TY - JOUR AB - Dendritic cells (DCs) are crucial for the priming of naive T cells and the initiation of adaptive immunity. Priming is initiated at a heterologous cell–cell contact, the immunological synapse (IS). While it is established that F-actin dynamics regulates signaling at the T cell side of the contact, little is known about the cytoskeletal contribution on the DC side. Here, we show that the DC actin cytoskeleton is decisive for the formation of a multifocal synaptic structure, which correlates with T cell priming efficiency. DC actin at the IS appears in transient foci that are dynamized by the WAVE regulatory complex (WRC). The absence of the WRC in DCs leads to stabilized contacts with T cells, caused by an increase in ICAM1-integrin–mediated cell–cell adhesion. This results in lower numbers of activated and proliferating T cells, demonstrating an important role for DC actin in the regulation of immune synapse functionality. AU - Leithner, Alexander F AU - Altenburger, LM AU - Hauschild, R AU - Assen, Frank P AU - Rottner, K AU - TEB, Stradal AU - Diz-Muñoz, A AU - Stein, JV AU - Sixt, Michael K ID - 9094 IS - 4 JF - Journal of Cell Biology SN - 0021-9525 TI - Dendritic cell actin dynamics control contact duration and priming efficiency at the immunological synapse VL - 220 ER - TY - JOUR AB - De novo loss of function mutations in the ubiquitin ligase-encoding gene Cullin3 lead to autism spectrum disorder (ASD). In mouse, constitutive haploinsufficiency leads to motor coordination deficits as well as ASD-relevant social and cognitive impairments. However, induction of Cul3 haploinsufficiency later in life does not lead to ASD-relevant behaviors, pointing to an important role of Cul3 during a critical developmental window. Here we show that Cul3 is essential to regulate neuronal migration and, therefore, constitutive Cul3 heterozygous mutant mice display cortical lamination abnormalities. At the molecular level, we found that Cul3 controls neuronal migration by tightly regulating the amount of Plastin3 (Pls3), a previously unrecognized player of neural migration. Furthermore, we found that Pls3 cell-autonomously regulates cell migration by regulating actin cytoskeleton organization, and its levels are inversely proportional to neural migration speed. Finally, we provide evidence that cellular phenotypes associated with autism-linked gene haploinsufficiency can be rescued by transcriptional activation of the intact allele in vitro, offering a proof of concept for a potential therapeutic approach for ASDs. AU - Morandell, Jasmin AU - Schwarz, Lena A AU - Basilico, Bernadette AU - Tasciyan, Saren AU - Dimchev, Georgi A AU - Nicolas, Armel AU - Sommer, Christoph M AU - Kreuzinger, Caroline AU - Dotter, Christoph AU - Knaus, Lisa AU - Dobler, Zoe AU - Cacci, Emanuele AU - Schur, Florian KM AU - Danzl, Johann G AU - Novarino, Gaia ID - 9429 IS - 1 JF - Nature Communications KW - General Biochemistry KW - Genetics and Molecular Biology TI - Cul3 regulates cytoskeleton protein homeostasis and cell migration during a critical window of brain development VL - 12 ER - TY - THES AB - Bacteria-host interactions represent a continuous trade-off between benefit and risk. Thus, the host immune response is faced with a non-trivial problem – accommodate beneficial commensals and remove harmful pathogens. This is especially difficult as molecular patterns, such as lipopolysaccharide or specific surface organelles such as pili, are conserved in both, commensal and pathogenic bacteria. Type 1 pili, tightly regulated by phase variation, are considered an important virulence factor of pathogenic bacteria as they facilitate invasion into host cells. While invasion represents a de facto passive mechanism for pathogens to escape the host immune response, we demonstrate a fundamental role of type 1 pili as active modulators of the innate and adaptive immune response. AU - Tomasek, Kathrin ID - 10307 SN - 2663-337X TI - Pathogenic Escherichia coli hijack the host immune response ER - TY - GEN AB - A key attribute of persistent or recurring bacterial infections is the ability of the pathogen to evade the host’s immune response. Many Enterobacteriaceae express type 1 pili, a pre-adapted virulence trait, to invade host epithelial cells and establish persistent infections. However, the molecular mechanisms and strategies by which bacteria actively circumvent the immune response of the host remain poorly understood. Here, we identified CD14, the major co-receptor for lipopolysaccharide detection, on dendritic cells as a previously undescribed binding partner of FimH, the protein located at the tip of the type 1 pilus of Escherichia coli. The FimH amino acids involved in CD14 binding are highly conserved across pathogenic and non-pathogenic strains. Binding of pathogenic bacteria to CD14 lead to reduced dendritic cell migration and blunted expression of co-stimulatory molecules, both rate-limiting factors of T cell activation. While defining an active molecular mechanism of immune evasion by pathogens, the interaction between FimH and CD14 represents a potential target to interfere with persistent and recurrent infections, such as urinary tract infections or Crohn’s disease. AU - Tomasek, Kathrin AU - Leithner, Alexander F AU - Glatzová, Ivana AU - Lukesch, Michael S. AU - Guet, Calin C AU - Sixt, Michael K ID - 10316 T2 - bioRxiv TI - Type 1 piliated uropathogenic Escherichia coli hijack the host immune response by binding to CD14 ER - TY - JOUR AB - T lymphocytes utilize amoeboid migration to navigate effectively within complex microenvironments. The precise rearrangement of the actin cytoskeleton required for cellular forward propulsion is mediated by actin regulators, including the actin‐related protein 2/3 (Arp2/3) complex, a macromolecular machine that nucleates branched actin filaments at the leading edge. The consequences of modulating Arp2/3 activity on the biophysical properties of the actomyosin cortex and downstream T cell function are incompletely understood. We report that even a moderate decrease of Arp3 levels in T cells profoundly affects actin cortex integrity. Reduction in total F‐actin content leads to reduced cortical tension and disrupted lamellipodia formation. Instead, in Arp3‐knockdown cells, the motility mode is dominated by blebbing migration characterized by transient, balloon‐like protrusions at the leading edge. Although this migration mode seems to be compatible with interstitial migration in three‐dimensional environments, diminished locomotion kinetics and impaired cytotoxicity interfere with optimal T cell function. These findings define the importance of finely tuned, Arp2/3‐dependent mechanophysical membrane integrity in cytotoxic effector T lymphocyte activities. AU - Obeidy, Peyman AU - Ju, Lining A. AU - Oehlers, Stefan H. AU - Zulkhernain, Nursafwana S. AU - Lee, Quintin AU - Galeano Niño, Jorge L. AU - Kwan, Rain Y.Q. AU - Tikoo, Shweta AU - Cavanagh, Lois L. AU - Mrass, Paulus AU - Cook, Adam J.L. AU - Jackson, Shaun P. AU - Biro, Maté AU - Roediger, Ben AU - Sixt, Michael K AU - Weninger, Wolfgang ID - 7234 IS - 2 JF - Immunology and Cell Biology SN - 08189641 TI - Partial loss of actin nucleator actin-related protein 2/3 activity triggers blebbing in primary T lymphocytes VL - 98 ER - TY - JOUR AB - A two-dimensional mathematical model for cells migrating without adhesion capabilities is presented and analyzed. Cells are represented by their cortex, which is modeled as an elastic curve, subject to an internal pressure force. Net polymerization or depolymerization in the cortex is modeled via local addition or removal of material, driving a cortical flow. The model takes the form of a fully nonlinear degenerate parabolic system. An existence analysis is carried out by adapting ideas from the theory of gradient flows. Numerical simulations show that these simple rules can account for the behavior observed in experiments, suggesting a possible mechanical mechanism for adhesion-independent motility. AU - Jankowiak, Gaspard AU - Peurichard, Diane AU - Reversat, Anne AU - Schmeiser, Christian AU - Sixt, Michael K ID - 7623 IS - 3 JF - Mathematical Models and Methods in Applied Sciences SN - 02182025 TI - Modeling adhesion-independent cell migration VL - 30 ER - TY - JOUR AB - Cells navigating through complex tissues face a fundamental challenge: while multiple protrusions explore different paths, the cell needs to avoid entanglement. How a cell surveys and then corrects its own shape is poorly understood. Here, we demonstrate that spatially distinct microtubule dynamics regulate amoeboid cell migration by locally promoting the retraction of protrusions. In migrating dendritic cells, local microtubule depolymerization within protrusions remote from the microtubule organizing center triggers actomyosin contractility controlled by RhoA and its exchange factor Lfc. Depletion of Lfc leads to aberrant myosin localization, thereby causing two effects that rate-limit locomotion: (1) impaired cell edge coordination during path finding and (2) defective adhesion resolution. Compromised shape control is particularly hindering in geometrically complex microenvironments, where it leads to entanglement and ultimately fragmentation of the cell body. We thus demonstrate that microtubules can act as a proprioceptive device: they sense cell shape and control actomyosin retraction to sustain cellular coherence. AU - Kopf, Aglaja AU - Renkawitz, Jörg AU - Hauschild, Robert AU - Girkontaite, Irute AU - Tedford, Kerry AU - Merrin, Jack AU - Thorn-Seshold, Oliver AU - Trauner, Dirk AU - Häcker, Hans AU - Fischer, Klaus Dieter AU - Kiermaier, Eva AU - Sixt, Michael K ID - 7875 IS - 6 JF - The Journal of Cell Biology TI - Microtubules control cellular shape and coherence in amoeboid migrating cells VL - 219 ER - TY - JOUR AB - In contrast to lymph nodes, the lymphoid regions of the spleen—the white pulp—are located deep within the organ, yielding the trafficking paths of T cells in the white pulp largely invisible. In an intravital microscopy tour de force reported in this issue of Immunity, Chauveau et al. show that T cells perform unidirectional, perivascular migration through the enigmatic marginal zone bridging channels. AU - Sixt, Michael K AU - Lämmermann, Tim ID - 7876 IS - 5 JF - Immunity SN - 10747613 TI - T cells: Bridge-and-channel commute to the white pulp VL - 52 ER - TY - JOUR AB - Cell migration entails networks and bundles of actin filaments termed lamellipodia and microspikes or filopodia, respectively, as well as focal adhesions, all of which recruit Ena/VASP family members hitherto thought to antagonize efficient cell motility. However, we find these proteins to act as positive regulators of migration in different murine cell lines. CRISPR/Cas9-mediated loss of Ena/VASP proteins reduced lamellipodial actin assembly and perturbed lamellipodial architecture, as evidenced by changed network geometry as well as reduction of filament length and number that was accompanied by abnormal Arp2/3 complex and heterodimeric capping protein accumulation. Loss of Ena/VASP function also abolished the formation of microspikes normally embedded in lamellipodia, but not of filopodia capable of emanating without lamellipodia. Ena/VASP-deficiency also impaired integrin-mediated adhesion accompanied by reduced traction forces exerted through these structures. Our data thus uncover novel Ena/VASP functions of these actin polymerases that are fully consistent with their promotion of cell migration. AU - Damiano-Guercio, Julia AU - Kurzawa, Laëtitia AU - Müller, Jan AU - Dimchev, Georgi A AU - Schaks, Matthias AU - Nemethova, Maria AU - Pokrant, Thomas AU - Brühmann, Stefan AU - Linkner, Joern AU - Blanchoin, Laurent AU - Sixt, Michael K AU - Rottner, Klemens AU - Faix, Jan ID - 7909 JF - eLife TI - Loss of Ena/VASP interferes with lamellipodium architecture, motility and integrin-dependent adhesion VL - 9 ER - TY - JOUR AB - The WAVE regulatory complex (WRC) is crucial for assembly of the peripheral branched actin network constituting one of the main drivers of eukaryotic cell migration. Here, we uncover an essential role of the hematopoietic-specific WRC component HEM1 for immune cell development. Germline-encoded HEM1 deficiency underlies an inborn error of immunity with systemic autoimmunity, at cellular level marked by WRC destabilization, reduced filamentous actin, and failure to assemble lamellipodia. Hem1−/− mice display systemic autoimmunity, phenocopying the human disease. In the absence of Hem1, B cells become deprived of extracellular stimuli necessary to maintain the strength of B cell receptor signaling at a level permissive for survival of non-autoreactive B cells. This shifts the balance of B cell fate choices toward autoreactive B cells and thus autoimmunity. AU - Salzer, Elisabeth AU - Zoghi, Samaneh AU - Kiss, Máté G. AU - Kage, Frieda AU - Rashkova, Christina AU - Stahnke, Stephanie AU - Haimel, Matthias AU - Platzer, René AU - Caldera, Michael AU - Ardy, Rico Chandra AU - Hoeger, Birgit AU - Block, Jana AU - Medgyesi, David AU - Sin, Celine AU - Shahkarami, Sepideh AU - Kain, Renate AU - Ziaee, Vahid AU - Hammerl, Peter AU - Bock, Christoph AU - Menche, Jörg AU - Dupré, Loïc AU - Huppa, Johannes B. AU - Sixt, Michael K AU - Lomakin, Alexis AU - Rottner, Klemens AU - Binder, Christoph J. AU - Stradal, Theresia E.B. AU - Rezaei, Nima AU - Boztug, Kaan ID - 8132 IS - 49 JF - Science Immunology TI - The cytoskeletal regulator HEM1 governs B cell development and prevents autoimmunity VL - 5 ER - TY - JOUR AB - Breakdown of vascular barriers is a major complication of inflammatory diseases. Anucleate platelets form blood-clots during thrombosis, but also play a crucial role in inflammation. While spatio-temporal dynamics of clot formation are well characterized, the cell-biological mechanisms of platelet recruitment to inflammatory micro-environments remain incompletely understood. Here we identify Arp2/3-dependent lamellipodia formation as a prominent morphological feature of immune-responsive platelets. Platelets use lamellipodia to scan for fibrin(ogen) deposited on the inflamed vasculature and to directionally spread, to polarize and to govern haptotactic migration along gradients of the adhesive ligand. Platelet-specific abrogation of Arp2/3 interferes with haptotactic repositioning of platelets to microlesions, thus impairing vascular sealing and provoking inflammatory microbleeding. During infection, haptotaxis promotes capture of bacteria and prevents hematogenic dissemination, rendering platelets gate-keepers of the inflamed microvasculature. Consequently, these findings identify haptotaxis as a key effector function of immune-responsive platelets. AU - Nicolai, Leo AU - Schiefelbein, Karin AU - Lipsky, Silvia AU - Leunig, Alexander AU - Hoffknecht, Marie AU - Pekayvaz, Kami AU - Raude, Ben AU - Marx, Charlotte AU - Ehrlich, Andreas AU - Pircher, Joachim AU - Zhang, Zhe AU - Saleh, Inas AU - Marel, Anna-Kristina AU - Löf, Achim AU - Petzold, Tobias AU - Lorenz, Michael AU - Stark, Konstantin AU - Pick, Robert AU - Rosenberger, Gerhild AU - Weckbach, Ludwig AU - Uhl, Bernd AU - Xia, Sheng AU - Reichel, Christoph Andreas AU - Walzog, Barbara AU - Schulz, Christian AU - Zheden, Vanessa AU - Bender, Markus AU - Li, Rong AU - Massberg, Steffen AU - Gärtner, Florian R ID - 8787 JF - Nature Communications TI - Vascular surveillance by haptotactic blood platelets in inflammation and infection VL - 11 ER - TY - JOUR AB - Cell production and differentiation for the acquisition of specific functions are key features of living systems. The dynamic network of cellular microtubules provides the necessary platform to accommodate processes associated with the transition of cells through the individual phases of cytogenesis. Here, we show that the plant hormone cytokinin fine‐tunes the activity of the microtubular cytoskeleton during cell differentiation and counteracts microtubular rearrangements driven by the hormone auxin. The endogenous upward gradient of cytokinin activity along the longitudinal growth axis in Arabidopsis thaliana roots correlates with robust rearrangements of the microtubule cytoskeleton in epidermal cells progressing from the proliferative to the differentiation stage. Controlled increases in cytokinin activity result in premature re‐organization of the microtubule network from transversal to an oblique disposition in cells prior to their differentiation, whereas attenuated hormone perception delays cytoskeleton conversion into a configuration typical for differentiated cells. Intriguingly, cytokinin can interfere with microtubules also in animal cells, such as leukocytes, suggesting that a cytokinin‐sensitive control pathway for the microtubular cytoskeleton may be at least partially conserved between plant and animal cells. AU - Montesinos López, Juan C AU - Abuzeineh, A AU - Kopf, Aglaja AU - Juanes Garcia, Alba AU - Ötvös, Krisztina AU - Petrášek, J AU - Sixt, Michael K AU - Benková, Eva ID - 8142 IS - 17 JF - The Embo Journal SN - 0261-4189 TI - Phytohormone cytokinin guides microtubule dynamics during cell progression from proliferative to differentiated stage VL - 39 ER - TY - JOUR AB - Eukaryotic cells migrate by coupling the intracellular force of the actin cytoskeleton to the environment. While force coupling is usually mediated by transmembrane adhesion receptors, especially those of the integrin family, amoeboid cells such as leukocytes can migrate extremely fast despite very low adhesive forces1. Here we show that leukocytes cannot only migrate under low adhesion but can also transmit forces in the complete absence of transmembrane force coupling. When confined within three-dimensional environments, they use the topographical features of the substrate to propel themselves. Here the retrograde flow of the actin cytoskeleton follows the texture of the substrate, creating retrograde shear forces that are sufficient to drive the cell body forwards. Notably, adhesion-dependent and adhesion-independent migration are not mutually exclusive, but rather are variants of the same principle of coupling retrograde actin flow to the environment and thus can potentially operate interchangeably and simultaneously. As adhesion-free migration is independent of the chemical composition of the environment, it renders cells completely autonomous in their locomotive behaviour. AU - Reversat, Anne AU - Gärtner, Florian R AU - Merrin, Jack AU - Stopp, Julian A AU - Tasciyan, Saren AU - Aguilera Servin, Juan L AU - De Vries, Ingrid AU - Hauschild, Robert AU - Hons, Miroslav AU - Piel, Matthieu AU - Callan-Jones, Andrew AU - Voituriez, Raphael AU - Sixt, Michael K ID - 7885 JF - Nature SN - 00280836 TI - Cellular locomotion using environmental topography VL - 582 ER - TY - JOUR AU - Sixt, Michael K AU - Huttenlocher, Anna ID - 8190 IS - 8 JF - The Journal of Cell Biology TI - Zena Werb (1945-2020): Cell biology in context VL - 219 ER - TY - JOUR AB - Platelets are small anucleate cellular fragments that are released by megakaryocytes and safeguard vascular integrity through a process termed ‘haemostasis’. However, platelets have important roles beyond haemostasis as they contribute to the initiation and coordination of intravascular immune responses. They continuously monitor blood vessel integrity and tightly coordinate vascular trafficking and functions of multiple cell types. In this way platelets act as ‘patrolling officers of the vascular highway’ that help to establish effective immune responses to infections and cancer. Here we discuss the distinct biological features of platelets that allow them to shape immune responses to pathogens and tumour cells, highlighting the parallels between these responses. AU - Gärtner, Florian R AU - Massberg, Steffen ID - 6824 IS - 12 JF - Nature Reviews Immunology SN - 1474-1733 TI - Patrolling the vascular borders: Platelets in immunity to infection and cancer VL - 19 ER - TY - JOUR AB - Cell migration is essential for physiological processes as diverse as development, immune defence and wound healing. It is also a hallmark of cancer malignancy. Thousands of publications have elucidated detailed molecular and biophysical mechanisms of cultured cells migrating on flat, 2D substrates of glass and plastic. However, much less is known about how cells successfully navigate the complex 3D environments of living tissues. In these more complex, native environments, cells use multiple modes of migration, including mesenchymal, amoeboid, lobopodial and collective, and these are governed by the local extracellular microenvironment, specific modalities of Rho GTPase signalling and non- muscle myosin contractility. Migration through 3D environments is challenging because it requires the cell to squeeze through complex or dense extracellular structures. Doing so requires specific cellular adaptations to mechanical features of the extracellular matrix (ECM) or its remodelling. In addition, besides navigating through diverse ECM environments and overcoming extracellular barriers, cells often interact with neighbouring cells and tissues through physical and signalling interactions. Accordingly, cells need to call on an impressively wide diversity of mechanisms to meet these challenges. This Review examines how cells use both classical and novel mechanisms of locomotion as they traverse challenging 3D matrices and cellular environments. It focuses on principles rather than details of migratory mechanisms and draws comparisons between 1D, 2D and 3D migration. AU - Yamada, KM AU - Sixt, Michael K ID - 7009 IS - 12 JF - Nature Reviews Molecular Cell Biology SN - 1471-0072 TI - Mechanisms of 3D cell migration VL - 20 ER - TY - JOUR AB - Platelets are central players in thrombosis and hemostasis but are increasingly recognized as key components of the immune system. They shape ensuing immune responses by recruiting leukocytes, and support the development of adaptive immunity. Recent data shed new light on the complex role of platelets in immunity. Here, we summarize experimental and clinical data on the role of platelets in host defense against bacteria. Platelets bind, contain, and kill bacteria directly; however, platelet proinflammatory effector functions and cross-talk with the coagulation system, can also result in damage to the host (e.g., acute lung injury and sepsis). Novel clinical insights support this dichotomy: platelet inhibition/thrombocytopenia can be either harmful or protective, depending on pathophysiological context. Clinical studies are currently addressing this aspect in greater depth. AU - Nicolai, Leo AU - Gärtner, Florian R AU - Massberg, Steffen ID - 6988 IS - 10 JF - Trends in Immunology SN - 1471-4906 TI - Platelets in host defense: Experimental and clinical insights VL - 40 ER - TY - JOUR AU - Kopf, Aglaja AU - Sixt, Michael K ID - 6979 IS - 20 JF - Current Biology SN - 0960-9822 TI - Gut homeostasis: Active migration of intestinal epithelial cells in tissue renewal VL - 29 ER - TY - JOUR AB - Cell migration is hypothesized to involve a cycle of behaviours beginning with leading edge extension. However, recent evidence suggests that the leading edge may be dispensable for migration, raising the question of what actually controls cell directionality. Here, we exploit the embryonic migration of Drosophila macrophages to bridge the different temporal scales of the behaviours controlling motility. This approach reveals that edge fluctuations during random motility are not persistent and are weakly correlated with motion. In contrast, flow of the actin network behind the leading edge is highly persistent. Quantification of actin flow structure during migration reveals a stable organization and asymmetry in the cell-wide flowfield that strongly correlates with cell directionality. This organization is regulated by a gradient of actin network compression and destruction, which is controlled by myosin contraction and cofilin-mediated disassembly. It is this stable actin-flow polarity, which integrates rapid fluctuations of the leading edge, that controls inherent cellular persistence. AU - Yolland, Lawrence AU - Burki, Mubarik AU - Marcotti, Stefania AU - Luchici, Andrei AU - Kenny, Fiona N. AU - Davis, John Robert AU - Serna-Morales, Eduardo AU - Müller, Jan AU - Sixt, Michael K AU - Davidson, Andrew AU - Wood, Will AU - Schumacher, Linus J. AU - Endres, Robert G. AU - Miodownik, Mark AU - Stramer, Brian M. ID - 7105 IS - 11 JF - Nature Cell Biology SN - 1465-7392 TI - Persistent and polarized global actin flow is essential for directionality during cell migration VL - 21 ER - TY - JOUR AB - β1-integrins mediate cell–matrix interactions and their trafficking is important in the dynamic regulation of cell adhesion, migration and malignant processes, including cancer cell invasion. Here, we employ an RNAi screen to characterize regulators of integrin traffic and identify the association of Golgi-localized gamma ear-containing Arf-binding protein 2 (GGA2) with β1-integrin, and its role in recycling of active but not inactive β1-integrin receptors. Silencing of GGA2 limits active β1-integrin levels in focal adhesions and decreases cancer cell migration and invasion, which is in agreement with its ability to regulate the dynamics of active integrins. By using the proximity-dependent biotin identification (BioID) method, we identified two RAB family small GTPases, i.e. RAB13 and RAB10, as novel interactors of GGA2. Functionally, RAB13 silencing triggers the intracellular accumulation of active β1-integrin, and reduces integrin activity in focal adhesions and cell migration similarly to GGA2 depletion, indicating that both facilitate active β1-integrin recycling to the plasma membrane. Thus, GGA2 and RAB13 are important specificity determinants for integrin activity-dependent traffic. AU - Sahgal, Pranshu AU - Alanko, Jonna H AU - Icha, Jaroslav AU - Paatero, Ilkka AU - Hamidi, Hellyeh AU - Arjonen, Antti AU - Pietilä, Mika AU - Rokka, Anne AU - Ivaska, Johanna ID - 7420 IS - 11 JF - Journal of Cell Science SN - 0021-9533 TI - GGA2 and RAB13 promote activity-dependent β1-integrin recycling VL - 132 ER - TY - JOUR AB - The formation of neuronal dendrite branches is fundamental for the wiring and function of the nervous system. Indeed, dendrite branching enhances the coverage of the neuron's receptive field and modulates the initial processing of incoming stimuli. Complex dendrite patterns are achieved in vivo through a dynamic process of de novo branch formation, branch extension and retraction. The first step towards branch formation is the generation of a dynamic filopodium-like branchlet. The mechanisms underlying the initiation of dendrite branchlets are therefore crucial to the shaping of dendrites. Through in vivo time-lapse imaging of the subcellular localization of actin during the process of branching of Drosophila larva sensory neurons, combined with genetic analysis and electron tomography, we have identified the Actin-related protein (Arp) 2/3 complex as the major actin nucleator involved in the initiation of dendrite branchlet formation, under the control of the activator WAVE and of the small GTPase Rac1. Transient recruitment of an Arp2/3 component marks the site of branchlet initiation in vivo. These data position the activation of Arp2/3 as an early hub for the initiation of branchlet formation. AU - Stürner, Tomke AU - Tatarnikova, Anastasia AU - Müller, Jan AU - Schaffran, Barbara AU - Cuntz, Hermann AU - Zhang, Yun AU - Nemethova, Maria AU - Bogdan, Sven AU - Small, Vic AU - Tavosanis, Gaia ID - 7404 IS - 7 JF - Development SN - 0950-1991 TI - Transient localization of the Arp2/3 complex initiates neuronal dendrite branching in vivo VL - 146 ER - TY - THES AB - Lymph nodes are es s ential organs of the immune s ys tem where adaptive immune responses originate, and consist of various leukocyte populations and a stromal backbone. Fibroblastic reticular cells (FRCs) are the main stromal cells and form a sponge-like extracellular matrix network, called conduits , which they thems elves enwrap and contract. Lymph, containing s oluble antigens , arrive in lymph nodes via afferent lymphatic vessels that connect to the s ubcaps ular s inus and conduit network. According to the current paradigm, the conduit network dis tributes afferent lymph through lymph nodes and thus provides acces s for immune cells to lymph-borne antigens. An elas tic caps ule s urrounds the organ and confines the immune cells and FRC network. Lymph nodes are completely packed with lymphocytes and lymphocyte numbers directly dictates the size of the organ. Although lymphocytes cons tantly enter and leave the lymph node, its s ize remains remarkedly s table under homeostatic conditions. It is only partly known how the cellularity and s ize of the lymph node is regulated and how the lymph node is able to swell in inflammation. The role of the FRC network in lymph node s welling and trans fer of fluids are inves tigated in this thes is. Furthermore, we s tudied what trafficking routes are us ed by cancer cells in lymph nodes to form distal metastases.We examined the role of a mechanical feedback in regulation of lymph node swelling. Using parallel plate compression and UV-las er cutting experiments we dis s ected the mechanical force dynamics of the whole lymph node, and individually for FRCs and the caps ule. Physical forces generated by packed lymphocytes directly affect the tens ion on the FRC network and capsule, which increases its resistance to swelling. This implies a feedback mechanism between tis s ue pres s ure and ability of lymphocytes to enter the organ. Following inflammation, the lymph node swells ∼10 fold in two weeks . Yet, what is the role for tens ion on the FRC network and caps ule, and how are lymphocytes able to enter in conditions that resist swelling remain open ques tions . We s how that tens ion on the FRC network is important to limit the swelling rate of the organ so that the FRC network can grow in a coordinated fashion. This is illustrated by interfering with FRC contractility, which leads to faster swelling rates and a dis organized FRC network in the inflamed lymph node. Growth of the FRC network in turn is expected to releas e tens ion on thes e s tructures and lowers the res is tance to swelling, thereby allowing more lymphocytes to enter the organ and drive more swelling. Halt of swelling coincides with a thickening of the caps ule, which forms a thick res is tant band around the organ and lowers tens ion on the FRC network to form a new force equilibrium.The FRC and conduit network are further believed to be a privileged s ite of s oluble information within the lymph node, although many details remain uns olved. We s how by 3D ultra-recons truction that FRCs and antigen pres enting cells cover the s urface of conduit s ys tem for more than 99% and we dis cus s the implications for s oluble information exchangeat the conduit level.Finally, there is an ongoing debate in the cancer field whether and how cancer cells in lymph nodes s eed dis tal metas tas es . We s how that cancer cells infus ed into the lymph node can utilize trafficking routes of immune cells and rapidly migrate to blood vessels. Once in the blood circulation, these cells are able to form metastases in distal tissues. AU - Assen, Frank P ID - 6947 SN - 2663-337X TI - Lymph node mechanics: Deciphering the interplay between stroma contractility, morphology and lymphocyte trafficking ER - TY - THES AB - While cells of mesenchymal or epithelial origin perform their effector functions in a purely anchorage dependent manner, cells derived from the hematopoietic lineage are not committed to operate only within a specific niche. Instead, these cells are able to function autonomously of the molecular composition in a broad range of tissue compartments. By this means, cells of the hematopoietic lineage retain the capacity to disseminate into connective tissue and recirculate between organs, building the foundation for essential processes such as tissue regeneration or immune surveillance. Cells of the immune system, specifically leukocytes, are extraordinarily good at performing this task. These cells are able to flexibly shift their mode of migration between an adhesion-mediated and an adhesion-independent manner, instantaneously accommodating for any changes in molecular composition of the external scaffold. The key component driving directed leukocyte migration is the chemokine receptor 7, which guides the cell along gradients of chemokine ligand. Therefore, the physical destination of migrating leukocytes is purely deterministic, i.e. given by global directional cues such as chemokine gradients. Nevertheless, these cells typically reside in three-dimensional scaffolds of inhomogeneous complexity, raising the question whether cells are able to locally discriminate between multiple optional migration routes. Current literature provides evidence that leukocytes, specifically dendritic cells, do indeed probe their surrounding by virtue of multiple explorative protrusions. However, it remains enigmatic how these cells decide which one is the more favorable route to follow and what are the key players involved in performing this task. Due to the heterogeneous environment of most tissues, and the vast adaptability of migrating leukocytes, at this time it is not clear to what extent leukocytes are able to optimize their migratory strategy by adapting their level of adhesiveness. And, given the fact that leukocyte migration is characterized by branched cell shapes in combination with high migration velocities, it is reasonable to assume that these cells require fine tuned shape maintenance mechanisms that tightly coordinate protrusion and adhesion dynamics in a spatiotemporal manner. Therefore, this study aimed to elucidate how rapidly migrating leukocytes opt for an ideal migratory path while maintaining a continuous cell shape and balancing adhesive forces to efficiently navigate through complex microenvironments. The results of this study unraveled a role for the microtubule cytoskeleton in promoting the decision making process during path finding and for the first time point towards a microtubule-mediated function in cell shape maintenance of highly ramified cells such as dendritic cells. Furthermore, we found that migrating low-adhesive leukocytes are able to instantaneously adapt to increased tensile load by engaging adhesion receptors. This response was only occurring tangential to the substrate while adhesive properties in the vertical direction were not increased. As leukocytes are primed for rapid migration velocities, these results demonstrate that leukocyte integrins are able to confer a high level of traction forces parallel to the cell membrane along the direction of migration without wasting energy in gluing the cell to the substrate. Thus, the data in the here presented thesis provide new insights into the pivotal role of cytoskeletal dynamics and the mechanisms of force transduction during leukocyte migration. Thereby the here presented results help to further define fundamental principles underlying leukocyte migration and open up potential therapeutic avenues of clinical relevance. AU - Kopf, Aglaja ID - 6891 KW - cell biology KW - immunology KW - leukocyte KW - migration KW - microfluidics SN - 978-3-99078-002-2 TI - The implication of cytoskeletal dynamics on leukocyte migration ER - TY - JOUR AB - During metazoan development, immune surveillance and cancer dissemination, cells migrate in complex three-dimensional microenvironments1,2,3. These spaces are crowded by cells and extracellular matrix, generating mazes with differently sized gaps that are typically smaller than the diameter of the migrating cell4,5. Most mesenchymal and epithelial cells and some—but not all—cancer cells actively generate their migratory path using pericellular tissue proteolysis6. By contrast, amoeboid cells such as leukocytes use non-destructive strategies of locomotion7, raising the question how these extremely fast cells navigate through dense tissues. Here we reveal that leukocytes sample their immediate vicinity for large pore sizes, and are thereby able to choose the path of least resistance. This allows them to circumnavigate local obstacles while effectively following global directional cues such as chemotactic gradients. Pore-size discrimination is facilitated by frontward positioning of the nucleus, which enables the cells to use their bulkiest compartment as a mechanical gauge. Once the nucleus and the closely associated microtubule organizing centre pass the largest pore, cytoplasmic protrusions still lingering in smaller pores are retracted. These retractions are coordinated by dynamic microtubules; when microtubules are disrupted, migrating cells lose coherence and frequently fragment into migratory cytoplasmic pieces. As nuclear positioning in front of the microtubule organizing centre is a typical feature of amoeboid migration, our findings link the fundamental organization of cellular polarity to the strategy of locomotion. AU - Renkawitz, Jörg AU - Kopf, Aglaja AU - Stopp, Julian A AU - de Vries, Ingrid AU - Driscoll, Meghan K. AU - Merrin, Jack AU - Hauschild, Robert AU - Welf, Erik S. AU - Danuser, Gaudenz AU - Fiolka, Reto AU - Sixt, Michael K ID - 6328 JF - Nature TI - Nuclear positioning facilitates amoeboid migration along the path of least resistance VL - 568 ER - TY - JOUR AU - Kopf, Aglaja AU - Sixt, Michael K ID - 6877 IS - 1 JF - Cell SN - 0092-8674 TI - The neural crest pitches in to remove apoptotic debris VL - 179 ER - TY - JOUR AB - Blood platelets are critical for hemostasis and thrombosis, but also play diverse roles during immune responses. We have recently reported that platelets migrate at sites of infection in vitro and in vivo. Importantly, platelets use their ability to migrate to collect and bundle fibrin (ogen)-bound bacteria accomplishing efficient intravascular bacterial trapping. Here, we describe a method that allows analyzing platelet migration in vitro, focusing on their ability to collect bacteria and trap bacteria under flow. AU - Fan, Shuxia AU - Lorenz, Michael AU - Massberg, Steffen AU - Gärtner, Florian R ID - 6354 IS - 18 JF - Bio-Protocol KW - Platelets KW - Cell migration KW - Bacteria KW - Shear flow KW - Fibrinogen KW - E. coli SN - 2331-8325 TI - Platelet migration and bacterial trapping assay under flow VL - 8 ER - TY - JOUR AB - The insect’s fat body combines metabolic and immunological functions. In this issue of Developmental Cell, Franz et al. (2018) show that in Drosophila, cells of the fat body are not static, but can actively “swim” toward sites of epithelial injury, where they physically clog the wound and locally secrete antimicrobial peptides. AU - Casano, Alessandra M AU - Sixt, Michael K ID - 318 IS - 4 JF - Developmental Cell TI - A fat lot of good for wound healing VL - 44 ER - TY - JOUR AB - Migrating cells penetrate tissue barriers during development, inflammatory responses, and tumor metastasis. We study if migration in vivo in such three-dimensionally confined environments requires changes in the mechanical properties of the surrounding cells using embryonic Drosophila melanogaster hemocytes, also called macrophages, as a model. We find that macrophage invasion into the germband through transient separation of the apposing ectoderm and mesoderm requires cell deformations and reductions in apical tension in the ectoderm. Interestingly, the genetic pathway governing these mechanical shifts acts downstream of the only known tumor necrosis factor superfamily member in Drosophila, Eiger, and its receptor, Grindelwald. Eiger-Grindelwald signaling reduces levels of active Myosin in the germband ectodermal cortex through the localization of a Crumbs complex component, Patj (Pals-1-associated tight junction protein). We therefore elucidate a distinct molecular pathway that controls tissue tension and demonstrate the importance of such regulation for invasive migration in vivo. AU - Ratheesh, Aparna AU - Biebl, Julia AU - Smutny, Michael AU - Veselá, Jana AU - Papusheva, Ekaterina AU - Krens, Gabriel AU - Kaufmann, Walter AU - György, Attila AU - Casano, Alessandra M AU - Siekhaus, Daria E ID - 308 IS - 3 JF - Developmental Cell TI - Drosophila TNF modulates tissue tension in the embryo to facilitate macrophage invasive migration VL - 45 ER - TY - JOUR AB - Dendritic cells (DCs) are sentinels of the adaptive immune system that reside in peripheral organs of mammals. Upon pathogen encounter, they undergo maturation and up-regulate the chemokine receptor CCR7 that guides them along gradients of its chemokine ligands CCL19 and 21 to the next draining lymph node. There, DCs present peripherally acquired antigen to naïve T cells, thereby triggering adaptive immunity. AU - Leithner, Alexander F AU - Renkawitz, Jörg AU - De Vries, Ingrid AU - Hauschild, Robert AU - Haecker, Hans AU - Sixt, Michael K ID - 437 IS - 6 JF - European Journal of Immunology TI - Fast and efficient genetic engineering of hematopoietic precursor cells for the study of dendritic cell migration VL - 48 ER - TY - JOUR AB - The release of IgM is the first line of an antibody response and precedes the generation of high affinity IgG in germinal centers. Once secreted by freshly activated plasmablasts, IgM is released into the efferent lymph of reactive lymph nodes as early as 3 d after immunization. As pentameric IgM has an enormous size of 1,000 kD, its diffusibility is low, and one might wonder how it can pass through the densely lymphocyte-packed environment of a lymph node parenchyma in order to reach its exit. In this issue of JEM, Thierry et al. show that, in order to reach the blood stream, IgM molecules take a specific micro-anatomical route via lymph node conduits. AU - Reversat, Anne AU - Sixt, Michael K ID - 5672 IS - 12 JF - Journal of Experimental Medicine SN - 00221007 TI - IgM's exit route VL - 215 ER - TY - JOUR AB - Lymphatic endothelial cells (LECs) release extracellular chemokines to guide the migration of dendritic cells. In this study, we report that LECs also release basolateral exosome-rich endothelial vesicles (EEVs) that are secreted in greater numbers in the presence of inflammatory cytokines and accumulate in the perivascular stroma of small lymphatic vessels in human chronic inflammatory diseases. Proteomic analyses of EEV fractions identified > 1,700 cargo proteins and revealed a dominant motility-promoting protein signature. In vitro and ex vivo EEV fractions augmented cellular protrusion formation in a CX3CL1/fractalkine-dependent fashion and enhanced the directional migratory response of human dendritic cells along guidance cues. We conclude that perilymphatic LEC exosomes enhance exploratory behavior and thus promote directional migration of CX3CR1-expressing cells in complex tissue environments. AU - Brown, Markus AU - Johnson, Louise AU - Leone, Dario AU - Májek, Peter AU - Vaahtomeri, Kari AU - Senfter, Daniel AU - Bukosza, Nora AU - Schachner, Helga AU - Asfour, Gabriele AU - Langer, Brigitte AU - Hauschild, Robert AU - Parapatics, Katja AU - Hong, Young AU - Bennett, Keiryn AU - Kain, Renate AU - Detmar, Michael AU - Sixt, Michael K AU - Jackson, David AU - Kerjaschki, Dontscho ID - 275 IS - 6 JF - Journal of Cell Biology TI - Lymphatic exosomes promote dendritic cell migration along guidance cues VL - 217 ER - TY - JOUR AB - Spatial patterns are ubiquitous on the subcellular, cellular and tissue level, and can be studied using imaging techniques such as light and fluorescence microscopy. Imaging data provide quantitative information about biological systems; however, mechanisms causing spatial patterning often remain elusive. In recent years, spatio-temporal mathematical modelling has helped to overcome this problem. Yet, outliers and structured noise limit modelling of whole imaging data, and models often consider spatial summary statistics. Here, we introduce an integrated data-driven modelling approach that can cope with measurement artefacts and whole imaging data. Our approach combines mechanistic models of the biological processes with robust statistical models of the measurement process. The parameters of the integrated model are calibrated using a maximum-likelihood approach. We used this integrated modelling approach to study in vivo gradients of the chemokine (C-C motif) ligand 21 (CCL21). CCL21 gradients guide dendritic cells and are important in the adaptive immune response. Using artificial data, we verified that the integrated modelling approach provides reliable parameter estimates in the presence of measurement noise and that bias and variance of these estimates are reduced compared to conventional approaches. The application to experimental data allowed the parametrization and subsequent refinement of the model using additional mechanisms. Among other results, model-based hypothesis testing predicted lymphatic vessel-dependent concentration of heparan sulfate, the binding partner of CCL21. The selected model provided an accurate description of the experimental data and was partially validated using published data. Our findings demonstrate that integrated statistical modelling of whole imaging data is computationally feasible and can provide novel biological insights. AU - Hross, Sabrina AU - Theis, Fabian J. AU - Sixt, Michael K AU - Hasenauer, Jan ID - 5858 IS - 149 JF - Journal of the Royal Society Interface SN - 17425689 TI - Mechanistic description of spatial processes using integrative modelling of noise-corrupted imaging data VL - 15 ER - TY - CHAP AB - Cells migrating in multicellular organisms steadily traverse complex three-dimensional (3D) environments. To decipher the underlying cell biology, current experimental setups either use simplified 2D, tissue-mimetic 3D (e.g., collagen matrices) or in vivo environments. While only in vivo experiments are truly physiological, they do not allow for precise manipulation of environmental parameters. 2D in vitro experiments do allow mechanical and chemical manipulations, but increasing evidence demonstrates substantial differences of migratory mechanisms in 2D and 3D. Here, we describe simple, robust, and versatile “pillar forests” to investigate cell migration in complex but fully controllable 3D environments. Pillar forests are polydimethylsiloxane-based setups, in which two closely adjacent surfaces are interconnected by arrays of micrometer-sized pillars. Changing the pillar shape, size, height and the inter-pillar distance precisely manipulates microenvironmental parameters (e.g., pore sizes, micro-geometry, micro-topology), while being easily combined with chemotactic cues, surface coatings, diverse cell types and advanced imaging techniques. Thus, pillar forests combine the advantages of 2D cell migration assays with the precise definition of 3D environmental parameters. AU - Renkawitz, Jörg AU - Reversat, Anne AU - Leithner, Alexander F AU - Merrin, Jack AU - Sixt, Michael K ID - 153 SN - 0091679X T2 - Methods in Cell Biology TI - Micro-engineered “pillar forests” to study cell migration in complex but controlled 3D environments VL - 147 ER - TY - JOUR AB - Directed migration of cells relies on their ability to sense directional guidance cues and to interact with pericellular structures in order to transduce contractile cytoskeletal- into mechanical forces. These biomechanical processes depend highly on microenvironmental factors such as exposure to 2D surfaces or 3D matrices. In vivo, the majority of cells are exposed to 3D environments. Data on 3D cell migration are mostly derived from intravital microscopy or collagen-based in vitro assays. Both approaches offer only limited controlla-bility of experimental conditions. Here, we developed an automated microfluidic system that allows positioning of cells in 3D microenvironments containing highly controlled diffusion-based chemokine gradients. Tracking migration in such gradients was feasible in real time at the single cell level. Moreover, the setup allowed on-chip immunocytochemistry and thus linking of functional with phenotypical properties in individual cells. Spatially defined retrieval of cells from the device allows down-stream off-chip analysis. Using dendritic cells as a model, our setup specifically allowed us for the first time to quantitate key migration characteristics of cells exposed to identical gradients of the chemokine CCL19 yet placed on 2D vs in 3D environments. Migration properties between 2D and 3D migration were distinct. Morphological features of cells migrating in an in vitro 3D environment were similar to those of cells migrating in animal tissues, but different from cells migrating on a surface. Our system thus offers a highly controllable in vitro-mimic of a 3D environment that cells traffic in vivo. AU - Frick, Corina AU - Dettinger, Philip AU - Renkawitz, Jörg AU - Jauch, Annaïse AU - Berger, Christoph AU - Recher, Mike AU - Schroeder, Timm AU - Mehling, Matthias ID - 276 IS - 6 JF - PLoS One TI - Nano-scale microfluidics to study 3D chemotaxis at the single cell level VL - 13 ER - TY - JOUR AB - In zebrafish larvae, it is the cell type that determines how the cell responds to a chemokine signal. AU - Alanko, Jonna H AU - Sixt, Michael K ID - 5861 JF - eLife SN - 2050084X TI - The cell sets the tone VL - 7 ER - TY - JOUR AB - G-protein-coupled receptors (GPCRs) form the largest receptor family, relay environmental stimuli to changes in cell behavior and represent prime drug targets. Many GPCRs are classified as orphan receptors because of the limited knowledge on their ligands and coupling to cellular signaling machineries. Here, we engineer a library of 63 chimeric receptors that contain the signaling domains of human orphan and understudied GPCRs functionally linked to the light-sensing domain of rhodopsin. Upon stimulation with visible light, we identify activation of canonical cell signaling pathways, including cAMP-, Ca2+-, MAPK/ERK-, and Rho-dependent pathways, downstream of the engineered receptors. For the human pseudogene GPR33, we resurrect a signaling function that supports its hypothesized role as a pathogen entry site. These results demonstrate that substituting unknown chemical activators with a light switch can reveal information about protein function and provide an optically controlled protein library for exploring the physiology and therapeutic potential of understudied GPCRs. AU - Morri, Maurizio AU - Sanchez-Romero, Inmaculada AU - Tichy, Alexandra-Madelaine AU - Kainrath, Stephanie AU - Gerrard, Elliot J. AU - Hirschfeld, Priscila AU - Schwarz, Jan AU - Janovjak, Harald L ID - 5984 IS - 1 JF - Nature Communications SN - 2041-1723 TI - Optical functionalization of human class A orphan G-protein-coupled receptors VL - 9 ER - TY - JOUR AB - Lamellipodia are flat membrane protrusions formed during mesenchymal motion. Polymerization at the leading edge assembles the actin filament network and generates protrusion force. How this force is supported by the network and how the assembly rate is shared between protrusion and network retrograde flow determines the protrusion rate. We use mathematical modeling to understand experiments changing the F-actin density in lamellipodia of B16-F1 melanoma cells by modulation of Arp2/3 complex activity or knockout of the formins FMNL2 and FMNL3. Cells respond to a reduction of density with a decrease of protrusion velocity, an increase in the ratio of force to filament number, but constant network assembly rate. The relation between protrusion force and tension gradient in the F-actin network and the density dependency of friction, elasticity, and viscosity of the network explain the experimental observations. The formins act as filament nucleators and elongators with differential rates. Modulation of their activity suggests an effect on network assembly rate. Contrary to these expectations, the effect of changes in elongator composition is much weaker than the consequences of the density change. We conclude that the force acting on the leading edge membrane is the force required to drive F-actin network retrograde flow. AU - Dolati, Setareh AU - Kage, Frieda AU - Mueller, Jan AU - Müsken, Mathias AU - Kirchner, Marieluise AU - Dittmar, Gunnar AU - Sixt, Michael K AU - Rottner, Klemens AU - Falcke, Martin ID - 5992 IS - 22 JF - Molecular Biology of the Cell TI - On the relation between filament density, force generation, and protrusion rate in mesenchymal cell motility VL - 29 ER - TY - JOUR AB - T cells are actively scanning pMHC-presenting cells in lymphoid organs and nonlymphoid tissues (NLTs) with divergent topologies and confinement. How the T cell actomyosin cytoskeleton facilitates this task in distinct environments is incompletely understood. Here, we show that lack of Myosin IXb (Myo9b), a negative regulator of the small GTPase Rho, led to increased Rho-GTP levels and cell surface stiffness in primary T cells. Nonetheless, intravital imaging revealed robust motility of Myo9b−/− CD8+ T cells in lymphoid tissue and similar expansion and differentiation during immune responses. In contrast, accumulation of Myo9b−/− CD8+ T cells in NLTs was strongly impaired. Specifically, Myo9b was required for T cell crossing of basement membranes, such as those which are present between dermis and epidermis. As consequence, Myo9b−/− CD8+ T cells showed impaired control of skin infections. In sum, we show that Myo9b is critical for the CD8+ T cell adaptation from lymphoid to NLT surveillance and the establishment of protective tissue–resident T cell populations. AU - Moalli, Federica AU - Ficht, Xenia AU - Germann, Philipp AU - Vladymyrov, Mykhailo AU - Stolp, Bettina AU - de Vries, Ingrid AU - Lyck, Ruth AU - Balmer, Jasmin AU - Fiocchi, Amleto AU - Kreutzfeldt, Mario AU - Merkler, Doron AU - Iannacone, Matteo AU - Ariga, Akitaka AU - Stoffel, Michael H. AU - Sharpe, James AU - Bähler, Martin AU - Sixt, Michael K AU - Diz-Muñoz, Alba AU - Stein, Jens V. ID - 6497 IS - 7 JF - The Journal of Experimental Medicine SN - 0022-1007 TI - The Rho regulator Myosin IXb enables nonlymphoid tissue seeding of protective CD8+T cells VL - 2015 ER - TY - JOUR AB - During metastasis, malignant cells escape the primary tumor, intravasate lymphatic vessels, and reach draining sentinel lymph nodes before they colonize distant organs via the blood circulation. Although lymph node metastasis in cancer patients correlates with poor prognosis, evidence is lacking as to whether and how tumor cells enter the bloodstream via lymph nodes. To investigate this question, we delivered carcinoma cells into the lymph nodes of mice by microinfusing the cells into afferent lymphatic vessels. We found that tumor cells rapidly infiltrated the lymph node parenchyma, invaded blood vessels, and seeded lung metastases without involvement of the thoracic duct. These results suggest that the lymph node blood vessels can serve as an exit route for systemic dissemination of cancer cells in experimental mouse models. Whether this form of tumor cell spreading occurs in cancer patients remains to be determined. AU - Brown, Markus AU - Assen, Frank P AU - Leithner, Alexander F AU - Abe, Jun AU - Schachner, Helga AU - Asfour, Gabriele AU - Bagó Horváth, Zsuzsanna AU - Stein, Jens AU - Uhrin, Pavel AU - Sixt, Michael K AU - Kerjaschki, Dontscho ID - 402 IS - 6382 JF - Science TI - Lymph node blood vessels provide exit routes for metastatic tumor cell dissemination in mice VL - 359 ER - TY - THES AB - In the here presented thesis, we explore the role of branched actin networks in cell migration and antigen presentation, the two most relevant processes in dendritic cell biology. Branched actin networks construct lamellipodial protrusions at the leading edge of migrating cells. These are typically seen as adhesive structures, which mediate force transduction to the extracellular matrix that leads to forward locomotion. We ablated Arp2/3 nucleation promoting factor WAVE in DCs and found that the resulting cells lack lamellipodial protrusions. Instead, depending on the maturation state, one or multiple filopodia were formed. By challenging these cells in a variety of migration assays we found that lamellipodial protrusions are dispensable for the locomotion of leukocytes and actually dampen the speed of migration. However, lamellipodia are critically required to negotiate complex environments that DCs experience while they travel to the next draining lymph node. Taken together our results suggest that leukocyte lamellipodia have rather a sensory- than a force transducing function. Furthermore, we show for the first time structure and dynamics of dendritic cell F-actin at the immunological synapse with naïve T cells. Dendritic cell F-actin appears as dynamic foci that are nucleated by the Arp2/3 complex. WAVE ablated dendritic cells show increased membrane tension, leading to an altered ultrastructure of the immunological synapse and severe T cell priming defects. These results point towards a previously unappreciated role of the cellular mechanics of dendritic cells in T cell activation. Additionally, we present a novel cell culture based system for the differentiation of dendritic cells from conditionally immortalized hematopoietic precursors. These precursor cells are genetically tractable via the CRISPR/Cas9 system while they retain their ability to differentiate into highly migratory dendritic cells and other immune cells. This will foster the study of all aspects of dendritic cell biology and beyond. AU - Leithner, Alexander F ID - 323 SN - 2663-337X TI - Branched actin networks in dendritic cell biology ER - TY - JOUR AB - Although much is known about the physiological framework of T cell motility, and numerous rate-limiting molecules have been identified through loss-of-function approaches, an integrated functional concept of T cell motility is lacking. Here, we used in vivo precision morphometry together with analysis of cytoskeletal dynamics in vitro to deconstruct the basic mechanisms of T cell migration within lymphatic organs. We show that the contributions of the integrin LFA-1 and the chemokine receptor CCR7 are complementary rather than positioned in a linear pathway, as they are during leukocyte extravasation from the blood vasculature. Our data demonstrate that CCR7 controls cortical actin flows, whereas integrins mediate substrate friction that is sufficient to drive locomotion in the absence of considerable surface adhesions and plasma membrane flux. AU - Hons, Miroslav AU - Kopf, Aglaja AU - Hauschild, Robert AU - Leithner, Alexander F AU - Gärtner, Florian R AU - Abe, Jun AU - Renkawitz, Jörg AU - Stein, Jens AU - Sixt, Michael K ID - 15 IS - 6 JF - Nature Immunology TI - Chemokines and integrins independently tune actin flow and substrate friction during intranodal migration of T cells VL - 19 ER - TY - JOUR AB - The actomyosin ring generates force to ingress the cytokinetic cleavage furrow in animal cells, yet its filament organization and the mechanism of contractility is not well understood. We quantified actin filament order in human cells using fluorescence polarization microscopy and found that cleavage furrow ingression initiates by contraction of an equatorial actin network with randomly oriented filaments. The network subsequently gradually reoriented actin filaments along the cell equator. This strictly depended on myosin II activity, suggesting local network reorganization by mechanical forces. Cortical laser microsurgery revealed that during cytokinesis progression, mechanical tension increased substantially along the direction of the cell equator, while the network contracted laterally along the pole-to-pole axis without a detectable increase in tension. Our data suggest that an asymmetric increase in cortical tension promotes filament reorientation along the cytokinetic cleavage furrow, which might have implications for diverse other biological processes involving actomyosin rings. AU - Spira, Felix AU - Cuylen Haering, Sara AU - Mehta, Shalin AU - Samwer, Matthias AU - Reversat, Anne AU - Verma, Amitabh AU - Oldenbourg, Rudolf AU - Sixt, Michael K AU - Gerlich, Daniel ID - 569 JF - eLife SN - 2050084X TI - Cytokinesis in vertebrate cells initiates by contraction of an equatorial actomyosin network composed of randomly oriented filaments VL - 6 ER - TY - JOUR AB - Blood platelets are critical for hemostasis and thrombosis and play diverse roles during immune responses. Despite these versatile tasks in mammalian biology, their skills on a cellular level are deemed limited, mainly consisting in rolling, adhesion, and aggregate formation. Here, we identify an unappreciated asset of platelets and show that adherent platelets use adhesion receptors to mechanically probe the adhesive substrate in their local microenvironment. When actomyosin-dependent traction forces overcome substrate resistance, platelets migrate and pile up the adhesive substrate together with any bound particulate material. They use this ability to act as cellular scavengers, scanning the vascular surface for potential invaders and collecting deposited bacteria. Microbe collection by migrating platelets boosts the activity of professional phagocytes, exacerbating inflammatory tissue injury in sepsis. This assigns platelets a central role in innate immune responses and identifies them as potential targets to dampen inflammatory tissue damage in clinical scenarios of severe systemic infection. In addition to their role in thrombosis and hemostasis, platelets can also migrate to sites of infection to help trap bacteria and clear the vascular surface. AU - Gärtner, Florian R AU - Ahmad, Zerkah AU - Rosenberger, Gerhild AU - Fan, Shuxia AU - Nicolai, Leo AU - Busch, Benjamin AU - Yavuz, Gökce AU - Luckner, Manja AU - Ishikawa Ankerhold, Hellen AU - Hennel, Roman AU - Benechet, Alexandre AU - Lorenz, Michael AU - Chandraratne, Sue AU - Schubert, Irene AU - Helmer, Sebastian AU - Striednig, Bianca AU - Stark, Konstantin AU - Janko, Marek AU - Böttcher, Ralph AU - Verschoor, Admar AU - Leon, Catherine AU - Gachet, Christian AU - Gudermann, Thomas AU - Mederos Y Schnitzler, Michael AU - Pincus, Zachary AU - Iannacone, Matteo AU - Haas, Rainer AU - Wanner, Gerhard AU - Lauber, Kirsten AU - Sixt, Michael K AU - Massberg, Steffen ID - 571 IS - 6 JF - Cell Press SN - 00928674 TI - Migrating platelets are mechano scavengers that collect and bundle bacteria VL - 171 ER - TY - JOUR AB - Migration frequently involves Rac-mediated protrusion of lamellipodia, formed by Arp2/3 complex-dependent branching thought to be crucial for force generation and stability of these networks. The formins FMNL2 and FMNL3 are Cdc42 effectors targeting to the lamellipodium tip and shown here to nucleate and elongate actin filaments with complementary activities in vitro. In migrating B16-F1 melanoma cells, both formins contribute to the velocity of lamellipodium protrusion. Loss of FMNL2/3 function in melanoma cells and fibroblasts reduces lamellipodial width, actin filament density and -bundling, without changing patterns of Arp2/3 complex incorporation. Strikingly, in melanoma cells, FMNL2/3 gene inactivation almost completely abolishes protrusion forces exerted by lamellipodia and modifies their ultrastructural organization. Consistently, CRISPR/Cas-mediated depletion of FMNL2/3 in fibroblasts reduces both migration and capability of cells to move against viscous media. Together, we conclude that force generation in lamellipodia strongly depends on FMNL formin activity, operating in addition to Arp2/3 complex-dependent filament branching. AU - Kage, Frieda AU - Winterhoff, Moritz AU - Dimchev, Vanessa AU - Müller, Jan AU - Thalheim, Tobias AU - Freise, Anika AU - Brühmann, Stefan AU - Kollasser, Jana AU - Block, Jennifer AU - Dimchev, Georgi A AU - Geyer, Matthias AU - Schnittler, Hams AU - Brakebusch, Cord AU - Stradal, Theresia AU - Carlier, Marie AU - Sixt, Michael K AU - Käs, Josef AU - Faix, Jan AU - Rottner, Klemens ID - 659 JF - Nature Communications SN - 20411723 TI - FMNL formins boost lamellipodial force generation VL - 8 ER - TY - JOUR AB - Macrophage filopodia, finger-like membrane protrusions, were first implicated in phagocytosis more than 100 years ago, but little is still known about the involvement of these actin-dependent structures in particle clearance. Using spinning disk confocal microscopy to image filopodial dynamics in mouse resident Lifeact-EGFP macrophages, we show that filopodia, or filopodia-like structures, support pathogen clearance by multiple means. Filopodia supported the phagocytic uptake of bacterial (Escherichia coli) particles by (i) capturing along the filopodial shaft and surfing toward the cell body, the most common mode of capture; (ii) capturing via the tip followed by retraction; (iii) combinations of surfing and retraction; or (iv) sweeping actions. In addition, filopodia supported the uptake of zymosan (Saccharomyces cerevisiae) particles by (i) providing fixation, (ii) capturing at the tip and filopodia-guided actin anterograde flow with phagocytic cup formation, and (iii) the rapid growth of new protrusions. To explore the role of filopodia-inducing Cdc42, we generated myeloid-restricted Cdc42 knock-out mice. Cdc42-deficient macrophages exhibited rapid phagocytic cup kinetics, but reduced particle clearance, which could be explained by the marked rounded-up morphology of these cells. Macrophages lacking Myo10, thought to act downstream of Cdc42, had normal morphology, motility, and phagocytic cup formation, but displayed markedly reduced filopodia formation. In conclusion, live-cell imaging revealed multiple mechanisms involving macrophage filopodia in particle capture and engulfment. Cdc42 is not critical for filopodia or phagocytic cup formation, but plays a key role in driving macrophage lamellipodial spreading. AU - Horsthemke, Markus AU - Bachg, Anne AU - Groll, Katharina AU - Moyzio, Sven AU - Müther, Barbara AU - Hemkemeyer, Sandra AU - Wedlich Söldner, Roland AU - Sixt, Michael K AU - Tacke, Sebastian AU - Bähler, Martin AU - Hanley, Peter ID - 668 IS - 17 JF - Journal of Biological Chemistry SN - 00219258 TI - Multiple roles of filopodial dynamics in particle capture and phagocytosis and phenotypes of Cdc42 and Myo10 deletion VL - 292 ER - TY - JOUR AB - Trafficking cells frequently transmigrate through epithelial and endothelial monolayers. How monolayers cooperate with the penetrating cells to support their transit is poorly understood. We studied dendritic cell (DC) entry into lymphatic capillaries as a model system for transendothelial migration. We find that the chemokine CCL21, which is the decisive guidance cue for intravasation, mainly localizes in the trans-Golgi network and intracellular vesicles of lymphatic endothelial cells. Upon DC transmigration, these Golgi deposits disperse and CCL21 becomes extracellularly enriched at the sites of endothelial cell-cell junctions. When we reconstitute the transmigration process in vitro, we find that secretion of CCL21-positive vesicles is triggered by a DC contact-induced calcium signal, and selective calcium chelation in lymphatic endothelium attenuates transmigration. Altogether, our data demonstrate a chemokine-mediated feedback between DCs and lymphatic endothelium, which facilitates transendothelial migration. AU - Vaahtomeri, Kari AU - Brown, Markus AU - Hauschild, Robert AU - De Vries, Ingrid AU - Leithner, Alexander F AU - Mehling, Matthias AU - Kaufmann, Walter AU - Sixt, Michael K ID - 672 IS - 5 JF - Cell Reports SN - 22111247 TI - Locally triggered release of the chemokine CCL21 promotes dendritic cell transmigration across lymphatic endothelia VL - 19 ER - TY - JOUR AB - Navigation of cells along gradients of guidance cues is a determining step in many developmental and immunological processes. Gradients can either be soluble or immobilized to tissues as demonstrated for the haptotactic migration of dendritic cells (DCs) toward higher concentrations of immobilized chemokine CCL21. To elucidate how gradient characteristics govern cellular response patterns, we here introduce an in vitro system allowing to track migratory responses of DCs to precisely controlled immobilized gradients of CCL21. We find that haptotactic sensing depends on the absolute CCL21 concentration and local steepness of the gradient, consistent with a scenario where DC directionality is governed by the signal-to-noise ratio of CCL21 binding to the receptor CCR7. We find that the conditions for optimal DC guidance are perfectly provided by the CCL21 gradients we measure in vivo. Furthermore, we find that CCR7 signal termination by the G-protein-coupled receptor kinase 6 (GRK6) is crucial for haptotactic but dispensable for chemotactic CCL21 gradient sensing in vitro and confirm those observations in vivo. These findings suggest that stable, tissue-bound CCL21 gradients as sustainable “roads” ensure optimal guidance in vivo. AU - Schwarz, Jan AU - Bierbaum, Veronika AU - Vaahtomeri, Kari AU - Hauschild, Robert AU - Brown, Markus AU - De Vries, Ingrid AU - Leithner, Alexander F AU - Reversat, Anne AU - Merrin, Jack AU - Tarrant, Teresa AU - Bollenbach, Tobias AU - Sixt, Michael K ID - 674 IS - 9 JF - Current Biology SN - 09609822 TI - Dendritic cells interpret haptotactic chemokine gradients in a manner governed by signal to noise ratio and dependent on GRK6 VL - 27 ER - TY - JOUR AB - The INO80 complex (INO80-C) is an evolutionarily conserved nucleosome remodeler that acts in transcription, replication, and genome stability. It is required for resistance against genotoxic agents and is involved in the repair of DNA double-strand breaks (DSBs) by homologous recombination (HR). However, the causes of the HR defect in INO80-C mutant cells are controversial. Here, we unite previous findings using a system to study HR with high spatial resolution in budding yeast. We find that INO80-C has at least two distinct functions during HR—DNA end resection and presynaptic filament formation. Importantly, the second function is linked to the histone variant H2A.Z. In the absence of H2A.Z, presynaptic filament formation and HR are restored in INO80-C-deficient mutants, suggesting that presynaptic filament formation is the crucial INO80-C function during HR. AU - Lademann, Claudio AU - Renkawitz, Jörg AU - Pfander, Boris AU - Jentsch, Stefan ID - 677 IS - 7 JF - Cell Reports SN - 22111247 TI - The INO80 complex removes H2A.Z to promote presynaptic filament formation during homologous recombination VL - 19 ER - TY - JOUR AB - A change regarding the extent of adhesion - hereafter referred to as adhesion plasticity - between adhesive and less-adhesive states of mammalian cells is important for their behavior. To investigate adhesion plasticity, we have selected a stable isogenic subpopulation of human MDA-MB-468 breast carcinoma cells growing in suspension. These suspension cells are unable to re-adhere to various matrices or to contract three-dimensional collagen lattices. By using transcriptome analysis, we identified the focal adhesion protein tensin3 (Tns3) as a determinant of adhesion plasticity. Tns3 is strongly reduced at mRNA and protein levels in suspension cells. Furthermore, by transiently challenging breast cancer cells to grow under non-adherent conditions markedly reduces Tns3 protein expression, which is regained upon re-adhesion. Stable knockdown of Tns3 in parental MDA-MB-468 cells results in defective adhesion, spreading and migration. Tns3-knockdown cells display impaired structure and dynamics of focal adhesion complexes as determined by immunostaining. Restoration of Tns3 protein expression in suspension cells partially rescues adhesion and focal contact composition. Our work identifies Tns3 as a crucial focal adhesion component regulated by, and functionally contributing to, the switch between adhesive and non-adhesive states in MDA-MB-468 cancer cells. AU - Veß, Astrid AU - Blache, Ulrich AU - Leitner, Laura AU - Kurz, Angela AU - Ehrenpfordt, Anja AU - Sixt, Michael K AU - Posern, Guido ID - 694 IS - 13 JF - Journal of Cell Science SN - 00219533 TI - A dual phenotype of MDA MB 468 cancer cells reveals mutual regulation of tensin3 and adhesion plasticity VL - 130 ER - TY - JOUR AB - Coordinated changes of cell shape are often the result of the excitable, wave-like dynamics of the actin cytoskeleton. New work shows that, in migrating cells, protrusion waves arise from mechanochemical crosstalk between adhesion sites, membrane tension and the actin protrusive machinery. AU - Müller, Jan AU - Sixt, Michael K ID - 1161 IS - 1 JF - Current Biology SN - 09609822 TI - Cell migration: Making the waves VL - 27 ER - TY - JOUR AB - Actin filaments polymerizing against membranes power endocytosis, vesicular traffic, and cell motility. In vitro reconstitution studies suggest that the structure and the dynamics of actin networks respond to mechanical forces. We demonstrate that lamellipodial actin of migrating cells responds to mechanical load when membrane tension is modulated. In a steady state, migrating cell filaments assume the canonical dendritic geometry, defined by Arp2/3-generated 70° branch points. Increased tension triggers a dense network with a broadened range of angles, whereas decreased tension causes a shift to a sparse configuration dominated by filaments growing perpendicularly to the plasma membrane. We show that these responses emerge from the geometry of branched actin: when load per filament decreases, elongation speed increases and perpendicular filaments gradually outcompete others because they polymerize the shortest distance to the membrane, where they are protected from capping. This network-intrinsic geometrical adaptation mechanism tunes protrusive force in response to mechanical load. AU - Mueller, Jan AU - Szep, Gregory AU - Nemethova, Maria AU - De Vries, Ingrid AU - Lieber, Arnon AU - Winkler, Christoph AU - Kruse, Karsten AU - Small, John AU - Schmeiser, Christian AU - Keren, Kinneret AU - Hauschild, Robert AU - Sixt, Michael K ID - 727 IS - 1 JF - Cell SN - 00928674 TI - Load adaptation of lamellipodial actin networks VL - 171 ER - TY - DATA AB - Immunological synapse DC-Tcells AU - Leithner, Alexander F ID - 5567 KW - Immunological synapse TI - Immunological synapse DC-Tcells ER - TY - JOUR AB - Immune cells communicate using cytokine signals, but the quantitative rules of this communication aren't clear. In this issue of Immunity, Oyler-Yaniv et al. (2017) suggest that the distribution of a cytokine within a lymphatic organ is primarily governed by the local density of cells consuming it. AU - Assen, Frank P AU - Sixt, Michael K ID - 664 IS - 4 JF - Immunity SN - 10747613 TI - The dynamic cytokine niche VL - 46 ER - TY - JOUR AB - Protective responses against pathogens require a rapid mobilization of resting neutrophils and the timely removal of activated ones. Neutrophils are exceptionally short-lived leukocytes, yet it remains unclear whether the lifespan of pathogen-engaged neutrophils is regulated differently from that in the circulating steady-state pool. Here, we have found that under homeostatic conditions, the mRNA-destabilizing protein tristetraprolin (TTP) regulates apoptosis and the numbers of activated infiltrating murine neutrophils but not neutrophil cellularity. Activated TTP-deficient neutrophils exhibited decreased apoptosis and enhanced accumulation at the infection site. In the context of myeloid-specific deletion of Ttp, the potentiation of neutrophil deployment protected mice against lethal soft tissue infection with Streptococcus pyogenes and prevented bacterial dissemination. Neutrophil transcriptome analysis revealed that decreased apoptosis of TTP-deficient neutrophils was specifically associated with elevated expression of myeloid cell leukemia 1 (Mcl1) but not other antiapoptotic B cell leukemia/ lymphoma 2 (Bcl2) family members. Higher Mcl1 expression resulted from stabilization of Mcl1 mRNA in the absence of TTP. The low apoptosis rate of infiltrating TTP-deficient neutrophils was comparable to that of transgenic Mcl1-overexpressing neutrophils. Our study demonstrates that posttranscriptional gene regulation by TTP schedules the termination of the antimicrobial engagement of neutrophils. The balancing role of TTP comes at the cost of an increased risk of bacterial infections. AU - Ebner, Florian AU - Sedlyarov, Vitaly AU - Tasciyan, Saren AU - Ivin, Masa AU - Kratochvill, Franz AU - Gratz, Nina AU - Kenner, Lukas AU - Villunger, Andreas AU - Sixt, Michael K AU - Kovarik, Pavel ID - 679 IS - 6 JF - The Journal of Clinical Investigation SN - 00219738 TI - The RNA-binding protein tristetraprolin schedules apoptosis of pathogen-engaged neutrophils during bacterial infection VL - 127 ER - TY - JOUR AB - RASGRP1 is an important guanine nucleotide exchange factor and activator of the RAS-MAPK pathway following T cell antigen receptor (TCR) signaling. The consequences of RASGRP1 mutations in humans are unknown. In a patient with recurrent bacterial and viral infections, born to healthy consanguineous parents, we used homozygosity mapping and exome sequencing to identify a biallelic stop-gain variant in RASGRP1. This variant segregated perfectly with the disease and has not been reported in genetic databases. RASGRP1 deficiency was associated in T cells and B cells with decreased phosphorylation of the extracellular-signal-regulated serine kinase ERK, which was restored following expression of wild-type RASGRP1. RASGRP1 deficiency also resulted in defective proliferation, activation and motility of T cells and B cells. RASGRP1-deficient natural killer (NK) cells exhibited impaired cytotoxicity with defective granule convergence and actin accumulation. Interaction proteomics identified the dynein light chain DYNLL1 as interacting with RASGRP1, which links RASGRP1 to cytoskeletal dynamics. RASGRP1-deficient cells showed decreased activation of the GTPase RhoA. Treatment with lenalidomide increased RhoA activity and reversed the migration and activation defects of RASGRP1-deficient lymphocytes. AU - Salzer, Elisabeth AU - Çaǧdaş, Deniz AU - Hons, Miroslav AU - Mace, Emily AU - Garncarz, Wojciech AU - Petronczki, Oezlem AU - Platzer, René AU - Pfajfer, Laurène AU - Bilic, Ivan AU - Ban, Sol AU - Willmann, Katharina AU - Mukherjee, Malini AU - Supper, Verena AU - Hsu, Hsiangting AU - Banerjee, Pinaki AU - Sinha, Papiya AU - Mcclanahan, Fabienne AU - Zlabinger, Gerhard AU - Pickl, Winfried AU - Gribben, John AU - Stockinger, Hannes AU - Bennett, Keiryn AU - Huppa, Johannes AU - Dupré, Loï̈C AU - Sanal, Özden AU - Jäger, Ulrich AU - Sixt, Michael K AU - Tezcan, Ilhan AU - Orange, Jordan AU - Boztug, Kaan ID - 1137 IS - 12 JF - Nature Immunology TI - RASGRP1 deficiency causes immunodeficiency with impaired cytoskeletal dynamics VL - 17 ER - TY - JOUR AB - Hemolysis drives susceptibility to bacterial infections and predicts poor outcome from sepsis. These detrimental effects are commonly considered to be a consequence of heme-iron serving as a nutrient for bacteria. We employed a Gram-negative sepsis model and found that elevated heme levels impaired the control of bacterial proliferation independently of heme-iron acquisition by pathogens. Heme strongly inhibited phagocytosis and the migration of human and mouse phagocytes by disrupting actin cytoskeletal dynamics via activation of the GTP-binding Rho family protein Cdc42 by the guanine nucleotide exchange factor DOCK8. A chemical screening approach revealed that quinine effectively prevented heme effects on the cytoskeleton, restored phagocytosis and improved survival in sepsis. These mechanistic insights provide potential therapeutic targets for patients with sepsis or hemolytic disorders. AU - Martins, Rui AU - Maier, Julia AU - Gorki, Anna AU - Huber, Kilian AU - Sharif, Omar AU - Starkl, Philipp AU - Saluzzo, Simona AU - Quattrone, Federica AU - Gawish, Riem AU - Lakovits, Karin AU - Aichinger, Michael AU - Radic Sarikas, Branka AU - Lardeau, Charles AU - Hladik, Anastasiya AU - Korosec, Ana AU - Brown, Markus AU - Vaahtomeri, Kari AU - Duggan, Michelle AU - Kerjaschki, Dontscho AU - Esterbauer, Harald AU - Colinge, Jacques AU - Eisenbarth, Stephanie AU - Decker, Thomas AU - Bennett, Keiryn AU - Kubicek, Stefan AU - Sixt, Michael K AU - Superti Furga, Giulio AU - Knapp, Sylvia ID - 1142 IS - 12 JF - Nature Immunology TI - Heme drives hemolysis-induced susceptibility to infection via disruption of phagocyte functions VL - 17 ER - TY - JOUR AB - When neutrophils infiltrate a site of inflammation, they have to stop at the right place to exert their effector function. In this issue of Developmental Cell, Wang et al. (2016) show that neutrophils sense reactive oxygen species via the TRPM2 channel to arrest migration at their target site. © 2016 Elsevier Inc. AU - Renkawitz, Jörg AU - Sixt, Michael K ID - 1150 IS - 5 JF - Developmental Cell TI - A Radical Break Restraining Neutrophil Migration VL - 38 ER - TY - JOUR AB - Cellular locomotion is a central hallmark of eukaryotic life. It is governed by cell-extrinsic molecular factors, which can either emerge in the soluble phase or as immobilized, often adhesive ligands. To encode for direction, every cue must be present as a spatial or temporal gradient. Here, we developed a microfluidic chamber that allows measurement of cell migration in combined response to surface immobilized and soluble molecular gradients. As a proof of principle we study the response of dendritic cells to their major guidance cues, chemokines. The majority of data on chemokine gradient sensing is based on in vitro studies employing soluble gradients. Despite evidence suggesting that in vivo chemokines are often immobilized to sugar residues, limited information is available how cells respond to immobilized chemokines. We tracked migration of dendritic cells towards immobilized gradients of the chemokine CCL21 and varying superimposed soluble gradients of CCL19. Differential migratory patterns illustrate the potential of our setup to quantitatively study the competitive response to both types of gradients. Beyond chemokines our approach is broadly applicable to alternative systems of chemo- and haptotaxis such as cells migrating along gradients of adhesion receptor ligands vs. any soluble cue. AU - Schwarz, Jan AU - Bierbaum, Veronika AU - Merrin, Jack AU - Frank, Tino AU - Hauschild, Robert AU - Bollenbach, Mark Tobias AU - Tay, Savaş AU - Sixt, Michael K AU - Mehling, Matthias ID - 1154 JF - Scientific Reports TI - A microfluidic device for measuring cell migration towards substrate bound and soluble chemokine gradients VL - 6 ER - TY - JOUR AB - In this issue of Cell, Skau et al. show that the formin FMN2 organizes a perinuclear actin cytoskeleton that protects the nucleus and its genomic content of migrating cells squeezing through small spaces. AU - Renkawitz, Jörg AU - Sixt, Michael K ID - 1201 IS - 6 JF - Cell TI - Formin’ a nuclear protection VL - 167 ER - TY - JOUR AB - Understanding the regulation of T-cell responses during inflammation and auto-immunity is fundamental for designing efficient therapeutic strategies against immune diseases. In this regard, prostaglandin E 2 (PGE 2) is mostly considered a myeloid-derived immunosuppressive molecule. We describe for the first time that T cells secrete PGE 2 during T-cell receptor stimulation. In addition, we show that autocrine PGE 2 signaling through EP receptors is essential for optimal CD4 + T-cell activation in vitro and in vivo, and for T helper 1 (Th1) and regulatory T cell differentiation. PGE 2 was found to provide additive co-stimulatory signaling through AKT activation. Intravital multiphoton microscopy showed that triggering EP receptors in T cells is also essential for the stability of T cell-dendritic cell (DC) interactions and Th-cell accumulation in draining lymph nodes (LNs) during inflammation. We further demonstrated that blocking EP receptors in T cells during the initial phase of collagen-induced arthritis in mice resulted in a reduction of clinical arthritis. This could be attributable to defective T-cell activation, accompanied by a decline in activated and interferon-γ-producing CD4 + Th1 cells in draining LNs. In conclusion, we prove that T lymphocytes secret picomolar concentrations of PGE 2, which in turn provide additive co-stimulatory signaling, enabling T cells to attain a favorable activation threshold. PGE 2 signaling in T cells is also required for maintaining long and stable interactions with DCs within LNs. Blockade of EP receptors in vivo impairs T-cell activation and development of T cell-mediated inflammatory responses. This may have implications in various pathophysiological settings. AU - Sreeramkumar, Vinatha AU - Hons, Miroslav AU - Punzón, Carmen AU - Stein, Jens AU - Sancho, David AU - Fresno Forcelledo, Manuel AU - Cuesta, Natalia ID - 1217 IS - 1 JF - Immunology and Cell Biology TI - Efficient T-cell priming and activation requires signaling through prostaglandin E2 (EP) receptors VL - 94 ER - TY - JOUR AB - Cell migration is central to a multitude of physiological processes, including embryonic development, immune surveillance, and wound healing, and deregulated migration is key to cancer dissemination. Decades of investigations have uncovered many of the molecular and physical mechanisms underlying cell migration. Together with protrusion extension and cell body retraction, adhesion to the substrate via specific focal adhesion points has long been considered an essential step in cell migration. Although this is true for cells moving on two-dimensional substrates, recent studies have demonstrated that focal adhesions are not required for cells moving in three dimensions, in which confinement is sufficient to maintain a cell in contact with its substrate. Here, we review the investigations that have led to challenging the requirement of specific adhesions for migration, discuss the physical mechanisms proposed for cell body translocation during focal adhesion-independent migration, and highlight the remaining open questions for the future. AU - Paluch, Ewa AU - Aspalter, Irene AU - Sixt, Michael K ID - 1285 JF - Annual Review of Cell and Developmental Biology TI - Focal adhesion-independent cell migration VL - 32 ER - TY - JOUR AB - To induce adaptive immunity, dendritic cells (DCs) migrate through afferent lymphatic vessels (LVs) to draining lymph nodes (dLNs). This process occurs in several consecutive steps. Upon entry into lymphatic capillaries, DCs first actively crawl into downstream collecting vessels. From there, they are next passively and rapidly transported to the dLN by lymph flow. Here, we describe a role for the chemokine CCL21 in intralymphatic DC crawling. Performing time-lapse imaging in murine skin, we found that blockade of CCL21-but not the absence of lymph flow-completely abolished DC migration from capillaries toward collecting vessels and reduced the ability of intralymphatic DCs to emigrate from skin. Moreover, we found that in vitro low laminar flow established a CCL21 gradient along lymphatic endothelial monolayers, thereby inducing downstream-directed DC migration. These findings reveal a role for intralymphatic CCL21 in promoting DC trafficking to dLNs, through the formation of a flow-induced gradient. AU - Russo, Erica AU - Teijeira, Alvaro AU - Vaahtomeri, Kari AU - Willrodt, Ann AU - Bloch, Joël AU - Nitschké, Maximilian AU - Santambrogio, Laura AU - Kerjaschki, Dontscho AU - Sixt, Michael K AU - Halin, Cornelia ID - 1490 IS - 7 JF - Cell Reports TI - Intralymphatic CCL21 promotes tissue egress of dendritic cells through afferent lymphatic vessels VL - 14 ER - TY - JOUR AB - The addition of polysialic acid to N- and/or O-linked glycans, referred to as polysialylation, is a rare posttranslational modification that is mainly known to control the developmental plasticity of the nervous system. Here we show that CCR7, the central chemokine receptor controlling immune cell trafficking to secondary lymphatic organs, carries polysialic acid. This modification is essential for the recognition of the CCR7 ligand CCL21. As a consequence, dendritic cell trafficking is abrogated in polysialyltransferase-deficient mice, manifesting as disturbed lymph node homeostasis and unresponsiveness to inflammatory stimuli. Structure-function analysis of chemokine-receptor interactions reveals that CCL21 adopts an autoinhibited conformation, which is released upon interaction with polysialic acid. Thus, we describe a glycosylation-mediated immune cell trafficking disorder and its mechanistic basis. AU - Kiermaier, Eva AU - Moussion, Christine AU - Veldkamp, Christopher AU - Gerardy Schahn, Rita AU - De Vries, Ingrid AU - Williams, Larry AU - Chaffee, Gary AU - Phillips, Andrew AU - Freiberger, Friedrich AU - Imre, Richard AU - Taleski, Deni AU - Payne, Richard AU - Braun, Asolina AU - Förster, Reinhold AU - Mechtler, Karl AU - Mühlenhoff, Martina AU - Volkman, Brian AU - Sixt, Michael K ID - 1599 IS - 6269 JF - Science TI - Polysialylation controls dendritic cell trafficking by regulating chemokine recognition VL - 351 ER - TY - JOUR AB - Chemokines are the main guidance cues directing leukocyte migration. Opposed to early assumptions, chemokines do not necessarily act as soluble cues but are often immobilized within tissues, e.g., dendritic cell migration toward lymphatic vessels is guided by a haptotactic gradient of the chemokine CCL21. Controlled assay systems to quantitatively study haptotaxis in vitro are still missing. In this chapter, we describe an in vitro haptotaxis assay optimized for the unique properties of dendritic cells. The chemokine CCL21 is immobilized in a bioactive state, using laser-assisted protein adsorption by photobleaching. The cells follow this immobilized CCL21 gradient in a haptotaxis chamber, which provides three dimensionally confined migration conditions. AU - Schwarz, Jan AU - Sixt, Michael K ID - 1597 JF - Methods in Enzymology TI - Quantitative analysis of dendritic cell haptotaxis VL - 570 ER - TY - THES AB - Directed cell migration is a hallmark feature, present in almost all multi-cellular organisms. Despite its importance, basic questions regarding force transduction or directional sensing are still heavily investigated. Directed migration of cells guided by immobilized guidance cues - haptotaxis - occurs in key-processes, such as embryonic development and immunity (Middleton et al., 1997; Nguyen et al., 2000; Thiery, 1984; Weber et al., 2013). Immobilized guidance cues comprise adhesive ligands, such as collagen and fibronectin (Barczyk et al., 2009), or chemokines - the main guidance cues for migratory leukocytes (Middleton et al., 1997; Weber et al., 2013). While adhesive ligands serve as attachment sites guiding cell migration (Carter, 1965), chemokines instruct haptotactic migration by inducing adhesion to adhesive ligands and directional guidance (Rot and Andrian, 2004; Schumann et al., 2010). Quantitative analysis of the cellular response to immobilized guidance cues requires in vitro assays that foster cell migration, offer accurate control of the immobilized cues on a subcellular scale and in the ideal case closely reproduce in vivo conditions. The exploration of haptotactic cell migration through design and employment of such assays represents the main focus of this work. Dendritic cells (DCs) are leukocytes, which after encountering danger signals such as pathogens in peripheral organs instruct naïve T-cells and consequently the adaptive immune response in the lymph node (Mellman and Steinman, 2001). To reach the lymph node from the periphery, DCs follow haptotactic gradients of the chemokine CCL21 towards lymphatic vessels (Weber et al., 2013). Questions about how DCs interpret haptotactic CCL21 gradients have not yet been addressed. The main reason for this is the lack of an assay that offers diverse haptotactic environments, hence allowing the study of DC migration as a response to different signals of immobilized guidance cue. In this work, we developed an in vitro assay that enables us to quantitatively assess DC haptotaxis, by combining precisely controllable chemokine photo-patterning with physically confining migration conditions. With this tool at hand, we studied the influence of CCL21 gradient properties and concentration on DC haptotaxis. We found that haptotactic gradient sensing depends on the absolute CCL21 concentration in combination with the local steepness of the gradient. Our analysis suggests that the directionality of migrating DCs is governed by the signal-to-noise ratio of CCL21 binding to its receptor CCR7. Moreover, the haptotactic CCL21 gradient formed in vivo provides an optimal shape for DCs to recognize haptotactic guidance cue. By reconstitution of the CCL21 gradient in vitro we were also able to study the influence of CCR7 signal termination on DC haptotaxis. To this end, we used DCs lacking the G-protein coupled receptor kinase GRK6, which is responsible for CCL21 induced CCR7 receptor phosphorylation and desensitization (Zidar et al., 2009). We found that CCR7 desensitization by GRK6 is crucial for maintenance of haptotactic CCL21 gradient sensing in vitro and confirm those observations in vivo. In the context of the organism, immobilized haptotactic guidance cues often coincide and compete with soluble chemotactic guidance cues. During wound healing, fibroblasts are exposed and influenced by adhesive cues and soluble factors at the same time (Wu et al., 2012; Wynn, 2008). Similarly, migrating DCs are exposed to both, soluble chemokines (CCL19 and truncated CCL21) inducing chemotactic behavior as well as the immobilized CCL21. To quantitatively assess these complex coinciding immobilized and soluble guidance cues, we implemented our chemokine photo-patterning technique in a microfluidic system allowing for chemotactic gradient generation. To validate the assay, we observed DC migration in competing CCL19/CCL21 environments. Adhesiveness guided haptotaxis has been studied intensively over the last century. However, quantitative studies leading to conceptual models are largely missing, again due to the lack of a precisely controllable in vitro assay. A requirement for such an in vitro assay is that it must prevent any uncontrolled cell adhesion. This can be accomplished by stable passivation of the surface. In addition, controlled adhesion must be sustainable, quantifiable and dose dependent in order to create homogenous gradients. Therefore, we developed a novel covalent photo-patterning technique satisfying all these needs. In combination with a sustainable poly-vinyl alcohol (PVA) surface coating we were able to generate gradients of adhesive cue to direct cell migration. This approach allowed us to characterize the haptotactic migratory behavior of zebrafish keratocytes in vitro. Furthermore, defined patterns of adhesive cue allowed us to control for cell shape and growth on a subcellular scale. AU - Schwarz, Jan ID - 1129 SN - 2663-337X TI - Quantitative analysis of haptotactic cell migration ER - TY - JOUR AB - Most migrating cells extrude their front by the force of actin polymerization. Polymerization requires an initial nucleation step, which is mediated by factors establishing either parallel filaments in the case of filopodia or branched filaments that form the branched lamellipodial network. Branches are considered essential for regular cell motility and are initiated by the Arp2/3 complex, which in turn is activated by nucleation-promoting factors of the WASP and WAVE families. Here we employed rapid amoeboid crawling leukocytes and found that deletion of the WAVE complex eliminated actin branching and thus lamellipodia formation. The cells were left with parallel filaments at the leading edge, which translated, depending on the differentiation status of the cell, into a unipolar pointed cell shape or cells with multiple filopodia. Remarkably, unipolar cells migrated with increased speed and enormous directional persistence, while they were unable to turn towards chemotactic gradients. Cells with multiple filopodia retained chemotactic activity but their migration was progressively impaired with increasing geometrical complexity of the extracellular environment. These findings establish that diversified leading edge protrusions serve as explorative structures while they slow down actual locomotion. AU - Leithner, Alexander F AU - Eichner, Alexander AU - Müller, Jan AU - Reversat, Anne AU - Brown, Markus AU - Schwarz, Jan AU - Merrin, Jack AU - De Gorter, David AU - Schur, Florian AU - Bayerl, Jonathan AU - De Vries, Ingrid AU - Wieser, Stefan AU - Hauschild, Robert AU - Lai, Frank AU - Moser, Markus AU - Kerjaschki, Dontscho AU - Rottner, Klemens AU - Small, Victor AU - Stradal, Theresia AU - Sixt, Michael K ID - 1321 JF - Nature Cell Biology TI - Diversified actin protrusions promote environmental exploration but are dispensable for locomotion of leukocytes VL - 18 ER - TY - JOUR AB - In growing cells, protein synthesis and cell growth are typically not synchronous, and, thus, protein concentrations vary over the cell division cycle. We have developed a theoretical description of genetic regulatory systems in bacteria that explicitly considers the cell division cycle to investigate its impact on gene expression. We calculate the cell-to-cell variations arising from cells being at different stages in the division cycle for unregulated genes and for basic regulatory mechanisms. These variations contribute to the extrinsic noise observed in single-cell experiments, and are most significant for proteins with short lifetimes. Negative autoregulation buffers against variation of protein concentration over the division cycle, but the effect is found to be relatively weak. Stronger buffering is achieved by an increased protein lifetime. Positive autoregulation can strongly amplify such variation if the parameters are set to values that lead to resonance-like behaviour. For cooperative positive autoregulation, the concentration variation over the division cycle diminishes the parameter region of bistability and modulates the switching times between the two stable states. The same effects are seen for a two-gene mutual-repression toggle switch. By contrast, an oscillatory circuit, the repressilator, is only weakly affected by the division cycle. AU - Bierbaum, Veronika AU - Klumpp, Stefan ID - 1530 IS - 6 JF - Physical Biology TI - Impact of the cell division cycle on gene circuits VL - 12 ER - TY - JOUR AB - Cell movement has essential functions in development, immunity, and cancer. Various cell migration patterns have been reported, but no general rule has emerged so far. Here, we show on the basis of experimental data in vitro and in vivo that cell persistence, which quantifies the straightness of trajectories, is robustly coupled to cell migration speed. We suggest that this universal coupling constitutes a generic law of cell migration, which originates in the advection of polarity cues by an actin cytoskeleton undergoing flows at the cellular scale. Our analysis relies on a theoretical model that we validate by measuring the persistence of cells upon modulation of actin flow speeds and upon optogenetic manipulation of the binding of an actin regulator to actin filaments. Beyond the quantitative prediction of the coupling, the model yields a generic phase diagram of cellular trajectories, which recapitulates the full range of observed migration patterns. AU - Maiuri, Paolo AU - Rupprecht, Jean AU - Wieser, Stefan AU - Ruprecht, Verena AU - Bénichou, Olivier AU - Carpi, Nicolas AU - Coppey, Mathieu AU - De Beco, Simon AU - Gov, Nir AU - Heisenberg, Carl-Philipp J AU - Lage Crespo, Carolina AU - Lautenschlaeger, Franziska AU - Le Berre, Maël AU - Lennon Duménil, Ana AU - Raab, Matthew AU - Thiam, Hawa AU - Piel, Matthieu AU - Sixt, Michael K AU - Voituriez, Raphaël ID - 1553 IS - 2 JF - Cell TI - Actin flows mediate a universal coupling between cell speed and cell persistence VL - 161 ER - TY - JOUR AB - Replication-deficient recombinant adenoviruses are potent vectors for the efficient transient expression of exogenous genes in resting immune cells. However, most leukocytes are refractory to efficient adenoviral transduction as they lack expression of the coxsackie/adenovirus receptor (CAR). To circumvent this obstacle, we generated the R26/CAG-CARΔ1StopF (where R26 is ROSA26 and CAG is CMV early enhancer/chicken β actin promoter) knock-in mouse line. This strain allows monitoring of in situ Cre recombinase activity through expression of CARΔ1. Simultaneously, CARΔ1 expression permits selective and highly efficient adenoviral transduction of immune cell populations, such as mast cells or T cells, directly ex vivo in bulk cultures without prior cell purification or activation. Furthermore, we show that CARΔ1 expression dramatically improves adenoviral infection of in vitro differentiated conventional and plasmacytoid dendritic cells (DCs), basophils, mast cells, as well as Hoxb8-immortalized hematopoietic progenitor cells. This novel dual function mouse strain will hence be a valuable tool to rapidly dissect the function of specific genes in leukocyte physiology. AU - Heger, Klaus AU - Kober, Maike AU - Rieß, David AU - Drees, Christoph AU - De Vries, Ingrid AU - Bertossi, Arianna AU - Roers, Axel AU - Sixt, Michael K AU - Schmidt Supprian, Marc ID - 1561 IS - 6 JF - European Journal of Immunology TI - A novel Cre recombinase reporter mouse strain facilitates selective and efficient infection of primary immune cells with adenoviral vectors VL - 45 ER - TY - JOUR AB - Stromal cells in the subcapsular sinus of the lymph node 'decide' which cells and molecules are allowed access to the deeper parenchyma. The glycoprotein PLVAP is a crucial component of this selector function. AU - Hons, Miroslav AU - Sixt, Michael K ID - 1560 IS - 4 JF - Nature Immunology TI - The lymph node filter revealed VL - 16 ER - TY - JOUR AB - The immune response relies on the migration of leukocytes and on their ability to stop in precise anatomical locations to fulfil their task. How leukocyte migration and function are coordinated is unknown. Here we show that in immature dendritic cells, which patrol their environment by engulfing extracellular material, cell migration and antigen capture are antagonistic. This antagonism results from transient enrichment of myosin IIA at the cell front, which disrupts the back-to-front gradient of the motor protein, slowing down locomotion but promoting antigen capture. We further highlight that myosin IIA enrichment at the cell front requires the MHC class II-associated invariant chain (Ii). Thus, by controlling myosin IIA localization, Ii imposes on dendritic cells an intermittent antigen capture behaviour that might facilitate environment patrolling. We propose that the requirement for myosin II in both cell migration and specific cell functions may provide a general mechanism for their coordination in time and space. AU - Chabaud, Mélanie AU - Heuzé, Mélina AU - Bretou, Marine AU - Vargas, Pablo AU - Maiuri, Paolo AU - Solanes, Paola AU - Maurin, Mathieu AU - Terriac, Emmanuel AU - Le Berre, Maël AU - Lankar, Danielle AU - Piolot, Tristan AU - Adelstein, Robert AU - Zhang, Yingfan AU - Sixt, Michael K AU - Jacobelli, Jordan AU - Bénichou, Olivier AU - Voituriez, Raphaël AU - Piel, Matthieu AU - Lennon Duménil, Ana ID - 1575 JF - Nature Communications TI - Cell migration and antigen capture are antagonistic processes coupled by myosin II in dendritic cells VL - 6 ER - TY - JOUR AU - Sixt, Michael K AU - Raz, Erez ID - 1676 IS - 10 JF - Current Opinion in Cell Biology TI - Editorial overview: Cell adhesion and migration VL - 36 ER - TY - JOUR AB - Guided cell movement is essential for development and integrity of animals and crucially involved in cellular immune responses. Leukocytes are professional migratory cells that can navigate through most types of tissues and sense a wide range of directional cues. The responses of these cells to attractants have been mainly explored in tissue culture settings. How leukocytes make directional decisions in situ, within the challenging environment of a tissue maze, is less understood. Here we review recent advances in how leukocytes sense chemical cues in complex tissue settings and make links with paradigms of directed migration in development and Dictyostelium discoideum amoebae. AU - Sarris, Milka AU - Sixt, Michael K ID - 1687 IS - 10 JF - Current Opinion in Cell Biology TI - Navigating in tissue mazes: Chemoattractant interpretation in complex environments VL - 36 ER - TY - JOUR AU - Kiermaier, Eva AU - Sixt, Michael K ID - 1686 IS - 6252 JF - Science TI - Fragmented communication between immune cells: Neutrophils blaze a trail with migratory cues for T cells to follow to sites of infection VL - 349 ER - TY - JOUR AB - Dendritic cells are potent antigen-presenting cells endowed with the unique ability to initiate adaptive immune responses upon inflammation. Inflammatory processes are often associated with an increased production of serotonin, which operates by activating specific receptors. However, the functional role of serotonin receptors in regulation of dendritic cell functions is poorly understood. Here, we demonstrate that expression of serotonin receptor 5-HT7 (5-HT7TR) as well as its downstream effector Cdc42 is upregulated in dendritic cells upon maturation. Although dendritic cell maturation was independent of 5-HT7TR, receptor stimulation affected dendritic cell morphology through Cdc42-mediated signaling. In addition, basal activity of 5-HT7TR was required for the proper expression of the chemokine receptor CCR7, which is a key factor that controls dendritic cell migration. Consistent with this, we observed that 5-HT7TR enhances chemotactic motility of dendritic cells in vitro by modulating their directionality and migration velocity. Accordingly, migration of dendritic cells in murine colon explants was abolished after pharmacological receptor inhibition. Our results indicate that there is a crucial role for 5-HT7TR-Cdc42-mediated signaling in the regulation of dendritic cell morphology and motility, suggesting that 5-HT7TR could be a new target for treatment of a variety of inflammatory and immune disorders. AU - Holst, Katrin AU - Guseva, Daria AU - Schindler, Susann AU - Sixt, Michael K AU - Braun, Armin AU - Chopra, Himpriya AU - Pabst, Oliver AU - Ponimaskin, Evgeni ID - 477 IS - 15 JF - Journal of Cell Science TI - The serotonin receptor 5-HT7R regulates the morphology and migratory properties of dendritic cells VL - 128 ER - TY - JOUR AB - CCL19 and CCL21 are chemokines involved in the trafficking of immune cells, particularly within the lymphatic system, through activation of CCR7. Concurrent expression of PSGL-1 and CCR7 in naive T-cells enhances recruitment of these cells to secondary lymphoid organs by CCL19 and CCL21. Here the solution structure of CCL19 is reported. It contains a canonical chemokine domain. Chemical shift mapping shows the N-termini of PSGL-1 and CCR7 have overlapping binding sites for CCL19 and binding is competitive. Implications for the mechanism of PSGL-1's enhancement of resting T-cell recruitment are discussed. AU - Veldkamp, Christopher AU - Kiermaier, Eva AU - Gabel Eissens, Skylar AU - Gillitzer, Miranda AU - Lippner, David AU - Disilvio, Frank AU - Mueller, Casey AU - Wantuch, Paeton AU - Chaffee, Gary AU - Famiglietti, Michael AU - Zgoba, Danielle AU - Bailey, Asha AU - Bah, Yaya AU - Engebretson, Samantha AU - Graupner, David AU - Lackner, Emily AU - Larosa, Vincent AU - Medeiros, Tysha AU - Olson, Michael AU - Phillips, Andrew AU - Pyles, Harley AU - Richard, Amanda AU - Schoeller, Scott AU - Touzeau, Boris AU - Williams, Larry AU - Sixt, Michael K AU - Peterson, Francis ID - 1618 IS - 27 JF - Biochemistry TI - Solution structure of CCL19 and identification of overlapping CCR7 and PSGL-1 binding sites VL - 54 ER - TY - JOUR AB - 3D amoeboid cell migration is central to many developmental and disease-related processes such as cancer metastasis. Here, we identify a unique prototypic amoeboid cell migration mode in early zebrafish embryos, termed stable-bleb migration. Stable-bleb cells display an invariant polarized balloon-like shape with exceptional migration speed and persistence. Progenitor cells can be reversibly transformed into stable-bleb cells irrespective of their primary fate and motile characteristics by increasing myosin II activity through biochemical or mechanical stimuli. Using a combination of theory and experiments, we show that, in stable-bleb cells, cortical contractility fluctuations trigger a stochastic switch into amoeboid motility, and a positive feedback between cortical flows and gradients in contractility maintains stable-bleb cell polarization. We further show that rearward cortical flows drive stable-bleb cell migration in various adhesive and non-adhesive environments, unraveling a highly versatile amoeboid migration phenotype. AU - Ruprecht, Verena AU - Wieser, Stefan AU - Callan Jones, Andrew AU - Smutny, Michael AU - Morita, Hitoshi AU - Sako, Keisuke AU - Barone, Vanessa AU - Ritsch Marte, Monika AU - Sixt, Michael K AU - Voituriez, Raphaël AU - Heisenberg, Carl-Philipp J ID - 1537 IS - 4 JF - Cell TI - Cortical contractility triggers a stochastic switch to fast amoeboid cell motility VL - 160 ER - TY - JOUR AB - During inflammation, lymph nodes swell with an influx of immune cells. New findings identify a signalling pathway that induces relaxation in the contractile cells that give structure to these organs. AU - Sixt, Michael K AU - Vaahtomeri, Kari ID - 1877 IS - 7523 JF - Nature TI - Physiology: Relax and come in VL - 514 ER - TY - JOUR AB - angerhans cells (LCs) are a unique subset of dendritic cells (DCs) that express epithelial adhesion molecules, allowing them to form contacts with epithelial cells and reside in epidermal/epithelial tissues. The dynamic regulation of epithelial adhesion plays a decisive role in the life cycle of LCs. It controls whether LCs remain immature and sessile within the epidermis or mature and egress to initiate immune responses. So far, the molecular machinery regulating epithelial adhesion molecules during LC maturation remains elusive. Here, we generated pure populations of immature human LCs in vitro to systematically probe for gene-expression changes during LC maturation. LCs down-regulate a set of epithelial genes including E-cadherin, while they upregulate the mesenchymal marker N-cadherin known to facilitate cell migration. In addition, N-cadherin is constitutively expressed by monocyte-derived DCs known to exhibit characteristics of both inflammatory-type and interstitial/dermal DCs. Moreover, the transcription factors ZEB1 and ZEB2 (ZEB is zinc-finger E-box-binding homeobox) are upregulated in migratory LCs. ZEB1 and ZEB2 have been shown to induce epithelial-to-mesenchymal transition (EMT) and invasive behavior in cancer cells undergoing metastasis. Our results provide the first hint that the molecular EMT machinery might facilitate LC mobilization. Moreover, our study suggests that N-cadherin plays a role during DC migration. AU - Konradi, Sabine AU - Yasmin, Nighat AU - Haslwanter, Denise AU - Weber, Michele AU - Gesslbauer, Bernd AU - Sixt, Michael K AU - Strobl, Herbert ID - 1910 IS - 2 JF - European Journal of Immunology TI - Langerhans cell maturation is accompanied by induction of N-cadherin and the transcriptional regulators of epithelial-mesenchymal transition ZEB1/2 VL - 44 ER - TY - JOUR AB - In the past decade carbon nanotubes (CNTs) have been widely studied as a potential drug-delivery system, especially with functionality for cellular targeting. Yet, little is known about the actual process of docking to cell receptors and transport dynamics after internalization. Here we performed single-particle studies of folic acid (FA) mediated CNT binding to human carcinoma cells and their transport inside the cytosol. In particular, we employed molecular recognition force spectroscopy, an atomic force microscopy based method, to visualize and quantify docking of FA functionalized CNTs to FA binding receptors in terms of binding probability and binding force. We then traced individual fluorescently labeled, FA functionalized CNTs after specific uptake, and created a dynamic 'roadmap' that clearly showed trajectories of directed diffusion and areas of nanotube confinement in the cytosol. Our results demonstrate the potential of a single-molecule approach for investigation of drug-delivery vehicles and their targeting capacity. AU - Lamprecht, Constanze AU - Plochberger, Birgit AU - Ruprecht, Verena AU - Wieser, Stefan AU - Rankl, Christian AU - Heister, Elena AU - Unterauer, Barbara AU - Brameshuber, Mario AU - Danzberger, Jürgen AU - Lukanov, Petar AU - Flahaut, Emmanuel AU - Schütz, Gerhard AU - Hinterdorfer, Peter AU - Ebner, Andreas ID - 1925 IS - 12 JF - Nanotechnology TI - A single-molecule approach to explore binding uptake and transport of cancer cell targeting nanotubes VL - 25 ER - TY - JOUR AB - Directional guidance of migrating cells is relatively well explored in the reductionist setting of cell culture experiments. Here spatial gradients of chemical cues as well as gradients of mechanical substrate characteristics prove sufficient to attract single cells as well as their collectives. How such gradients present and act in the context of an organism is far less clear. Here we review recent advances in understanding how guidance cues emerge and operate in the physiological context. AU - Majumdar, Ritankar AU - Sixt, Michael K AU - Parent, Carole ID - 2158 IS - 1 JF - Current Opinion in Cell Biology TI - New paradigms in the establishment and maintenance of gradients during directed cell migration VL - 30 ER - TY - JOUR AB - A hallmark of immune cell trafficking is directional guidance via gradients of soluble or surface bound chemokines. Vascular endothelial cells produce, transport and deposit either their own chemokines or chemokines produced by the underlying stroma. Endothelial heparan sulfate (HS) was suggested to be a critical scaffold for these chemokine pools, but it is unclear how steep chemokine gradients are sustained between the lumenal and ablumenal aspects of blood vessels. Addressing this question by semi-quantitative immunostaining of HS moieties around blood vessels with a pan anti-HS IgM mAb, we found a striking HS enrichment in the basal lamina of resting and inflamed post capillary skin venules, as well as in high endothelial venules (HEVs) of lymph nodes. Staining of skin vessels with a glycocalyx probe further suggested that their lumenal glycocalyx contains much lower HS density than their basolateral extracellular matrix (ECM). This polarized HS pattern was observed also in isolated resting and inflamed microvascular dermal cells. Notably, progressive skin inflammation resulted in massive ECM deposition and in further HS enrichment around skin post capillary venules and their associated pericytes. Inflammation-dependent HS enrichment was not compromised in mice deficient in the main HS degrading enzyme, heparanase. Our results suggest that the blood vasculature patterns steep gradients of HS scaffolds between their lumenal and basolateral endothelial aspects, and that inflammatory processes can further enrich the HS content nearby inflamed vessels. We propose that chemokine gradients between the lumenal and ablumenal sides of vessels could be favored by these sharp HS scaffold gradients. AU - Stoler Barak, Liat AU - Moussion, Christine AU - Shezen, Elias AU - Hatzav, Miki AU - Sixt, Michael K AU - Alon, Ronen ID - 2214 IS - 1 JF - PLoS One TI - Blood vessels pattern heparan sulfate gradients between their apical and basolateral aspects VL - 9 ER - TY - JOUR AB - Homologous recombination is crucial for genome stability and for genetic exchange. Although our knowledge of the principle steps in recombination and its machinery is well advanced, homology search, the critical step of exploring the genome for homologous sequences to enable recombination, has remained mostly enigmatic. However, recent methodological advances have provided considerable new insights into this fundamental step in recombination that can be integrated into a mechanistic model. These advances emphasize the importance of genomic proximity and nuclear organization for homology search and the critical role of homology search mediators in this process. They also aid our understanding of how homology search might lead to unwanted and potentially disease-promoting recombination events. AU - Renkawitz, Jörg AU - Lademann, Claudio AU - Jentsch, Stefan ID - 2215 IS - 6 JF - Nature Reviews Molecular Cell Biology TI - Mechanisms and principles of homology search during recombination VL - 15 ER - TY - JOUR AB - MicroRNAs (miRNAs) are small RNAs that play important regulatory roles in many cellular pathways. MiRNAs associate with members of the Argonaute protein family and bind to partially complementary sequences on mRNAs and induce translational repression or mRNA decay. Using deep sequencing and Northern blotting, we characterized miRNA expression in wild type and miR-155-deficient dendritic cells (DCs) and macrophages. Analysis of different stimuli (LPS, LDL, eLDL, oxLDL) reveals a direct influence of miR-155 on the expression levels of other miRNAs. For example, miR-455 is negatively regulated in miR-155-deficient cells possibly due to inhibition of the transcription factor C/EBPbeta by miR-155. Based on our comprehensive data sets, we propose a model of hierarchical miRNA expression dominated by miR-155 in DCs and macrophages. AU - Dueck, Anne AU - Eichner, Alexander AU - Sixt, Michael K AU - Meister, Gunter ID - 2242 IS - 4 JF - FEBS Letters SN - 00145793 TI - A miR-155-dependent microRNA hierarchy in dendritic cell maturation and macrophage activation VL - 588 ER - TY - JOUR AU - Moussion, Christine AU - Sixt, Michael K ID - 2830 IS - 5 JF - Immunity TI - A conduit to amplify innate immunity VL - 38 ER - TY - JOUR AB - Directional guidance of cells via gradients of chemokines is considered crucial for embryonic development, cancer dissemination, and immune responses. Nevertheless, the concept still lacks direct experimental confirmation in vivo. Here, we identify endogenous gradients of the chemokine CCL21 within mouse skin and show that they guide dendritic cells toward lymphatic vessels. Quantitative imaging reveals depots of CCL21 within lymphatic endothelial cells and steeply decaying gradients within the perilymphatic interstitium. These gradients match the migratory patterns of the dendritic cells, which directionally approach vessels from a distance of up to 90-micrometers. Interstitial CCL21 is immobilized to heparan sulfates, and its experimental delocalization or swamping the endogenous gradients abolishes directed migration. These findings functionally establish the concept of haptotaxis, directed migration along immobilized gradients, in tissues. AU - Weber, Michele AU - Hauschild, Robert AU - Schwarz, Jan AU - Moussion, Christine AU - De Vries, Ingrid AU - Legler, Daniel AU - Luther, Sanjiv AU - Bollenbach, Mark Tobias AU - Sixt, Michael K ID - 2839 IS - 6117 JF - Science TI - Interstitial dendritic cell guidance by haptotactic chemokine gradients VL - 339 ER - TY - JOUR AB - Podoplanin, a mucin-like plasma membrane protein, is expressed by lymphatic endothelial cells and responsible for separation of blood and lymphatic circulation through activation of platelets. Here we show that podoplanin is also expressed by thymic fibroblastic reticular cells (tFRC), a novel thymic medulla stroma cell type associated with thymic conduits, and involved in development of natural regulatory T cells (nTreg). Young mice deficient in podoplanin lack nTreg owing to retardation of CD4+CD25+ thymocytes in the cortex and missing differentiation of Foxp3+ thymocytes in the medulla. This might be due to CCL21 that delocalizes upon deletion of the CCL21-binding podoplanin from medullar tFRC to cortex areas. The animals do not remain devoid of nTreg but generate them delayed within the first month resulting in Th2-biased hypergammaglobulinemia but not in the death-causing autoimmune phenotype of Foxp3-deficient Scurfy mice. AU - Fuertbauer, Elke AU - Zaujec, Jan AU - Uhrin, Pavel AU - Raab, Ingrid AU - Weber, Michele AU - Schachner, Helga AU - Bauer, Miroslav AU - Schütz, Gerhard AU - Binder, Bernd AU - Sixt, Michael K AU - Kerjaschki, Dontscho AU - Stockinger, Hannes ID - 522 IS - 1-2 JF - Immunology Letters TI - Thymic medullar conduits-associated podoplanin promotes natural regulatory T cells VL - 154 ER - TY - CHAP AB - Leukocyte migration through the interstitial space is crucial for the maintenance of tolerance and immunity. The main cues for leukocyte trafficking are chemokines thought to directionally guide these cells towards their targets. However, model systems that facilitate quantification of chemokine-guided leukocyte migration in vivo are uncommon. Here we describe an ex vivo crawl-in assay using explanted mouse ears that allows the visualization of chemokine-dependent dendritic cell (DC) motility in the dermal interstitium in real time. We present methods for the preparation of mouse ear sheets and their use in multidimensional confocal imaging experiments to monitor and analyze the directional migration of fluorescently labelled DCs through the dermis and into afferent lymphatic vessels. The assay provides a more physiological approach to study leukocyte migration than in vitro three-dimensional (3D) or 2-dimensional (2D) migration assays such as collagen gels and transwell assays. AU - Weber, Michele AU - Sixt, Michael K ED - Cardona, Astrid ED - Ubogu, Eroboghene ID - 10900 SN - 1064-3745 T2 - Chemokines TI - Live Cell Imaging of Chemotactic Dendritic Cell Migration in Explanted Mouse Ear Preparations VL - 1013 ER - TY - JOUR AB - MicroRNAs (miRNAs) are small noncoding RNAs that function in literally all cellular processes. miRNAs interact with Argonaute (Ago) proteins and guide them to specific target sites located in the 3′-untranslated region (3′-UTR) of target mRNAs leading to translational repression and deadenylation-induced mRNA degradation. Most miRNAs are processed from hairpin-structured precursors by the consecutive action of the RNase III enzymes Drosha and Dicer. However, processing of miR-451 is Dicer independent and cleavage is mediated by the endonuclease Ago2. Here we have characterized miR-451 sequence and structure requirements for processing as well as sorting of miRNAs into different Ago proteins. Pre-miR-451 appears to be optimized for Ago2 cleavage and changes result in reduced processing. In addition, we show that the mature miR-451 only associates with Ago2 suggesting that mature miRNAs are not exchanged between different members of the Ago protein family. Based on cloning and deep sequencing of endogenous miRNAs associated with Ago1-3, we do not find evidence for miRNA sorting in human cells. However, Ago identity appears to influence the length of some miRNAs, while others remain unaffected. AU - Dueck, Anne AU - Ziegler, Christian AU - Eichner, Alexander AU - Berezikov, Eugène AU - Meister, Gunter ID - 2946 IS - 19 JF - Nucleic Acids Research TI - MicroRNAs associated with the different human Argonaute proteins VL - 40 ER - TY - JOUR AB - In search of foreign antigens, lymphocytes recirculate from the blood, through lymph nodes, into lymphatics and back to the blood. Dendritic cells also migrate to lymph nodes for optimal interaction with lymphocytes. This continuous trafficking of immune cells into and out of lymph nodes is essential for immune surveillance of foreign invaders. In this article, we review our current understanding of the functions of high endothelial venules (HEVs), stroma and lymphatics in the entry, positioning and exit of immune cells in lymph nodes during homeostasis, and we highlight the unexpected role of dendritic cells in the control of lymphocyte homing through HEVs. AU - Girard, Jean AU - Moussion, Christine AU - Förster, Reinhold ID - 2945 IS - 11 JF - Nature Reviews Immunology TI - HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes VL - 12 ER - TY - JOUR AU - Weber, Michele ID - 3167 IS - 6077 JF - Science TI - NextGen speaks 13 VL - 336 ER - TY - JOUR AB - We describe here the development and characterization of a conditionally inducible mouse model expressing Lifeact-GFP, a peptide that reports the dynamics of filamentous actin. We have used this model to study platelets, megakaryocytes and melanoblasts and we provide evidence that Lifeact-GFP is a useful reporter in these cell types ex vivo. In the case of platelets and megakaryocytes, these cells are not transfectable by traditional methods, so conditional activation of Lifeact allows the study of actin dynamics in these cells live. We studied melanoblasts in native skin explants from embryos, allowing the visualization of live actin dynamics during cytokinesis and migration. Our study revealed that melanoblasts lacking the small GTPase Rac1 show a delay in the formation of new pseudopodia following cytokinesis that accounts for the previously reported cytokinesis delay in these cells. Thus, through use of this mouse model, we were able to gain insights into the actin dynamics of cells that could only previously be studied using fixed specimens or following isolation from their native tissue environment. AU - Schachtner, Hannah AU - Li, Ang AU - Stevenson, David AU - Calaminus, Simon AU - Thomas, Steven AU - Watson, Steve AU - Sixt, Michael K AU - Wedlich Söldner, Roland AU - Strathdee, Douglas AU - Machesky, Laura ID - 3158 IS - 11-12 JF - European Journal of Cell Biology TI - Tissue inducible Lifeact expression allows visualization of actin dynamics in vivo and ex vivo VL - 91 ER - TY - JOUR AU - Sixt, Michael K ID - 506 IS - 3 JF - Journal of Cell Biology TI - Cell migration: Fibroblasts find a new way to get ahead VL - 197 ER - TY - JOUR AB - Diffusing membrane constituents are constantly exposed to a variety of forces that influence their stochastic path. Single molecule experiments allow for resolving trajectories at extremely high spatial and temporal accuracy, thereby offering insights into en route interactions of the tracer. In this review we discuss approaches to derive information about the underlying processes, based on single molecule tracking experiments. In particular, we focus on a new versatile way to analyze single molecule diffusion in the absence of a full analytical treatment. The method is based on comprehensive comparison of an experimental data set against the hypothetical outcome of multiple experiments performed on the computer. Since Monte Carlo simulations can be easily and rapidly performed even on state-of-the-art PCs, our method provides a simple way for testing various - even complicated - diffusion models. We describe the new method in detail, and show the applicability on two specific examples: firstly, kinetic rate constants can be derived for the transient interaction of mobile membrane proteins; secondly, residence time and corral size can be extracted for confined diffusion. AU - Ruprecht, Verena AU - Axmann, Markus AU - Wieser, Stefan AU - Schuetz, Gerhard ID - 3287 IS - 8 JF - Current Protein & Peptide Science TI - What can we learn from single molecule trajectories? VL - 12 ER - TY - JOUR AB - The Minisymposium “Cell Migration and Motility” was attended by approximately 500 visitors and covered a broad range of questions in the field using diverse model systems. Topics comprised actin dynamics, cell polarity, force transduction, signal transduction, bar- rier transmigration, and chemotactic guidance. AU - Sixt, Michael K AU - Parent, Carole ID - 3371 IS - 6 JF - Molecular Biology and Evolution TI - Cells on the move in Philadelphia VL - 22 ER - TY - JOUR AB - Cell migration on two-dimensional (2D) substrates follows entirely different rules than cell migration in three-dimensional (3D) environments. This is especially relevant for leukocytes that are able to migrate in the absence of adhesion receptors within the confined geometry of artificial 3D extracellular matrix scaffolds and within the interstitial space in vivo. Here, we describe in detail a simple and economical protocol to visualize dendritic cell migration in 3D collagen scaffolds along chemotactic gradients. This method can be adapted to other cell types and may serve as a physiologically relevant paradigm for the directed locomotion of most amoeboid cells. AU - Sixt, Michael K AU - Lämmermann, Tim ID - 3505 JF - Cell Migration TI - In vitro analysis of chemotactic leukocyte migration in 3D environments VL - 769 ER - TY - JOUR AU - Sixt, Michael K ID - 3385 IS - 1 JF - Immunology Letters TI - Interstitial locomotion of leukocytes VL - 138 ER - TY - JOUR AB - In their search for antigens, lymphocytes continuously shuttle among blood vessels, lymph vessels, and lymphatic tissues. Chemokines mediate entry of lymphocytes into lymphatic tissues, and sphingosine 1-phosphate (S1P) promotes localization of lymphocytes to the vasculature. Both signals are sensed through G protein-coupled receptors (GPCRs). Most GPCRs undergo ligand-dependent homologous receptor desensitization, a process that decreases their signaling output after previous exposure to high ligand concentration. Such desensitization can explain why lymphocytes do not take an intermediate position between two signals but rather oscillate between them. The desensitization of S1P receptor 1 (S1PR1) is mediated by GPCR kinase 2 (GRK2). Deletion of GRK2 in lymphocytes compromises desensitization by high vascular S1P concentrations, thereby reducing responsiveness to the chemokine signal and trapping the cells in the vascular compartment. The desensitization kinetics of S1PR1 allows lymphocytes to dynamically shuttle between vasculature and lymphatic tissue, although the positional information in both compartments is static. AU - Eichner, Alexander AU - Sixt, Michael K ID - 491 IS - 198 JF - Science Signaling TI - Setting the clock for recirculating lymphocytes VL - 4 ER - TY - JOUR AB - Cancer stem cells or cancer initiating cells are believed to contribute to cancer recurrence after therapy. MicroRNAs (miRNAs) are short RNA molecules with fundamental roles in gene regulation. The role of miRNAs in cancer stem cells is only poorly understood. Here, we report miRNA expression profiles of glioblastoma stem cell-containing CD133 + cell populations. We find that miR-9, miR-9 * (referred to as miR-9/9 *), miR-17 and miR-106b are highly abundant in CD133 + cells. Furthermore, inhibition of miR-9/9 * or miR-17 leads to reduced neurosphere formation and stimulates cell differentiation. Calmodulin-binding transcription activator 1 (CAMTA1) is a putative transcription factor, which induces the expression of the anti-proliferative cardiac hormone natriuretic peptide A (NPPA). We identify CAMTA1 as an miR-9/9 * and miR-17 target. CAMTA1 expression leads to reduced neurosphere formation and tumour growth in nude mice, suggesting that CAMTA1 can function as tumour suppressor. Consistently, CAMTA1 and NPPA expression correlate with patient survival. Our findings could provide a basis for novel strategies of glioblastoma therapy. AU - Schraivogel, Daniel AU - Weinmann, Lasse AU - Beier, Dagmar AU - Tabatabai, Ghazaleh AU - Eichner, Alexander AU - Zhu, Jia AU - Anton, Martina AU - Sixt, Michael K AU - Weller, Michael AU - Beier, Christoph AU - Meister, Gunter ID - 518 IS - 20 JF - EMBO Journal TI - CAMTA1 is a novel tumour suppressor regulated by miR-9/9 * in glioblastoma stem cells VL - 30 ER - TY - THES AB - Chemokines organize immune cell trafficking by inducing either directed (tactic) or random (kinetic) migration and by activating integrins in order to support surface adhesion (haptic). Beyond that the same chemokines can establish clearly defined functional areas in secondary lymphoid organs. Until now it is unclear how chemokines can fulfill such diverse functions. One decisive prerequisite to explain these capacities is to know how chemokines are presented in tissue. In theory chemokines could occur either soluble or immobilized, and could be distributed either homogenously or as a concentration gradient. To dissect if and how the presenting mode of chemokines influences immune cells, I tested the response of dendritic cells (DCs) to differentially displayed chemokines. DCs are antigen presenting cells that reside in the periphery and migrate into draining lymph nodes (LNs) once exposed to inflammatory stimuli to activate naïve T cells. DCs are guided to and within the LN by the chemokine receptor CCR7, which has two ligands, the chemokines CCL19 and CCL21. Both CCR7 ligands are expressed by fibroblastic reticular cells in the LN, but differ in their ability to bind to heparan sulfate residues. CCL21 has a highly charged C-terminal extension, which mediates binding to anionic surfaces, whereas CCL19 is lacking such residues and likely distributes as a soluble molecule. This study shows that surface-bound CCL21 causes random, haptokinetic DC motility, which is confined to the chemokine coated area by insideout activation of β2 integrins that mediate cell binding to the surface. CCL19 on the other hand forms concentration gradients which trigger directional, chemotactic movement, but no surface adhesion. In addition DCs can actively manipulate this system by recruiting and activating serine proteases on their surfaces, which create - by proteolytically removing the adhesive C-terminus - a solubilized variant of CCL21 that functionally resembles CCL19. By generating a CCL21 concentration gradient DCs establish a positive feedback loop to recruit further DCs from the periphery to the CCL21 coated region. In addition DCs can sense chemotactic gradients as well as immobilized haptokinetic fields at the same time and integrate these signals. The result is chemotactically biased haptokinesis - directional migration confined to a chemokine coated track or area - which could explain the dynamic but spatially tightly controlled swarming leukocyte locomotion patterns that have been observed in lymphatic organs by intravital microscopists. The finding that DCs can approach soluble cues in a non-adhesive manner while they attach to surfaces coated with immobilized cues raises the question how these cells transmit intracellular forces to the environment, especially in the non-adherent migration mode. In order to migrate, cells have to generate and transmit force to the extracellular substrate. Force transmission is the prerequisite to procure an expansion of the leading edge and a forward motion of the whole cell body. In the current conceptions actin polymerization at the leading edge is coupled to extracellular ligands via the integrin family of transmembrane receptors, which allows the transmission of intracellular force. Against the paradigm of force transmission during migration, leukocytes, like DCs, are able to migrate in threedimensional environments without using integrin transmembrane receptors (Lämmermann et al., 2008). This reflects the biological function of leukocytes, as they can invade almost all tissues, whereby their migration has to be independent from the extracellular environment. How the cells can achieve this is unclear. For this study I examined DC migration in a defined threedimensional environment and highlighted actin-dynamics with the probe Lifeact-GFP. The result was that chemotactic DCs can switch between integrin-dependent and integrin- independent locomotion and can thereby adapt to the adhesive properties of their environment. If the cells are able to couple their actin cytoskeleton to the substrate, actin polymerization is entirely converted into protrusion. Without coupling the actin cortex undergoes slippage and retrograde actin flow can be observed. But retrograde actin flow can be completely compensated by higher actin polymerization rate keeping the migration velocity and the shape of the cells unaltered. Mesenchymal cells like fibroblast cannot balance the loss of adhesive interaction, cannot protrude into open space and, therefore, strictly depend on integrinmediated force coupling. This leukocyte specific phenomenon of “adaptive force transmission” endows these cells with the unique ability to transit and invade almost every type of tissue. AU - Schumann, Kathrin ID - 3275 SN - 2663-337X TI - The role of chemotactic gradients in dendritic cell migration ER -