravital microscopy or collagen-based in vitro assays. Both approaches offer only limited controlla-bility of experimental conditions. Here, we developed an automated microfluidic system that allows positioning of cells in 3D microenvironments containing highly controlled diffusion-based chemokine gradients. Tracking migration in such gradients was feasible in real time at the single cell level. Moreover, the setup allowed on-chip immunocytochemistry and thus linking of functional with phenotypical properties in individual cells. Spatially defined retrieval of cells from the device allows down-stream off-chip analysis. Using dendritic cells as a model, our setup specifically allowed us for the first time to quantitate key migration characteristics of cells exposed to identical gradients of the chemokine CCL19 yet placed on 2D vs in 3D environments. Migration properties between 2D and 3D migration were distinct. Morphological features of cells migrating in an in vitro 3D environment were similar to those of cells migrating in animal tissues, but different from cells migrating on a surface. Our system thus offers a highly controllable in vitro-mimic of a 3D environment that cells traffic in vivo. acknowledgement: This work was supported by the Swiss National Science Foundation (MD-PhD fellowships, 323530_164221 to C.F.; and 323630_151483 to A.J.; grant PZ00P3_144863 to M.R, grant 31003A_156431 to T.S.; PZ00P3_148000 to C.T.B.; PZ00P3_154733 to M.M.), a Novartis “FreeNovation” grant to M.M. and T.S. and an EMBO long-term fellowship (ALTF 1396-2014) co-funded by the European Commission (LTFCOFUND2013, GA-2013-609409) to J.R.. M.R. was supported by the Gebert Rüf Foundation (GRS 058/14). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. article_number: e0198330 article_processing_charge: No article_type: original author: - first_name: Corina full_name: Frick, Corina last_name: Frick - first_name: Philip full_name: Dettinger, Philip last_name: Dettinger - first_name: Jörg full_name: Renkawitz, Jörg id: 3F0587C8-F248-11E8-B48F-1D18A9856A87 last_name: Renkawitz orcid: 0000-0003-2856-3369 - first_name: Annaïse full_name: Jauch, Annaïse last_name: Jauch - first_name: Christoph full_name: Berger, Christoph last_name: Berger - first_name: Mike full_name: Recher, Mike last_name: Recher - first_name: Timm full_name: Schroeder, Timm last_name: Schroeder - first_name: Matthias full_name: Mehling, Matthias last_name: Mehling citation: ama: Frick C, Dettinger P, Renkawitz J, et al. Nano-scale microfluidics to study 3D chemotaxis at the single cell level. PLoS One. 2018;13(6). doi:10.1371/journal.pone.0198330 apa: Frick, C., Dettinger, P., Renkawitz, J., Jauch, A., Berger, C., Recher, M., … Mehling, M. (2018). Nano-scale microfluidics to study 3D chemotaxis at the single cell level. PLoS One. Public Library of Science. https://doi.org/10.1371/journal.pone.0198330 chicago: Frick, Corina, Philip Dettinger, Jörg Renkawitz, Annaïse Jauch, Christoph Berger, Mike Recher, Timm Schroeder, and Matthias Mehling. “Nano-Scale Microfluidics to Study 3D Chemotaxis at the Single Cell Level.” PLoS One. Public Library of Science, 2018. https://doi.org/10.1371/journal.pone.0198330. ieee: C. Frick et al., “Nano-scale microfluidics to study 3D chemotaxis at the single cell level,” PLoS One, vol. 13, no. 6. Public Library of Science, 2018. ista: Frick C, Dettinger P, Renkawitz J, Jauch A, Berger C, Recher M, Schroeder T, Mehling M. 2018. Nano-scale microfluidics to study 3D chemotaxis at the single cell level. PLoS One. 13(6), e0198330. mla: Frick, Corina, et al. “Nano-Scale Microfluidics to Study 3D Chemotaxis at the Single Cell Level.” PLoS One, vol. 13, no. 6, e0198330, Public Library of Science, 2018, doi:10.1371/journal.pone.0198330. short: C. Frick, P. Dettinger, J. Renkawitz, A. Jauch, C. Berger, M. Recher, T. Schroeder, M. Mehling, PLoS One 13 (2018). date_created: 2018-12-11T11:45:34Z date_published: 2018-06-07T00:00:00Z date_updated: 2023-09-13T09:00:15Z day: '07' ddc: - '570' department: - _id: MiSi doi: 10.1371/journal.pone.0198330 external_id: isi: - '000434384900031' file: - access_level: open_access checksum: 95fc5dc3938b3ad3b7697d10c83cc143 content_type: application/pdf creator: dernst date_created: 2018-12-17T14:10:32Z date_updated: 2020-07-14T12:45:45Z file_id: '5709' file_name: 2018_Plos_Frick.pdf file_size: 7682167 relation: main_file file_date_updated: 2020-07-14T12:45:45Z has_accepted_license: '1' intvolume: ' 13' isi: 1 issue: '6' language: - iso: eng month: '06' oa: 1 oa_version: Published Version publication: PLoS One publication_status: published publisher: Public Library of Science publist_id: '7626' quality_controlled: '1' scopus_import: '1' status: public title: Nano-scale microfluidics to study 3D chemotaxis at the single cell level tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 13 year: '2018' ... --- _id: '5861' abstract: - lang: eng text: In zebrafish larvae, it is the cell type that determines how the cell responds to a chemokine signal. article_number: e37888 article_processing_charge: No article_type: original author: - first_name: Jonna H full_name: Alanko, Jonna H id: 2CC12E8C-F248-11E8-B48F-1D18A9856A87 last_name: Alanko orcid: 0000-0002-7698-3061 - first_name: Michael K full_name: Sixt, Michael K id: 41E9FBEA-F248-11E8-B48F-1D18A9856A87 last_name: Sixt orcid: 0000-0002-6620-9179 citation: ama: Alanko JH, Sixt MK. The cell sets the tone. eLife. 2018;7. doi:10.7554/eLife.37888 apa: Alanko, J. H., & Sixt, M. K. (2018). The cell sets the tone. ELife. eLife Sciences Publications. https://doi.org/10.7554/eLife.37888 chicago: Alanko, Jonna H, and Michael K Sixt. “The Cell Sets the Tone.” ELife. eLife Sciences Publications, 2018. https://doi.org/10.7554/eLife.37888. ieee: J. H. Alanko and M. K. Sixt, “The cell sets the tone,” eLife, vol. 7. eLife Sciences Publications, 2018. ista: Alanko JH, Sixt MK. 2018. The cell sets the tone. eLife. 7, e37888. mla: Alanko, Jonna H., and Michael K. Sixt. “The Cell Sets the Tone.” ELife, vol. 7, e37888, eLife Sciences Publications, 2018, doi:10.7554/eLife.37888. short: J.H. Alanko, M.K. Sixt, ELife 7 (2018). date_created: 2019-01-20T22:59:19Z date_published: 2018-06-06T00:00:00Z date_updated: 2023-09-19T10:01:39Z day: '06' ddc: - '570' department: - _id: MiSi doi: 10.7554/eLife.37888 external_id: isi: - '000434375000001' file: - access_level: open_access checksum: f1c7ec2a809408d763c4b529a98f9a3b content_type: application/pdf creator: dernst date_created: 2019-02-13T10:52:11Z date_updated: 2020-07-14T12:47:13Z file_id: '5973' file_name: 2018_eLife_Alanko.pdf file_size: 358141 relation: main_file file_date_updated: 2020-07-14T12:47:13Z has_accepted_license: '1' intvolume: ' 7' isi: 1 language: - iso: eng month: '06' oa: 1 oa_version: Published Version publication: eLife publication_identifier: issn: - 2050084X publication_status: published publisher: eLife Sciences Publications quality_controlled: '1' scopus_import: '1' status: public title: The cell sets the tone tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 7 year: '2018' ... --- _id: '5984' abstract: - lang: eng text: G-protein-coupled receptors (GPCRs) form the largest receptor family, relay environmental stimuli to changes in cell behavior and represent prime drug targets. Many GPCRs are classified as orphan receptors because of the limited knowledge on their ligands and coupling to cellular signaling machineries. Here, we engineer a library of 63 chimeric receptors that contain the signaling domains of human orphan and understudied GPCRs functionally linked to the light-sensing domain of rhodopsin. Upon stimulation with visible light, we identify activation of canonical cell signaling pathways, including cAMP-, Ca2+-, MAPK/ERK-, and Rho-dependent pathways, downstream of the engineered receptors. For the human pseudogene GPR33, we resurrect a signaling function that supports its hypothesized role as a pathogen entry site. These results demonstrate that substituting unknown chemical activators with a light switch can reveal information about protein function and provide an optically controlled protein library for exploring the physiology and therapeutic potential of understudied GPCRs. article_number: '1950' article_processing_charge: No author: - first_name: Maurizio full_name: Morri, Maurizio id: 4863116E-F248-11E8-B48F-1D18A9856A87 last_name: Morri - first_name: Inmaculada full_name: Sanchez-Romero, Inmaculada id: 3D9C5D30-F248-11E8-B48F-1D18A9856A87 last_name: Sanchez-Romero - first_name: Alexandra-Madelaine full_name: Tichy, Alexandra-Madelaine id: 29D8BB2C-F248-11E8-B48F-1D18A9856A87 last_name: Tichy - first_name: Stephanie full_name: Kainrath, Stephanie id: 32CFBA64-F248-11E8-B48F-1D18A9856A87 last_name: Kainrath - first_name: Elliot J. full_name: Gerrard, Elliot J. last_name: Gerrard - first_name: Priscila full_name: Hirschfeld, Priscila id: 435ACB3A-F248-11E8-B48F-1D18A9856A87 last_name: Hirschfeld - first_name: Jan full_name: Schwarz, Jan id: 346C1EC6-F248-11E8-B48F-1D18A9856A87 last_name: Schwarz - first_name: Harald L full_name: Janovjak, Harald L id: 33BA6C30-F248-11E8-B48F-1D18A9856A87 last_name: Janovjak orcid: 0000-0002-8023-9315 citation: ama: Morri M, Sanchez-Romero I, Tichy A-M, et al. Optical functionalization of human class A orphan G-protein-coupled receptors. Nature Communications. 2018;9(1). doi:10.1038/s41467-018-04342-1 apa: Morri, M., Sanchez-Romero, I., Tichy, A.-M., Kainrath, S., Gerrard, E. J., Hirschfeld, P., … Janovjak, H. L. (2018). Optical functionalization of human class A orphan G-protein-coupled receptors. Nature Communications. Springer Nature. https://doi.org/10.1038/s41467-018-04342-1 chicago: Morri, Maurizio, Inmaculada Sanchez-Romero, Alexandra-Madelaine Tichy, Stephanie Kainrath, Elliot J. Gerrard, Priscila Hirschfeld, Jan Schwarz, and Harald L Janovjak. “Optical Functionalization of Human Class A Orphan G-Protein-Coupled Receptors.” Nature Communications. Springer Nature, 2018. https://doi.org/10.1038/s41467-018-04342-1. ieee: M. Morri et al., “Optical functionalization of human class A orphan G-protein-coupled receptors,” Nature Communications, vol. 9, no. 1. Springer Nature, 2018. ista: Morri M, Sanchez-Romero I, Tichy A-M, Kainrath S, Gerrard EJ, Hirschfeld P, Schwarz J, Janovjak HL. 2018. Optical functionalization of human class A orphan G-protein-coupled receptors. Nature Communications. 9(1), 1950. mla: Morri, Maurizio, et al. “Optical Functionalization of Human Class A Orphan G-Protein-Coupled Receptors.” Nature Communications, vol. 9, no. 1, 1950, Springer Nature, 2018, doi:10.1038/s41467-018-04342-1. short: M. Morri, I. Sanchez-Romero, A.-M. Tichy, S. Kainrath, E.J. Gerrard, P. Hirschfeld, J. Schwarz, H.L. Janovjak, Nature Communications 9 (2018). date_created: 2019-02-14T10:50:24Z date_published: 2018-12-01T00:00:00Z date_updated: 2023-09-19T14:29:32Z day: '01' ddc: - '570' department: - _id: HaJa - _id: CaGu - _id: MiSi doi: 10.1038/s41467-018-04342-1 ec_funded: 1 external_id: isi: - '000432280000006' file: - access_level: open_access checksum: 8325fcc194264af4749e662a73bf66b5 content_type: application/pdf creator: kschuh date_created: 2019-02-14T10:58:29Z date_updated: 2020-07-14T12:47:14Z file_id: '5985' file_name: 2018_Springer_Morri.pdf file_size: 1349914 relation: main_file file_date_updated: 2020-07-14T12:47:14Z has_accepted_license: '1' intvolume: ' 9' isi: 1 issue: '1' language: - iso: eng month: '12' oa: 1 oa_version: Published Version project: - _id: 25548C20-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '303564' name: Microbial Ion Channels for Synthetic Neurobiology - _id: 255A6082-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: W1232-B24 name: Molecular Drug Targets publication: Nature Communications publication_identifier: issn: - 2041-1723 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Optical functionalization of human class A orphan G-protein-coupled receptors tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 9 year: '2018' ... --- _id: '5992' abstract: - lang: eng text: Lamellipodia are flat membrane protrusions formed during mesenchymal motion. Polymerization at the leading edge assembles the actin filament network and generates protrusion force. How this force is supported by the network and how the assembly rate is shared between protrusion and network retrograde flow determines the protrusion rate. We use mathematical modeling to understand experiments changing the F-actin density in lamellipodia of B16-F1 melanoma cells by modulation of Arp2/3 complex activity or knockout of the formins FMNL2 and FMNL3. Cells respond to a reduction of density with a decrease of protrusion velocity, an increase in the ratio of force to filament number, but constant network assembly rate. The relation between protrusion force and tension gradient in the F-actin network and the density dependency of friction, elasticity, and viscosity of the network explain the experimental observations. The formins act as filament nucleators and elongators with differential rates. Modulation of their activity suggests an effect on network assembly rate. Contrary to these expectations, the effect of changes in elongator composition is much weaker than the consequences of the density change. We conclude that the force acting on the leading edge membrane is the force required to drive F-actin network retrograde flow. article_processing_charge: No author: - first_name: Setareh full_name: Dolati, Setareh last_name: Dolati - first_name: Frieda full_name: Kage, Frieda last_name: Kage - first_name: Jan full_name: Mueller, Jan last_name: Mueller - first_name: Mathias full_name: Müsken, Mathias last_name: Müsken - first_name: Marieluise full_name: Kirchner, Marieluise last_name: Kirchner - first_name: Gunnar full_name: Dittmar, Gunnar last_name: Dittmar - first_name: Michael K full_name: Sixt, Michael K id: 41E9FBEA-F248-11E8-B48F-1D18A9856A87 last_name: Sixt orcid: 0000-0002-6620-9179 - first_name: Klemens full_name: Rottner, Klemens last_name: Rottner - first_name: Martin full_name: Falcke, Martin last_name: Falcke citation: ama: Dolati S, Kage F, Mueller J, et al. On the relation between filament density, force generation, and protrusion rate in mesenchymal cell motility. Molecular Biology of the Cell. 2018;29(22):2674-2686. doi:10.1091/mbc.e18-02-0082 apa: Dolati, S., Kage, F., Mueller, J., Müsken, M., Kirchner, M., Dittmar, G., … Falcke, M. (2018). On the relation between filament density, force generation, and protrusion rate in mesenchymal cell motility. Molecular Biology of the Cell. American Society for Cell Biology . https://doi.org/10.1091/mbc.e18-02-0082 chicago: Dolati, Setareh, Frieda Kage, Jan Mueller, Mathias Müsken, Marieluise Kirchner, Gunnar Dittmar, Michael K Sixt, Klemens Rottner, and Martin Falcke. “On the Relation between Filament Density, Force Generation, and Protrusion Rate in Mesenchymal Cell Motility.” Molecular Biology of the Cell. American Society for Cell Biology , 2018. https://doi.org/10.1091/mbc.e18-02-0082. ieee: S. Dolati et al., “On the relation between filament density, force generation, and protrusion rate in mesenchymal cell motility,” Molecular Biology of the Cell, vol. 29, no. 22. American Society for Cell Biology , pp. 2674–2686, 2018. ista: Dolati S, Kage F, Mueller J, Müsken M, Kirchner M, Dittmar G, Sixt MK, Rottner K, Falcke M. 2018. On the relation between filament density, force generation, and protrusion rate in mesenchymal cell motility. Molecular Biology of the Cell. 29(22), 2674–2686. mla: Dolati, Setareh, et al. “On the Relation between Filament Density, Force Generation, and Protrusion Rate in Mesenchymal Cell Motility.” Molecular Biology of the Cell, vol. 29, no. 22, American Society for Cell Biology , 2018, pp. 2674–86, doi:10.1091/mbc.e18-02-0082. short: S. Dolati, F. Kage, J. Mueller, M. Müsken, M. Kirchner, G. Dittmar, M.K. Sixt, K. Rottner, M. Falcke, Molecular Biology of the Cell 29 (2018) 2674–2686. date_created: 2019-02-14T12:25:47Z date_published: 2018-11-01T00:00:00Z date_updated: 2023-09-19T14:30:23Z day: '01' ddc: - '570' department: - _id: MiSi doi: 10.1091/mbc.e18-02-0082 external_id: isi: - '000455641000011' pmid: - '30156465' file: - access_level: open_access checksum: e98465b4416b3e804c47f40086932af2 content_type: application/pdf creator: kschuh date_created: 2019-02-14T12:34:29Z date_updated: 2020-07-14T12:47:15Z file_id: '5994' file_name: 2018_ASCB_Dolati.pdf file_size: 6668971 relation: main_file file_date_updated: 2020-07-14T12:47:15Z has_accepted_license: '1' intvolume: ' 29' isi: 1 issue: '22' language: - iso: eng month: '11' oa: 1 oa_version: Published Version page: 2674-2686 pmid: 1 publication: Molecular Biology of the Cell publication_identifier: eissn: - 1939-4586 publication_status: published publisher: 'American Society for Cell Biology ' quality_controlled: '1' scopus_import: '1' status: public title: On the relation between filament density, force generation, and protrusion rate in mesenchymal cell motility tmp: image: /images/cc_by_nc_sa.png legal_code_url: https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode name: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) short: CC BY-NC-SA (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 29 year: '2018' ... --- _id: '6497' abstract: - lang: eng text: T cells are actively scanning pMHC-presenting cells in lymphoid organs and nonlymphoid tissues (NLTs) with divergent topologies and confinement. How the T cell actomyosin cytoskeleton facilitates this task in distinct environments is incompletely understood. Here, we show that lack of Myosin IXb (Myo9b), a negative regulator of the small GTPase Rho, led to increased Rho-GTP levels and cell surface stiffness in primary T cells. Nonetheless, intravital imaging revealed robust motility of Myo9b−/− CD8+ T cells in lymphoid tissue and similar expansion and differentiation during immune responses. In contrast, accumulation of Myo9b−/− CD8+ T cells in NLTs was strongly impaired. Specifically, Myo9b was required for T cell crossing of basement membranes, such as those which are present between dermis and epidermis. As consequence, Myo9b−/− CD8+ T cells showed impaired control of skin infections. In sum, we show that Myo9b is critical for the CD8+ T cell adaptation from lymphoid to NLT surveillance and the establishment of protective tissue–resident T cell populations. article_processing_charge: No author: - first_name: Federica full_name: Moalli, Federica last_name: Moalli - first_name: Xenia full_name: Ficht, Xenia last_name: Ficht - first_name: Philipp full_name: Germann, Philipp last_name: Germann - first_name: Mykhailo full_name: Vladymyrov, Mykhailo last_name: Vladymyrov - first_name: Bettina full_name: Stolp, Bettina last_name: Stolp - first_name: Ingrid full_name: de Vries, Ingrid id: 4C7D837E-F248-11E8-B48F-1D18A9856A87 last_name: de Vries - first_name: Ruth full_name: Lyck, Ruth last_name: Lyck - first_name: Jasmin full_name: Balmer, Jasmin last_name: Balmer - first_name: Amleto full_name: Fiocchi, Amleto last_name: Fiocchi - first_name: Mario full_name: Kreutzfeldt, Mario last_name: Kreutzfeldt - first_name: Doron full_name: Merkler, Doron last_name: Merkler - first_name: Matteo full_name: Iannacone, Matteo last_name: Iannacone - first_name: Akitaka full_name: Ariga, Akitaka last_name: Ariga - first_name: Michael H. full_name: Stoffel, Michael H. last_name: Stoffel - first_name: James full_name: Sharpe, James last_name: Sharpe - first_name: Martin full_name: Bähler, Martin last_name: Bähler - first_name: Michael K full_name: Sixt, Michael K id: 41E9FBEA-F248-11E8-B48F-1D18A9856A87 last_name: Sixt orcid: 0000-0002-6620-9179 - first_name: Alba full_name: Diz-Muñoz, Alba last_name: Diz-Muñoz - first_name: Jens V. full_name: Stein, Jens V. last_name: Stein citation: ama: Moalli F, Ficht X, Germann P, et al. The Rho regulator Myosin IXb enables nonlymphoid tissue seeding of protective CD8+T cells. The Journal of Experimental Medicine. 2018;2015(7):1869–1890. doi:10.1084/jem.20170896 apa: Moalli, F., Ficht, X., Germann, P., Vladymyrov, M., Stolp, B., de Vries, I., … Stein, J. V. (2018). The Rho regulator Myosin IXb enables nonlymphoid tissue seeding of protective CD8+T cells. The Journal of Experimental Medicine. Rockefeller University Press. https://doi.org/10.1084/jem.20170896 chicago: Moalli, Federica, Xenia Ficht, Philipp Germann, Mykhailo Vladymyrov, Bettina Stolp, Ingrid de Vries, Ruth Lyck, et al. “The Rho Regulator Myosin IXb Enables Nonlymphoid Tissue Seeding of Protective CD8+T Cells.” The Journal of Experimental Medicine. Rockefeller University Press, 2018. https://doi.org/10.1084/jem.20170896. ieee: F. Moalli et al., “The Rho regulator Myosin IXb enables nonlymphoid tissue seeding of protective CD8+T cells,” The Journal of Experimental Medicine, vol. 2015, no. 7. Rockefeller University Press, pp. 1869–1890, 2018. ista: Moalli F, Ficht X, Germann P, Vladymyrov M, Stolp B, de Vries I, Lyck R, Balmer J, Fiocchi A, Kreutzfeldt M, Merkler D, Iannacone M, Ariga A, Stoffel MH, Sharpe J, Bähler M, Sixt MK, Diz-Muñoz A, Stein JV. 2018. The Rho regulator Myosin IXb enables nonlymphoid tissue seeding of protective CD8+T cells. The Journal of Experimental Medicine. 2015(7), 1869–1890. mla: Moalli, Federica, et al. “The Rho Regulator Myosin IXb Enables Nonlymphoid Tissue Seeding of Protective CD8+T Cells.” The Journal of Experimental Medicine, vol. 2015, no. 7, Rockefeller University Press, 2018, pp. 1869–1890, doi:10.1084/jem.20170896. short: F. Moalli, X. Ficht, P. Germann, M. Vladymyrov, B. Stolp, I. de Vries, R. Lyck, J. Balmer, A. Fiocchi, M. Kreutzfeldt, D. Merkler, M. Iannacone, A. Ariga, M.H. Stoffel, J. Sharpe, M. Bähler, M.K. Sixt, A. Diz-Muñoz, J.V. Stein, The Journal of Experimental Medicine 2015 (2018) 1869–1890. date_created: 2019-05-28T12:36:47Z date_published: 2018-06-06T00:00:00Z date_updated: 2023-09-19T14:52:08Z day: '06' ddc: - '570' department: - _id: MiSi doi: 10.1084/jem.20170896 external_id: isi: - '000440822900011' file: - access_level: open_access checksum: 86ae5331f9bfced9a6358a790a04bef4 content_type: application/pdf creator: kschuh date_created: 2019-05-28T12:40:05Z date_updated: 2020-07-14T12:47:32Z file_id: '6498' file_name: 2018_rupress_Moalli.pdf file_size: 3841660 relation: main_file file_date_updated: 2020-07-14T12:47:32Z has_accepted_license: '1' intvolume: ' 2015' isi: 1 issue: '7' language: - iso: eng month: '06' oa: 1 oa_version: Published Version page: 1869–1890 publication: The Journal of Experimental Medicine publication_identifier: eissn: - 1540-9538 issn: - 0022-1007 publication_status: published publisher: Rockefeller University Press quality_controlled: '1' scopus_import: '1' status: public title: The Rho regulator Myosin IXb enables nonlymphoid tissue seeding of protective CD8+T cells tmp: image: /images/cc_by_nc_sa.png legal_code_url: https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode name: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) short: CC BY-NC-SA (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 2015 year: '2018' ... --- _id: '402' abstract: - lang: eng text: During metastasis, malignant cells escape the primary tumor, intravasate lymphatic vessels, and reach draining sentinel lymph nodes before they colonize distant organs via the blood circulation. Although lymph node metastasis in cancer patients correlates with poor prognosis, evidence is lacking as to whether and how tumor cells enter the bloodstream via lymph nodes. To investigate this question, we delivered carcinoma cells into the lymph nodes of mice by microinfusing the cells into afferent lymphatic vessels. We found that tumor cells rapidly infiltrated the lymph node parenchyma, invaded blood vessels, and seeded lung metastases without involvement of the thoracic duct. These results suggest that the lymph node blood vessels can serve as an exit route for systemic dissemination of cancer cells in experimental mouse models. Whether this form of tumor cell spreading occurs in cancer patients remains to be determined. acknowledged_ssus: - _id: Bio acknowledgement: "M.B. was supported by the Cell Communication in Health and Disease graduate study program of the Austrian Science Fund (FWF) and the Medical University of Vienna. M.S. was supported by the European Research Council (grant ERC GA 281556) and an FWF START award.\r\nWe thank C. Moussion for establishing the intralymphatic injection at IST Austria and for providing anti-PNAd hybridoma supernatant, R. Förster and A. Braun for sharing the intralymphatic injection technology, K. Vaahtomeri for the lentiviral constructs, M. Hons for establishing in vivo multiphoton imaging, the Sixt lab for intellectual input, M. Schunn for help with the design of the in vivo experiments, F. Langer for technical assistance with the in vivo experiments, the bioimaging facility of IST Austria for support, and R. Efferl for providing the CT26 cell line." article_processing_charge: No article_type: original author: - first_name: Markus full_name: Brown, Markus id: 3DAB9AFC-F248-11E8-B48F-1D18A9856A87 last_name: Brown - first_name: Frank P full_name: Assen, Frank P id: 3A8E7F24-F248-11E8-B48F-1D18A9856A87 last_name: Assen orcid: 0000-0003-3470-6119 - first_name: Alexander F full_name: Leithner, Alexander F id: 3B1B77E4-F248-11E8-B48F-1D18A9856A87 last_name: Leithner orcid: 0000-0002-1073-744X - first_name: Jun full_name: Abe, Jun last_name: Abe - first_name: Helga full_name: Schachner, Helga last_name: Schachner - first_name: Gabriele full_name: Asfour, Gabriele last_name: Asfour - first_name: Zsuzsanna full_name: Bagó Horváth, Zsuzsanna last_name: Bagó Horváth - first_name: Jens full_name: Stein, Jens last_name: Stein - first_name: Pavel full_name: Uhrin, Pavel last_name: Uhrin - first_name: Michael K full_name: Sixt, Michael K id: 41E9FBEA-F248-11E8-B48F-1D18A9856A87 last_name: Sixt orcid: 0000-0002-6620-9179 - first_name: Dontscho full_name: Kerjaschki, Dontscho last_name: Kerjaschki citation: ama: Brown M, Assen FP, Leithner AF, et al. Lymph node blood vessels provide exit routes for metastatic tumor cell dissemination in mice. Science. 2018;359(6382):1408-1411. doi:10.1126/science.aal3662 apa: Brown, M., Assen, F. P., Leithner, A. F., Abe, J., Schachner, H., Asfour, G., … Kerjaschki, D. (2018). Lymph node blood vessels provide exit routes for metastatic tumor cell dissemination in mice. Science. American Association for the Advancement of Science. https://doi.org/10.1126/science.aal3662 chicago: Brown, Markus, Frank P Assen, Alexander F Leithner, Jun Abe, Helga Schachner, Gabriele Asfour, Zsuzsanna Bagó Horváth, et al. “Lymph Node Blood Vessels Provide Exit Routes for Metastatic Tumor Cell Dissemination in Mice.” Science. American Association for the Advancement of Science, 2018. https://doi.org/10.1126/science.aal3662. ieee: M. Brown et al., “Lymph node blood vessels provide exit routes for metastatic tumor cell dissemination in mice,” Science, vol. 359, no. 6382. American Association for the Advancement of Science, pp. 1408–1411, 2018. ista: Brown M, Assen FP, Leithner AF, Abe J, Schachner H, Asfour G, Bagó Horváth Z, Stein J, Uhrin P, Sixt MK, Kerjaschki D. 2018. Lymph node blood vessels provide exit routes for metastatic tumor cell dissemination in mice. Science. 359(6382), 1408–1411. mla: Brown, Markus, et al. “Lymph Node Blood Vessels Provide Exit Routes for Metastatic Tumor Cell Dissemination in Mice.” Science, vol. 359, no. 6382, American Association for the Advancement of Science, 2018, pp. 1408–11, doi:10.1126/science.aal3662. short: M. Brown, F.P. Assen, A.F. Leithner, J. Abe, H. Schachner, G. Asfour, Z. Bagó Horváth, J. Stein, P. Uhrin, M.K. Sixt, D. Kerjaschki, Science 359 (2018) 1408–1411. date_created: 2018-12-11T11:46:16Z date_published: 2018-03-23T00:00:00Z date_updated: 2024-03-28T23:30:09Z day: '23' department: - _id: MiSi doi: 10.1126/science.aal3662 ec_funded: 1 external_id: isi: - '000428043600047' pmid: - '29567714' intvolume: ' 359' isi: 1 issue: '6382' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1126/science.aal3662 month: '03' oa: 1 oa_version: Published Version page: 1408 - 1411 pmid: 1 project: - _id: 25A8E5EA-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Y 564-B12 name: Cytoskeletal force generation and transduction of leukocytes (FWF) - _id: 25A603A2-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '281556' name: Cytoskeletal force generation and force transduction of migrating leukocytes (EU) publication: Science publication_status: published publisher: American Association for the Advancement of Science publist_id: '7428' quality_controlled: '1' related_material: record: - id: '6947' relation: dissertation_contains status: public scopus_import: '1' status: public title: Lymph node blood vessels provide exit routes for metastatic tumor cell dissemination in mice type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 359 year: '2018' ... --- _id: '323' abstract: - lang: eng text: 'In the here presented thesis, we explore the role of branched actin networks in cell migration and antigen presentation, the two most relevant processes in dendritic cell biology. Branched actin networks construct lamellipodial protrusions at the leading edge of migrating cells. These are typically seen as adhesive structures, which mediate force transduction to the extracellular matrix that leads to forward locomotion. We ablated Arp2/3 nucleation promoting factor WAVE in DCs and found that the resulting cells lack lamellipodial protrusions. Instead, depending on the maturation state, one or multiple filopodia were formed. By challenging these cells in a variety of migration assays we found that lamellipodial protrusions are dispensable for the locomotion of leukocytes and actually dampen the speed of migration. However, lamellipodia are critically required to negotiate complex environments that DCs experience while they travel to the next draining lymph node. Taken together our results suggest that leukocyte lamellipodia have rather a sensory- than a force transducing function. Furthermore, we show for the first time structure and dynamics of dendritic cell F-actin at the immunological synapse with naïve T cells. Dendritic cell F-actin appears as dynamic foci that are nucleated by the Arp2/3 complex. WAVE ablated dendritic cells show increased membrane tension, leading to an altered ultrastructure of the immunological synapse and severe T cell priming defects. These results point towards a previously unappreciated role of the cellular mechanics of dendritic cells in T cell activation. Additionally, we present a novel cell culture based system for the differentiation of dendritic cells from conditionally immortalized hematopoietic precursors. These precursor cells are genetically tractable via the CRISPR/Cas9 system while they retain their ability to differentiate into highly migratory dendritic cells and other immune cells. This will foster the study of all aspects of dendritic cell biology and beyond. ' acknowledged_ssus: - _id: NanoFab - _id: Bio - _id: PreCl - _id: EM-Fac acknowledgement: "First of all I would like to thank Michael Sixt for giving me the opportunity to work in \r\nhis group and for his support throughout the years. He is a truly inspiring person and \r\nthe best boss one can imagine. I would \ also like to thank all current and past \r\nmembers of the Sixt group for their help and the great working atmosphere in the lab. \r\nIt is a true privilege to work with such a bright, funny and friendly group of people and \r\nI’m proud \ that I could be part of it. Furthermore, I would like to say ‘thank \ you’ to Daria Siekhaus for all the meetings and discussion we had throughout the years \r\nand to Federica Benvenuti for being part of my committee. \ I am also grateful to Jack \r\nMerrin in the nanofabrication facility \ and all the people working in the bioimaging-\r\n, the electron microscopy- and the preclinical facilities." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Alexander F full_name: Leithner, Alexander F id: 3B1B77E4-F248-11E8-B48F-1D18A9856A87 last_name: Leithner orcid: 0000-0002-1073-744X citation: ama: Leithner AF. Branched actin networks in dendritic cell biology. 2018. doi:10.15479/AT:ISTA:th_998 apa: Leithner, A. F. (2018). Branched actin networks in dendritic cell biology. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:th_998 chicago: Leithner, Alexander F. “Branched Actin Networks in Dendritic Cell Biology.” Institute of Science and Technology Austria, 2018. https://doi.org/10.15479/AT:ISTA:th_998. ieee: A. F. Leithner, “Branched actin networks in dendritic cell biology,” Institute of Science and Technology Austria, 2018. ista: Leithner AF. 2018. Branched actin networks in dendritic cell biology. Institute of Science and Technology Austria. mla: Leithner, Alexander F. Branched Actin Networks in Dendritic Cell Biology. Institute of Science and Technology Austria, 2018, doi:10.15479/AT:ISTA:th_998. short: A.F. Leithner, Branched Actin Networks in Dendritic Cell Biology, Institute of Science and Technology Austria, 2018. date_created: 2018-12-11T11:45:49Z date_published: 2018-04-12T00:00:00Z date_updated: 2023-09-07T12:39:44Z day: '12' ddc: - '571' - '599' - '610' degree_awarded: PhD department: - _id: MiSi doi: 10.15479/AT:ISTA:th_998 file: - access_level: closed checksum: d5e3edbac548c26c1fa43a4b37a54a4c content_type: application/vnd.openxmlformats-officedocument.wordprocessingml.document creator: dernst date_created: 2019-04-05T09:23:11Z date_updated: 2021-02-11T23:30:17Z embargo_to: open_access file_id: '6219' file_name: PhD_thesis_AlexLeithner_final_version.docx file_size: 29027671 relation: source_file - access_level: open_access checksum: 071f7476db29e41146824ebd0697cb10 content_type: application/pdf creator: dernst date_created: 2019-04-05T09:23:11Z date_updated: 2021-02-11T11:17:16Z embargo: 2019-04-15 file_id: '6220' file_name: PhD_thesis_AlexLeithner.pdf file_size: 66045341 relation: main_file file_date_updated: 2021-02-11T23:30:17Z has_accepted_license: '1' language: - iso: eng month: '04' oa: 1 oa_version: Published Version page: '99' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria publist_id: '7542' pubrep_id: '998' related_material: record: - id: '1321' relation: part_of_dissertation status: public status: public supervisor: - first_name: Michael K full_name: Sixt, Michael K id: 41E9FBEA-F248-11E8-B48F-1D18A9856A87 last_name: Sixt orcid: 0000-0002-6620-9179 title: Branched actin networks in dendritic cell biology tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2018' ... --- _id: '15' abstract: - lang: eng text: Although much is known about the physiological framework of T cell motility, and numerous rate-limiting molecules have been identified through loss-of-function approaches, an integrated functional concept of T cell motility is lacking. Here, we used in vivo precision morphometry together with analysis of cytoskeletal dynamics in vitro to deconstruct the basic mechanisms of T cell migration within lymphatic organs. We show that the contributions of the integrin LFA-1 and the chemokine receptor CCR7 are complementary rather than positioned in a linear pathway, as they are during leukocyte extravasation from the blood vasculature. Our data demonstrate that CCR7 controls cortical actin flows, whereas integrins mediate substrate friction that is sufficient to drive locomotion in the absence of considerable surface adhesions and plasma membrane flux. acknowledged_ssus: - _id: SSU acknowledgement: This work was funded by grants from the European Research Council (ERC StG 281556 and CoG 724373) and the Austrian Science Foundation (FWF) to M.S. and by Swiss National Foundation (SNF) project grants 31003A_135649, 31003A_153457 and CR23I3_156234 to J.V.S. F.G. received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 747687, and J.R. was funded by an EMBO long-term fellowship (ALTF 1396-2014). article_processing_charge: No author: - first_name: Miroslav full_name: Hons, Miroslav id: 4167FE56-F248-11E8-B48F-1D18A9856A87 last_name: Hons orcid: 0000-0002-6625-3348 - first_name: Aglaja full_name: Kopf, Aglaja id: 31DAC7B6-F248-11E8-B48F-1D18A9856A87 last_name: Kopf orcid: 0000-0002-2187-6656 - first_name: Robert full_name: Hauschild, Robert id: 4E01D6B4-F248-11E8-B48F-1D18A9856A87 last_name: Hauschild orcid: 0000-0001-9843-3522 - first_name: Alexander F full_name: Leithner, Alexander F id: 3B1B77E4-F248-11E8-B48F-1D18A9856A87 last_name: Leithner orcid: 0000-0002-1073-744X - first_name: Florian R full_name: Gärtner, Florian R id: 397A88EE-F248-11E8-B48F-1D18A9856A87 last_name: Gärtner orcid: 0000-0001-6120-3723 - first_name: Jun full_name: Abe, Jun last_name: Abe - first_name: Jörg full_name: Renkawitz, Jörg id: 3F0587C8-F248-11E8-B48F-1D18A9856A87 last_name: Renkawitz orcid: 0000-0003-2856-3369 - first_name: Jens full_name: Stein, Jens last_name: Stein - first_name: Michael K full_name: Sixt, Michael K id: 41E9FBEA-F248-11E8-B48F-1D18A9856A87 last_name: Sixt orcid: 0000-0002-6620-9179 citation: ama: Hons M, Kopf A, Hauschild R, et al. Chemokines and integrins independently tune actin flow and substrate friction during intranodal migration of T cells. Nature Immunology. 2018;19(6):606-616. doi:10.1038/s41590-018-0109-z apa: Hons, M., Kopf, A., Hauschild, R., Leithner, A. F., Gärtner, F. R., Abe, J., … Sixt, M. K. (2018). Chemokines and integrins independently tune actin flow and substrate friction during intranodal migration of T cells. Nature Immunology. Nature Publishing Group. https://doi.org/10.1038/s41590-018-0109-z chicago: Hons, Miroslav, Aglaja Kopf, Robert Hauschild, Alexander F Leithner, Florian R Gärtner, Jun Abe, Jörg Renkawitz, Jens Stein, and Michael K Sixt. “Chemokines and Integrins Independently Tune Actin Flow and Substrate Friction during Intranodal Migration of T Cells.” Nature Immunology. Nature Publishing Group, 2018. https://doi.org/10.1038/s41590-018-0109-z. ieee: M. Hons et al., “Chemokines and integrins independently tune actin flow and substrate friction during intranodal migration of T cells,” Nature Immunology, vol. 19, no. 6. Nature Publishing Group, pp. 606–616, 2018. ista: Hons M, Kopf A, Hauschild R, Leithner AF, Gärtner FR, Abe J, Renkawitz J, Stein J, Sixt MK. 2018. Chemokines and integrins independently tune actin flow and substrate friction during intranodal migration of T cells. Nature Immunology. 19(6), 606–616. mla: Hons, Miroslav, et al. “Chemokines and Integrins Independently Tune Actin Flow and Substrate Friction during Intranodal Migration of T Cells.” Nature Immunology, vol. 19, no. 6, Nature Publishing Group, 2018, pp. 606–16, doi:10.1038/s41590-018-0109-z. short: M. Hons, A. Kopf, R. Hauschild, A.F. Leithner, F.R. Gärtner, J. Abe, J. Renkawitz, J. Stein, M.K. Sixt, Nature Immunology 19 (2018) 606–616. date_created: 2018-12-11T11:44:10Z date_published: 2018-05-18T00:00:00Z date_updated: 2024-03-28T23:30:40Z day: '18' department: - _id: MiSi - _id: Bio doi: 10.1038/s41590-018-0109-z ec_funded: 1 external_id: isi: - '000433041500026' pmid: - '29777221' intvolume: ' 19' isi: 1 issue: '6' language: - iso: eng main_file_link: - open_access: '1' url: https://www.ncbi.nlm.nih.gov/pubmed/29777221 month: '05' oa: 1 oa_version: Published Version page: 606 - 616 pmid: 1 project: - _id: 25FE9508-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '724373' name: Cellular navigation along spatial gradients - _id: 260AA4E2-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '747687' name: Mechanical Adaptation of Lamellipodial Actin Networks in Migrating Cells - _id: 25A48D24-B435-11E9-9278-68D0E5697425 grant_number: ALTF 1396-2014 name: Molecular and system level view of immune cell migration - _id: 25A603A2-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '281556' name: Cytoskeletal force generation and force transduction of migrating leukocytes (EU) publication: Nature Immunology publication_status: published publisher: Nature Publishing Group publist_id: '8040' quality_controlled: '1' related_material: record: - id: '6891' relation: dissertation_contains status: public scopus_import: '1' status: public title: Chemokines and integrins independently tune actin flow and substrate friction during intranodal migration of T cells type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 19 year: '2018' ... --- _id: '569' abstract: - lang: eng text: The actomyosin ring generates force to ingress the cytokinetic cleavage furrow in animal cells, yet its filament organization and the mechanism of contractility is not well understood. We quantified actin filament order in human cells using fluorescence polarization microscopy and found that cleavage furrow ingression initiates by contraction of an equatorial actin network with randomly oriented filaments. The network subsequently gradually reoriented actin filaments along the cell equator. This strictly depended on myosin II activity, suggesting local network reorganization by mechanical forces. Cortical laser microsurgery revealed that during cytokinesis progression, mechanical tension increased substantially along the direction of the cell equator, while the network contracted laterally along the pole-to-pole axis without a detectable increase in tension. Our data suggest that an asymmetric increase in cortical tension promotes filament reorientation along the cytokinetic cleavage furrow, which might have implications for diverse other biological processes involving actomyosin rings. article_number: e30867 author: - first_name: Felix full_name: Spira, Felix last_name: Spira - first_name: Sara full_name: Cuylen Haering, Sara last_name: Cuylen Haering - first_name: Shalin full_name: Mehta, Shalin last_name: Mehta - first_name: Matthias full_name: Samwer, Matthias last_name: Samwer - first_name: Anne full_name: Reversat, Anne id: 35B76592-F248-11E8-B48F-1D18A9856A87 last_name: Reversat orcid: 0000-0003-0666-8928 - first_name: Amitabh full_name: Verma, Amitabh last_name: Verma - first_name: Rudolf full_name: Oldenbourg, Rudolf last_name: Oldenbourg - first_name: Michael K full_name: Sixt, Michael K id: 41E9FBEA-F248-11E8-B48F-1D18A9856A87 last_name: Sixt orcid: 0000-0002-6620-9179 - first_name: Daniel full_name: Gerlich, Daniel last_name: Gerlich citation: ama: Spira F, Cuylen Haering S, Mehta S, et al. Cytokinesis in vertebrate cells initiates by contraction of an equatorial actomyosin network composed of randomly oriented filaments. eLife. 2017;6. doi:10.7554/eLife.30867 apa: Spira, F., Cuylen Haering, S., Mehta, S., Samwer, M., Reversat, A., Verma, A., … Gerlich, D. (2017). Cytokinesis in vertebrate cells initiates by contraction of an equatorial actomyosin network composed of randomly oriented filaments. ELife. eLife Sciences Publications. https://doi.org/10.7554/eLife.30867 chicago: Spira, Felix, Sara Cuylen Haering, Shalin Mehta, Matthias Samwer, Anne Reversat, Amitabh Verma, Rudolf Oldenbourg, Michael K Sixt, and Daniel Gerlich. “Cytokinesis in Vertebrate Cells Initiates by Contraction of an Equatorial Actomyosin Network Composed of Randomly Oriented Filaments.” ELife. eLife Sciences Publications, 2017. https://doi.org/10.7554/eLife.30867. ieee: F. Spira et al., “Cytokinesis in vertebrate cells initiates by contraction of an equatorial actomyosin network composed of randomly oriented filaments,” eLife, vol. 6. eLife Sciences Publications, 2017. ista: Spira F, Cuylen Haering S, Mehta S, Samwer M, Reversat A, Verma A, Oldenbourg R, Sixt MK, Gerlich D. 2017. Cytokinesis in vertebrate cells initiates by contraction of an equatorial actomyosin network composed of randomly oriented filaments. eLife. 6, e30867. mla: Spira, Felix, et al. “Cytokinesis in Vertebrate Cells Initiates by Contraction of an Equatorial Actomyosin Network Composed of Randomly Oriented Filaments.” ELife, vol. 6, e30867, eLife Sciences Publications, 2017, doi:10.7554/eLife.30867. short: F. Spira, S. Cuylen Haering, S. Mehta, M. Samwer, A. Reversat, A. Verma, R. Oldenbourg, M.K. Sixt, D. Gerlich, ELife 6 (2017). date_created: 2018-12-11T11:47:14Z date_published: 2017-11-06T00:00:00Z date_updated: 2023-02-23T12:30:29Z day: '06' ddc: - '570' department: - _id: MiSi doi: 10.7554/eLife.30867 file: - access_level: open_access checksum: ba09c1451153d39e4f4b7cee013e314c content_type: application/pdf creator: system date_created: 2018-12-12T10:10:40Z date_updated: 2020-07-14T12:47:10Z file_id: '4829' file_name: IST-2017-919-v1+1_elife-30867-figures-v1.pdf file_size: 9666973 relation: main_file - access_level: open_access checksum: 01eb51f1d6ad679947415a51c988e137 content_type: application/pdf creator: system date_created: 2018-12-12T10:10:41Z date_updated: 2020-07-14T12:47:10Z file_id: '4830' file_name: IST-2017-919-v1+2_elife-30867-v1.pdf file_size: 5951246 relation: main_file file_date_updated: 2020-07-14T12:47:10Z has_accepted_license: '1' intvolume: ' 6' language: - iso: eng month: '11' oa: 1 oa_version: Published Version publication: eLife publication_identifier: issn: - 2050084X publication_status: published publisher: eLife Sciences Publications publist_id: '7245' pubrep_id: '919' quality_controlled: '1' scopus_import: 1 status: public title: Cytokinesis in vertebrate cells initiates by contraction of an equatorial actomyosin network composed of randomly oriented filaments tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 6 year: '2017' ... --- _id: '571' abstract: - lang: eng text: Blood platelets are critical for hemostasis and thrombosis and play diverse roles during immune responses. Despite these versatile tasks in mammalian biology, their skills on a cellular level are deemed limited, mainly consisting in rolling, adhesion, and aggregate formation. Here, we identify an unappreciated asset of platelets and show that adherent platelets use adhesion receptors to mechanically probe the adhesive substrate in their local microenvironment. When actomyosin-dependent traction forces overcome substrate resistance, platelets migrate and pile up the adhesive substrate together with any bound particulate material. They use this ability to act as cellular scavengers, scanning the vascular surface for potential invaders and collecting deposited bacteria. Microbe collection by migrating platelets boosts the activity of professional phagocytes, exacerbating inflammatory tissue injury in sepsis. This assigns platelets a central role in innate immune responses and identifies them as potential targets to dampen inflammatory tissue damage in clinical scenarios of severe systemic infection. In addition to their role in thrombosis and hemostasis, platelets can also migrate to sites of infection to help trap bacteria and clear the vascular surface. author: - first_name: Florian R full_name: Gärtner, Florian R id: 397A88EE-F248-11E8-B48F-1D18A9856A87 last_name: Gärtner orcid: 0000-0001-6120-3723 - first_name: Zerkah full_name: Ahmad, Zerkah last_name: Ahmad - first_name: Gerhild full_name: Rosenberger, Gerhild last_name: Rosenberger - first_name: Shuxia full_name: Fan, Shuxia last_name: Fan - first_name: Leo full_name: Nicolai, Leo last_name: Nicolai - first_name: Benjamin full_name: Busch, Benjamin last_name: Busch - first_name: Gökce full_name: Yavuz, Gökce last_name: Yavuz - first_name: Manja full_name: Luckner, Manja last_name: Luckner - first_name: Hellen full_name: Ishikawa Ankerhold, Hellen last_name: Ishikawa Ankerhold - first_name: Roman full_name: Hennel, Roman last_name: Hennel - first_name: Alexandre full_name: Benechet, Alexandre last_name: Benechet - first_name: Michael full_name: Lorenz, Michael last_name: Lorenz - first_name: Sue full_name: Chandraratne, Sue last_name: Chandraratne - first_name: Irene full_name: Schubert, Irene last_name: Schubert - first_name: Sebastian full_name: Helmer, Sebastian last_name: Helmer - first_name: Bianca full_name: Striednig, Bianca last_name: Striednig - first_name: Konstantin full_name: Stark, Konstantin last_name: Stark - first_name: Marek full_name: Janko, Marek last_name: Janko - first_name: Ralph full_name: Böttcher, Ralph last_name: Böttcher - first_name: Admar full_name: Verschoor, Admar last_name: Verschoor - first_name: Catherine full_name: Leon, Catherine last_name: Leon - first_name: Christian full_name: Gachet, Christian last_name: Gachet - first_name: Thomas full_name: Gudermann, Thomas last_name: Gudermann - first_name: Michael full_name: Mederos Y Schnitzler, Michael last_name: Mederos Y Schnitzler - first_name: Zachary full_name: Pincus, Zachary last_name: Pincus - first_name: Matteo full_name: Iannacone, Matteo last_name: Iannacone - first_name: Rainer full_name: Haas, Rainer last_name: Haas - first_name: Gerhard full_name: Wanner, Gerhard last_name: Wanner - first_name: Kirsten full_name: Lauber, Kirsten last_name: Lauber - first_name: Michael K full_name: Sixt, Michael K id: 41E9FBEA-F248-11E8-B48F-1D18A9856A87 last_name: Sixt orcid: 0000-0002-6620-9179 - first_name: Steffen full_name: Massberg, Steffen last_name: Massberg citation: ama: Gärtner FR, Ahmad Z, Rosenberger G, et al. Migrating platelets are mechano scavengers that collect and bundle bacteria. Cell Press. 2017;171(6):1368-1382. doi:10.1016/j.cell.2017.11.001 apa: Gärtner, F. R., Ahmad, Z., Rosenberger, G., Fan, S., Nicolai, L., Busch, B., … Massberg, S. (2017). Migrating platelets are mechano scavengers that collect and bundle bacteria. Cell Press. Cell Press. https://doi.org/10.1016/j.cell.2017.11.001 chicago: Gärtner, Florian R, Zerkah Ahmad, Gerhild Rosenberger, Shuxia Fan, Leo Nicolai, Benjamin Busch, Gökce Yavuz, et al. “Migrating Platelets Are Mechano Scavengers That Collect and Bundle Bacteria.” Cell Press. Cell Press, 2017. https://doi.org/10.1016/j.cell.2017.11.001. ieee: F. R. Gärtner et al., “Migrating platelets are mechano scavengers that collect and bundle bacteria,” Cell Press, vol. 171, no. 6. Cell Press, pp. 1368–1382, 2017. ista: Gärtner FR, Ahmad Z, Rosenberger G, Fan S, Nicolai L, Busch B, Yavuz G, Luckner M, Ishikawa Ankerhold H, Hennel R, Benechet A, Lorenz M, Chandraratne S, Schubert I, Helmer S, Striednig B, Stark K, Janko M, Böttcher R, Verschoor A, Leon C, Gachet C, Gudermann T, Mederos Y Schnitzler M, Pincus Z, Iannacone M, Haas R, Wanner G, Lauber K, Sixt MK, Massberg S. 2017. Migrating platelets are mechano scavengers that collect and bundle bacteria. Cell Press. 171(6), 1368–1382. mla: Gärtner, Florian R., et al. “Migrating Platelets Are Mechano Scavengers That Collect and Bundle Bacteria.” Cell Press, vol. 171, no. 6, Cell Press, 2017, pp. 1368–82, doi:10.1016/j.cell.2017.11.001. short: F.R. Gärtner, Z. Ahmad, G. Rosenberger, S. Fan, L. Nicolai, B. Busch, G. Yavuz, M. Luckner, H. Ishikawa Ankerhold, R. Hennel, A. Benechet, M. Lorenz, S. Chandraratne, I. Schubert, S. Helmer, B. Striednig, K. Stark, M. Janko, R. Böttcher, A. Verschoor, C. Leon, C. Gachet, T. Gudermann, M. Mederos Y Schnitzler, Z. Pincus, M. Iannacone, R. Haas, G. Wanner, K. Lauber, M.K. Sixt, S. Massberg, Cell Press 171 (2017) 1368–1382. date_created: 2018-12-11T11:47:15Z date_published: 2017-11-30T00:00:00Z date_updated: 2021-01-12T08:03:15Z day: '30' department: - _id: MiSi doi: 10.1016/j.cell.2017.11.001 ec_funded: 1 intvolume: ' 171' issue: '6' language: - iso: eng month: '11' oa_version: None page: 1368 - 1382 project: - _id: 260AA4E2-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '747687' name: Mechanical Adaptation of Lamellipodial Actin Networks in Migrating Cells publication: Cell Press publication_identifier: issn: - '00928674' publication_status: published publisher: Cell Press publist_id: '7243' quality_controlled: '1' scopus_import: 1 status: public title: Migrating platelets are mechano scavengers that collect and bundle bacteria type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 171 year: '2017' ... --- _id: '659' abstract: - lang: eng text: Migration frequently involves Rac-mediated protrusion of lamellipodia, formed by Arp2/3 complex-dependent branching thought to be crucial for force generation and stability of these networks. The formins FMNL2 and FMNL3 are Cdc42 effectors targeting to the lamellipodium tip and shown here to nucleate and elongate actin filaments with complementary activities in vitro. In migrating B16-F1 melanoma cells, both formins contribute to the velocity of lamellipodium protrusion. Loss of FMNL2/3 function in melanoma cells and fibroblasts reduces lamellipodial width, actin filament density and -bundling, without changing patterns of Arp2/3 complex incorporation. Strikingly, in melanoma cells, FMNL2/3 gene inactivation almost completely abolishes protrusion forces exerted by lamellipodia and modifies their ultrastructural organization. Consistently, CRISPR/Cas-mediated depletion of FMNL2/3 in fibroblasts reduces both migration and capability of cells to move against viscous media. Together, we conclude that force generation in lamellipodia strongly depends on FMNL formin activity, operating in addition to Arp2/3 complex-dependent filament branching. article_number: '14832' article_processing_charge: No author: - first_name: Frieda full_name: Kage, Frieda last_name: Kage - first_name: Moritz full_name: Winterhoff, Moritz last_name: Winterhoff - first_name: Vanessa full_name: Dimchev, Vanessa last_name: Dimchev - first_name: Jan full_name: Müller, Jan id: AD07FDB4-0F61-11EA-8158-C4CC64CEAA8D last_name: Müller - first_name: Tobias full_name: Thalheim, Tobias last_name: Thalheim - first_name: Anika full_name: Freise, Anika last_name: Freise - first_name: Stefan full_name: Brühmann, Stefan last_name: Brühmann - first_name: Jana full_name: Kollasser, Jana last_name: Kollasser - first_name: Jennifer full_name: Block, Jennifer last_name: Block - first_name: Georgi A full_name: Dimchev, Georgi A last_name: Dimchev - first_name: Matthias full_name: Geyer, Matthias last_name: Geyer - first_name: Hams full_name: Schnittler, Hams last_name: Schnittler - first_name: Cord full_name: Brakebusch, Cord last_name: Brakebusch - first_name: Theresia full_name: Stradal, Theresia last_name: Stradal - first_name: Marie full_name: Carlier, Marie last_name: Carlier - first_name: Michael K full_name: Sixt, Michael K id: 41E9FBEA-F248-11E8-B48F-1D18A9856A87 last_name: Sixt orcid: 0000-0002-6620-9179 - first_name: Josef full_name: Käs, Josef last_name: Käs - first_name: Jan full_name: Faix, Jan last_name: Faix - first_name: Klemens full_name: Rottner, Klemens last_name: Rottner citation: ama: Kage F, Winterhoff M, Dimchev V, et al. FMNL formins boost lamellipodial force generation. Nature Communications. 2017;8. doi:10.1038/ncomms14832 apa: Kage, F., Winterhoff, M., Dimchev, V., Müller, J., Thalheim, T., Freise, A., … Rottner, K. (2017). FMNL formins boost lamellipodial force generation. Nature Communications. Nature Publishing Group. https://doi.org/10.1038/ncomms14832 chicago: Kage, Frieda, Moritz Winterhoff, Vanessa Dimchev, Jan Müller, Tobias Thalheim, Anika Freise, Stefan Brühmann, et al. “FMNL Formins Boost Lamellipodial Force Generation.” Nature Communications. Nature Publishing Group, 2017. https://doi.org/10.1038/ncomms14832. ieee: F. Kage et al., “FMNL formins boost lamellipodial force generation,” Nature Communications, vol. 8. Nature Publishing Group, 2017. ista: Kage F, Winterhoff M, Dimchev V, Müller J, Thalheim T, Freise A, Brühmann S, Kollasser J, Block J, Dimchev GA, Geyer M, Schnittler H, Brakebusch C, Stradal T, Carlier M, Sixt MK, Käs J, Faix J, Rottner K. 2017. FMNL formins boost lamellipodial force generation. Nature Communications. 8, 14832. mla: Kage, Frieda, et al. “FMNL Formins Boost Lamellipodial Force Generation.” Nature Communications, vol. 8, 14832, Nature Publishing Group, 2017, doi:10.1038/ncomms14832. short: F. Kage, M. Winterhoff, V. Dimchev, J. Müller, T. Thalheim, A. Freise, S. Brühmann, J. Kollasser, J. Block, G.A. Dimchev, M. Geyer, H. Schnittler, C. Brakebusch, T. Stradal, M. Carlier, M.K. Sixt, J. Käs, J. Faix, K. Rottner, Nature Communications 8 (2017). date_created: 2018-12-11T11:47:46Z date_published: 2017-03-22T00:00:00Z date_updated: 2021-01-12T08:08:06Z day: '22' ddc: - '570' department: - _id: MiSi doi: 10.1038/ncomms14832 file: - access_level: open_access checksum: dae30190291c3630e8102d8714a8d23e content_type: application/pdf creator: system date_created: 2018-12-12T10:14:21Z date_updated: 2020-07-14T12:47:34Z file_id: '5072' file_name: IST-2017-902-v1+1_Kage_et_al-2017-Nature_Communications.pdf file_size: 9523746 relation: main_file file_date_updated: 2020-07-14T12:47:34Z has_accepted_license: '1' intvolume: ' 8' language: - iso: eng month: '03' oa: 1 oa_version: Published Version publication: Nature Communications publication_identifier: issn: - '20411723' publication_status: published publisher: Nature Publishing Group publist_id: '7075' pubrep_id: '902' quality_controlled: '1' scopus_import: 1 status: public title: FMNL formins boost lamellipodial force generation tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 8 year: '2017' ... --- _id: '668' abstract: - lang: eng text: Macrophage filopodia, finger-like membrane protrusions, were first implicated in phagocytosis more than 100 years ago, but little is still known about the involvement of these actin-dependent structures in particle clearance. Using spinning disk confocal microscopy to image filopodial dynamics in mouse resident Lifeact-EGFP macrophages, we show that filopodia, or filopodia-like structures, support pathogen clearance by multiple means. Filopodia supported the phagocytic uptake of bacterial (Escherichia coli) particles by (i) capturing along the filopodial shaft and surfing toward the cell body, the most common mode of capture; (ii) capturing via the tip followed by retraction; (iii) combinations of surfing and retraction; or (iv) sweeping actions. In addition, filopodia supported the uptake of zymosan (Saccharomyces cerevisiae) particles by (i) providing fixation, (ii) capturing at the tip and filopodia-guided actin anterograde flow with phagocytic cup formation, and (iii) the rapid growth of new protrusions. To explore the role of filopodia-inducing Cdc42, we generated myeloid-restricted Cdc42 knock-out mice. Cdc42-deficient macrophages exhibited rapid phagocytic cup kinetics, but reduced particle clearance, which could be explained by the marked rounded-up morphology of these cells. Macrophages lacking Myo10, thought to act downstream of Cdc42, had normal morphology, motility, and phagocytic cup formation, but displayed markedly reduced filopodia formation. In conclusion, live-cell imaging revealed multiple mechanisms involving macrophage filopodia in particle capture and engulfment. Cdc42 is not critical for filopodia or phagocytic cup formation, but plays a key role in driving macrophage lamellipodial spreading. article_type: original author: - first_name: Markus full_name: Horsthemke, Markus last_name: Horsthemke - first_name: Anne full_name: Bachg, Anne last_name: Bachg - first_name: Katharina full_name: Groll, Katharina last_name: Groll - first_name: Sven full_name: Moyzio, Sven last_name: Moyzio - first_name: Barbara full_name: Müther, Barbara last_name: Müther - first_name: Sandra full_name: Hemkemeyer, Sandra last_name: Hemkemeyer - first_name: Roland full_name: Wedlich Söldner, Roland last_name: Wedlich Söldner - first_name: Michael K full_name: Sixt, Michael K id: 41E9FBEA-F248-11E8-B48F-1D18A9856A87 last_name: Sixt orcid: 0000-0002-6620-9179 - first_name: Sebastian full_name: Tacke, Sebastian last_name: Tacke - first_name: Martin full_name: Bähler, Martin last_name: Bähler - first_name: Peter full_name: Hanley, Peter last_name: Hanley citation: ama: Horsthemke M, Bachg A, Groll K, et al. Multiple roles of filopodial dynamics in particle capture and phagocytosis and phenotypes of Cdc42 and Myo10 deletion. Journal of Biological Chemistry. 2017;292(17):7258-7273. doi:10.1074/jbc.M116.766923 apa: Horsthemke, M., Bachg, A., Groll, K., Moyzio, S., Müther, B., Hemkemeyer, S., … Hanley, P. (2017). Multiple roles of filopodial dynamics in particle capture and phagocytosis and phenotypes of Cdc42 and Myo10 deletion. Journal of Biological Chemistry. American Society for Biochemistry and Molecular Biology. https://doi.org/10.1074/jbc.M116.766923 chicago: Horsthemke, Markus, Anne Bachg, Katharina Groll, Sven Moyzio, Barbara Müther, Sandra Hemkemeyer, Roland Wedlich Söldner, et al. “Multiple Roles of Filopodial Dynamics in Particle Capture and Phagocytosis and Phenotypes of Cdc42 and Myo10 Deletion.” Journal of Biological Chemistry. American Society for Biochemistry and Molecular Biology, 2017. https://doi.org/10.1074/jbc.M116.766923. ieee: M. Horsthemke et al., “Multiple roles of filopodial dynamics in particle capture and phagocytosis and phenotypes of Cdc42 and Myo10 deletion,” Journal of Biological Chemistry, vol. 292, no. 17. American Society for Biochemistry and Molecular Biology, pp. 7258–7273, 2017. ista: Horsthemke M, Bachg A, Groll K, Moyzio S, Müther B, Hemkemeyer S, Wedlich Söldner R, Sixt MK, Tacke S, Bähler M, Hanley P. 2017. Multiple roles of filopodial dynamics in particle capture and phagocytosis and phenotypes of Cdc42 and Myo10 deletion. Journal of Biological Chemistry. 292(17), 7258–7273. mla: Horsthemke, Markus, et al. “Multiple Roles of Filopodial Dynamics in Particle Capture and Phagocytosis and Phenotypes of Cdc42 and Myo10 Deletion.” Journal of Biological Chemistry, vol. 292, no. 17, American Society for Biochemistry and Molecular Biology, 2017, pp. 7258–73, doi:10.1074/jbc.M116.766923. short: M. Horsthemke, A. Bachg, K. Groll, S. Moyzio, B. Müther, S. Hemkemeyer, R. Wedlich Söldner, M.K. Sixt, S. Tacke, M. Bähler, P. Hanley, Journal of Biological Chemistry 292 (2017) 7258–7273. date_created: 2018-12-11T11:47:49Z date_published: 2017-04-28T00:00:00Z date_updated: 2021-01-12T08:08:34Z day: '28' ddc: - '570' department: - _id: MiSi doi: 10.1074/jbc.M116.766923 file: - access_level: open_access checksum: d488162874326a4bb056065fa549dc4a content_type: application/pdf creator: dernst date_created: 2019-10-24T15:25:42Z date_updated: 2020-07-14T12:47:37Z file_id: '6971' file_name: 2017_JBC_Horsthemke.pdf file_size: 5647880 relation: main_file file_date_updated: 2020-07-14T12:47:37Z has_accepted_license: '1' intvolume: ' 292' issue: '17' language: - iso: eng month: '04' oa: 1 oa_version: Published Version page: 7258 - 7273 publication: Journal of Biological Chemistry publication_identifier: issn: - '00219258' publication_status: published publisher: American Society for Biochemistry and Molecular Biology publist_id: '7059' quality_controlled: '1' scopus_import: 1 status: public title: Multiple roles of filopodial dynamics in particle capture and phagocytosis and phenotypes of Cdc42 and Myo10 deletion type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 292 year: '2017' ...