TY - JOUR AB - A two-dimensional mathematical model for cells migrating without adhesion capabilities is presented and analyzed. Cells are represented by their cortex, which is modeled as an elastic curve, subject to an internal pressure force. Net polymerization or depolymerization in the cortex is modeled via local addition or removal of material, driving a cortical flow. The model takes the form of a fully nonlinear degenerate parabolic system. An existence analysis is carried out by adapting ideas from the theory of gradient flows. Numerical simulations show that these simple rules can account for the behavior observed in experiments, suggesting a possible mechanical mechanism for adhesion-independent motility. AU - Jankowiak, Gaspard AU - Peurichard, Diane AU - Reversat, Anne AU - Schmeiser, Christian AU - Sixt, Michael K ID - 7623 IS - 3 JF - Mathematical Models and Methods in Applied Sciences SN - 02182025 TI - Modeling adhesion-independent cell migration VL - 30 ER - TY - JOUR AB - Cells navigating through complex tissues face a fundamental challenge: while multiple protrusions explore different paths, the cell needs to avoid entanglement. How a cell surveys and then corrects its own shape is poorly understood. Here, we demonstrate that spatially distinct microtubule dynamics regulate amoeboid cell migration by locally promoting the retraction of protrusions. In migrating dendritic cells, local microtubule depolymerization within protrusions remote from the microtubule organizing center triggers actomyosin contractility controlled by RhoA and its exchange factor Lfc. Depletion of Lfc leads to aberrant myosin localization, thereby causing two effects that rate-limit locomotion: (1) impaired cell edge coordination during path finding and (2) defective adhesion resolution. Compromised shape control is particularly hindering in geometrically complex microenvironments, where it leads to entanglement and ultimately fragmentation of the cell body. We thus demonstrate that microtubules can act as a proprioceptive device: they sense cell shape and control actomyosin retraction to sustain cellular coherence. AU - Kopf, Aglaja AU - Renkawitz, Jörg AU - Hauschild, Robert AU - Girkontaite, Irute AU - Tedford, Kerry AU - Merrin, Jack AU - Thorn-Seshold, Oliver AU - Trauner, Dirk AU - Häcker, Hans AU - Fischer, Klaus Dieter AU - Kiermaier, Eva AU - Sixt, Michael K ID - 7875 IS - 6 JF - The Journal of Cell Biology TI - Microtubules control cellular shape and coherence in amoeboid migrating cells VL - 219 ER - TY - JOUR AB - In contrast to lymph nodes, the lymphoid regions of the spleen—the white pulp—are located deep within the organ, yielding the trafficking paths of T cells in the white pulp largely invisible. In an intravital microscopy tour de force reported in this issue of Immunity, Chauveau et al. show that T cells perform unidirectional, perivascular migration through the enigmatic marginal zone bridging channels. AU - Sixt, Michael K AU - Lämmermann, Tim ID - 7876 IS - 5 JF - Immunity SN - 10747613 TI - T cells: Bridge-and-channel commute to the white pulp VL - 52 ER - TY - JOUR AB - Cell migration entails networks and bundles of actin filaments termed lamellipodia and microspikes or filopodia, respectively, as well as focal adhesions, all of which recruit Ena/VASP family members hitherto thought to antagonize efficient cell motility. However, we find these proteins to act as positive regulators of migration in different murine cell lines. CRISPR/Cas9-mediated loss of Ena/VASP proteins reduced lamellipodial actin assembly and perturbed lamellipodial architecture, as evidenced by changed network geometry as well as reduction of filament length and number that was accompanied by abnormal Arp2/3 complex and heterodimeric capping protein accumulation. Loss of Ena/VASP function also abolished the formation of microspikes normally embedded in lamellipodia, but not of filopodia capable of emanating without lamellipodia. Ena/VASP-deficiency also impaired integrin-mediated adhesion accompanied by reduced traction forces exerted through these structures. Our data thus uncover novel Ena/VASP functions of these actin polymerases that are fully consistent with their promotion of cell migration. AU - Damiano-Guercio, Julia AU - Kurzawa, Laëtitia AU - Müller, Jan AU - Dimchev, Georgi A AU - Schaks, Matthias AU - Nemethova, Maria AU - Pokrant, Thomas AU - Brühmann, Stefan AU - Linkner, Joern AU - Blanchoin, Laurent AU - Sixt, Michael K AU - Rottner, Klemens AU - Faix, Jan ID - 7909 JF - eLife TI - Loss of Ena/VASP interferes with lamellipodium architecture, motility and integrin-dependent adhesion VL - 9 ER - TY - JOUR AB - The WAVE regulatory complex (WRC) is crucial for assembly of the peripheral branched actin network constituting one of the main drivers of eukaryotic cell migration. Here, we uncover an essential role of the hematopoietic-specific WRC component HEM1 for immune cell development. Germline-encoded HEM1 deficiency underlies an inborn error of immunity with systemic autoimmunity, at cellular level marked by WRC destabilization, reduced filamentous actin, and failure to assemble lamellipodia. Hem1−/− mice display systemic autoimmunity, phenocopying the human disease. In the absence of Hem1, B cells become deprived of extracellular stimuli necessary to maintain the strength of B cell receptor signaling at a level permissive for survival of non-autoreactive B cells. This shifts the balance of B cell fate choices toward autoreactive B cells and thus autoimmunity. AU - Salzer, Elisabeth AU - Zoghi, Samaneh AU - Kiss, Máté G. AU - Kage, Frieda AU - Rashkova, Christina AU - Stahnke, Stephanie AU - Haimel, Matthias AU - Platzer, René AU - Caldera, Michael AU - Ardy, Rico Chandra AU - Hoeger, Birgit AU - Block, Jana AU - Medgyesi, David AU - Sin, Celine AU - Shahkarami, Sepideh AU - Kain, Renate AU - Ziaee, Vahid AU - Hammerl, Peter AU - Bock, Christoph AU - Menche, Jörg AU - Dupré, Loïc AU - Huppa, Johannes B. AU - Sixt, Michael K AU - Lomakin, Alexis AU - Rottner, Klemens AU - Binder, Christoph J. AU - Stradal, Theresia E.B. AU - Rezaei, Nima AU - Boztug, Kaan ID - 8132 IS - 49 JF - Science Immunology TI - The cytoskeletal regulator HEM1 governs B cell development and prevents autoimmunity VL - 5 ER - TY - JOUR AB - Breakdown of vascular barriers is a major complication of inflammatory diseases. Anucleate platelets form blood-clots during thrombosis, but also play a crucial role in inflammation. While spatio-temporal dynamics of clot formation are well characterized, the cell-biological mechanisms of platelet recruitment to inflammatory micro-environments remain incompletely understood. Here we identify Arp2/3-dependent lamellipodia formation as a prominent morphological feature of immune-responsive platelets. Platelets use lamellipodia to scan for fibrin(ogen) deposited on the inflamed vasculature and to directionally spread, to polarize and to govern haptotactic migration along gradients of the adhesive ligand. Platelet-specific abrogation of Arp2/3 interferes with haptotactic repositioning of platelets to microlesions, thus impairing vascular sealing and provoking inflammatory microbleeding. During infection, haptotaxis promotes capture of bacteria and prevents hematogenic dissemination, rendering platelets gate-keepers of the inflamed microvasculature. Consequently, these findings identify haptotaxis as a key effector function of immune-responsive platelets. AU - Nicolai, Leo AU - Schiefelbein, Karin AU - Lipsky, Silvia AU - Leunig, Alexander AU - Hoffknecht, Marie AU - Pekayvaz, Kami AU - Raude, Ben AU - Marx, Charlotte AU - Ehrlich, Andreas AU - Pircher, Joachim AU - Zhang, Zhe AU - Saleh, Inas AU - Marel, Anna-Kristina AU - Löf, Achim AU - Petzold, Tobias AU - Lorenz, Michael AU - Stark, Konstantin AU - Pick, Robert AU - Rosenberger, Gerhild AU - Weckbach, Ludwig AU - Uhl, Bernd AU - Xia, Sheng AU - Reichel, Christoph Andreas AU - Walzog, Barbara AU - Schulz, Christian AU - Zheden, Vanessa AU - Bender, Markus AU - Li, Rong AU - Massberg, Steffen AU - Gärtner, Florian R ID - 8787 JF - Nature Communications TI - Vascular surveillance by haptotactic blood platelets in inflammation and infection VL - 11 ER - TY - JOUR AB - Cell production and differentiation for the acquisition of specific functions are key features of living systems. The dynamic network of cellular microtubules provides the necessary platform to accommodate processes associated with the transition of cells through the individual phases of cytogenesis. Here, we show that the plant hormone cytokinin fine‐tunes the activity of the microtubular cytoskeleton during cell differentiation and counteracts microtubular rearrangements driven by the hormone auxin. The endogenous upward gradient of cytokinin activity along the longitudinal growth axis in Arabidopsis thaliana roots correlates with robust rearrangements of the microtubule cytoskeleton in epidermal cells progressing from the proliferative to the differentiation stage. Controlled increases in cytokinin activity result in premature re‐organization of the microtubule network from transversal to an oblique disposition in cells prior to their differentiation, whereas attenuated hormone perception delays cytoskeleton conversion into a configuration typical for differentiated cells. Intriguingly, cytokinin can interfere with microtubules also in animal cells, such as leukocytes, suggesting that a cytokinin‐sensitive control pathway for the microtubular cytoskeleton may be at least partially conserved between plant and animal cells. AU - Montesinos López, Juan C AU - Abuzeineh, A AU - Kopf, Aglaja AU - Juanes Garcia, Alba AU - Ötvös, Krisztina AU - Petrášek, J AU - Sixt, Michael K AU - Benková, Eva ID - 8142 IS - 17 JF - The Embo Journal SN - 0261-4189 TI - Phytohormone cytokinin guides microtubule dynamics during cell progression from proliferative to differentiated stage VL - 39 ER - TY - JOUR AB - Eukaryotic cells migrate by coupling the intracellular force of the actin cytoskeleton to the environment. While force coupling is usually mediated by transmembrane adhesion receptors, especially those of the integrin family, amoeboid cells such as leukocytes can migrate extremely fast despite very low adhesive forces1. Here we show that leukocytes cannot only migrate under low adhesion but can also transmit forces in the complete absence of transmembrane force coupling. When confined within three-dimensional environments, they use the topographical features of the substrate to propel themselves. Here the retrograde flow of the actin cytoskeleton follows the texture of the substrate, creating retrograde shear forces that are sufficient to drive the cell body forwards. Notably, adhesion-dependent and adhesion-independent migration are not mutually exclusive, but rather are variants of the same principle of coupling retrograde actin flow to the environment and thus can potentially operate interchangeably and simultaneously. As adhesion-free migration is independent of the chemical composition of the environment, it renders cells completely autonomous in their locomotive behaviour. AU - Reversat, Anne AU - Gärtner, Florian R AU - Merrin, Jack AU - Stopp, Julian A AU - Tasciyan, Saren AU - Aguilera Servin, Juan L AU - De Vries, Ingrid AU - Hauschild, Robert AU - Hons, Miroslav AU - Piel, Matthieu AU - Callan-Jones, Andrew AU - Voituriez, Raphael AU - Sixt, Michael K ID - 7885 JF - Nature SN - 00280836 TI - Cellular locomotion using environmental topography VL - 582 ER - TY - JOUR AU - Sixt, Michael K AU - Huttenlocher, Anna ID - 8190 IS - 8 JF - The Journal of Cell Biology TI - Zena Werb (1945-2020): Cell biology in context VL - 219 ER - TY - JOUR AB - Platelets are small anucleate cellular fragments that are released by megakaryocytes and safeguard vascular integrity through a process termed ‘haemostasis’. However, platelets have important roles beyond haemostasis as they contribute to the initiation and coordination of intravascular immune responses. They continuously monitor blood vessel integrity and tightly coordinate vascular trafficking and functions of multiple cell types. In this way platelets act as ‘patrolling officers of the vascular highway’ that help to establish effective immune responses to infections and cancer. Here we discuss the distinct biological features of platelets that allow them to shape immune responses to pathogens and tumour cells, highlighting the parallels between these responses. AU - Gärtner, Florian R AU - Massberg, Steffen ID - 6824 IS - 12 JF - Nature Reviews Immunology SN - 1474-1733 TI - Patrolling the vascular borders: Platelets in immunity to infection and cancer VL - 19 ER -