@phdthesis{14530, abstract = {Most motions of many-body systems at any scale in nature with sufficient degrees of freedom tend to be chaotic; reaching from the orbital motion of planets, the air currents in our atmosphere, down to the water flowing through our pipelines or the movement of a population of bacteria. To the observer it is therefore intriguing when a moving collective exhibits order. Collective motion of flocks of birds, schools of fish or swarms of self-propelled particles or robots have been studied extensively over the past decades but the mechanisms involved in the transition from chaos to order remain unclear. Here, the interactions, that in most systems give rise to chaos, sustain order. In this thesis we investigate mechanisms that preserve, destabilize or lead to the ordered state. We show that endothelial cells migrating in circular confinements transition to a collective rotating state and concomitantly synchronize the frequencies of nucleating actin waves within individual cells. Consequently, the frequency dependent cell migration speed uniformizes across the population. Complementary to the WAVE dependent nucleation of traveling actin waves, we show that in leukocytes the actin polymerization depending on WASp generates pushing forces locally at stationary patches. Next, in pipe flows, we study methods to disrupt the self--sustaining cycle of turbulence and therefore relaminarize the flow. While we find in pulsating flow conditions that turbulence emerges through a helical instability during the decelerating phase. Finally, we show quantitatively in brain slices of mice that wild-type control neurons can compensate the migratory deficits of a genetically modified neuronal sub--population in the developing cortex. }, author = {Riedl, Michael}, issn = {2663 - 337X}, keywords = {Synchronization, Collective Movement, Active Matter, Cell Migration, Active Colloids}, pages = {260}, publisher = {Institute of Science and Technology Austria}, title = {{Synchronization in collectively moving active matter}}, doi = {10.15479/14530}, year = {2023}, } @article{14361, abstract = {Whether one considers swarming insects, flocking birds, or bacterial colonies, collective motion arises from the coordination of individuals and entails the adjustment of their respective velocities. In particular, in close confinements, such as those encountered by dense cell populations during development or regeneration, collective migration can only arise coordinately. Yet, how individuals unify their velocities is often not understood. Focusing on a finite number of cells in circular confinements, we identify waves of polymerizing actin that function as a pacemaker governing the speed of individual cells. We show that the onset of collective motion coincides with the synchronization of the wave nucleation frequencies across the population. Employing a simpler and more readily accessible mechanical model system of active spheres, we identify the synchronization of the individuals’ internal oscillators as one of the essential requirements to reach the corresponding collective state. The mechanical ‘toy’ experiment illustrates that the global synchronous state is achieved by nearest neighbor coupling. We suggest by analogy that local coupling and the synchronization of actin waves are essential for the emergent, self-organized motion of cell collectives.}, author = {Riedl, Michael and Mayer, Isabelle D and Merrin, Jack and Sixt, Michael K and Hof, Björn}, issn = {2041-1723}, journal = {Nature Communications}, publisher = {Springer Nature}, title = {{Synchronization in collectively moving inanimate and living active matter}}, doi = {10.1038/s41467-023-41432-1}, volume = {14}, year = {2023}, } @article{14360, abstract = {To navigate through diverse tissues, migrating cells must balance persistent self-propelled motion with adaptive behaviors to circumvent obstacles. We identify a curvature-sensing mechanism underlying obstacle evasion in immune-like cells. Specifically, we propose that actin polymerization at the advancing edge of migrating cells is inhibited by the curvature-sensitive BAR domain protein Snx33 in regions with inward plasma membrane curvature. The genetic perturbation of this machinery reduces the cells’ capacity to evade obstructions combined with faster and more persistent cell migration in obstacle-free environments. Our results show how cells can read out their surface topography and utilize actin and plasma membrane biophysics to interpret their environment, allowing them to adaptively decide if they should move ahead or turn away. On the basis of our findings, we propose that the natural diversity of BAR domain proteins may allow cells to tune their curvature sensing machinery to match the shape characteristics in their environment.}, author = {Sitarska, Ewa and Almeida, Silvia Dias and Beckwith, Marianne Sandvold and Stopp, Julian A and Czuchnowski, Jakub and Siggel, Marc and Roessner, Rita and Tschanz, Aline and Ejsing, Christer and Schwab, Yannick and Kosinski, Jan and Sixt, Michael K and Kreshuk, Anna and Erzberger, Anna and Diz-Muñoz, Alba}, issn = {2041-1723}, journal = {Nature Communications}, publisher = {Springer Nature}, title = {{Sensing their plasma membrane curvature allows migrating cells to circumvent obstacles}}, doi = {10.1038/s41467-023-41173-1}, volume = {14}, year = {2023}, } @article{14274, abstract = {Immune responses rely on the rapid and coordinated migration of leukocytes. Whereas it is well established that single-cell migration is often guided by gradients of chemokines and other chemoattractants, it remains poorly understood how these gradients are generated, maintained, and modulated. By combining experimental data with theory on leukocyte chemotaxis guided by the G protein–coupled receptor (GPCR) CCR7, we demonstrate that in addition to its role as the sensory receptor that steers migration, CCR7 also acts as a generator and a modulator of chemotactic gradients. Upon exposure to the CCR7 ligand CCL19, dendritic cells (DCs) effectively internalize the receptor and ligand as part of the canonical GPCR desensitization response. We show that CCR7 internalization also acts as an effective sink for the chemoattractant, dynamically shaping the spatiotemporal distribution of the chemokine. This mechanism drives complex collective migration patterns, enabling DCs to create or sharpen chemotactic gradients. We further show that these self-generated gradients can sustain the long-range guidance of DCs, adapt collective migration patterns to the size and geometry of the environment, and provide a guidance cue for other comigrating cells. Such a dual role of CCR7 as a GPCR that both senses and consumes its ligand can thus provide a novel mode of cellular self-organization.}, author = {Alanko, Jonna H and Ucar, Mehmet C and Canigova, Nikola and Stopp, Julian A and Schwarz, Jan and Merrin, Jack and Hannezo, Edouard B and Sixt, Michael K}, issn = {2470-9468}, journal = {Science Immunology}, keywords = {General Medicine, Immunology}, number = {87}, publisher = {American Association for the Advancement of Science}, title = {{CCR7 acts as both a sensor and a sink for CCL19 to coordinate collective leukocyte migration}}, doi = {10.1126/sciimmunol.adc9584}, volume = {8}, year = {2023}, } @phdthesis{14697, author = {Stopp, Julian A}, isbn = {978-3-99078-038-1}, issn = {2663 - 337X}, pages = {226}, publisher = {Institute of Science and Technology Austria}, title = {{Neutrophils on the hunt: Migratory strategies employed by neutrophils to fulfill their effector function}}, doi = {10.15479/at:ista:14697}, year = {2023}, } @inbook{14848, abstract = {Regulating protein states is considered the core function of chaperones. However, despite their importance to all major cellular processes, the conformational changes that chaperones impart on polypeptide chains are difficult to study directly due to their heterogeneous, dynamic, and multi-step nature. Here, we review recent advances towards this aim using single-molecule manipulation methods, which are rapidly revealing new mechanisms of conformational control and helping to define a different perspective on the chaperone function.}, author = {Wruck, F. and Avellaneda Sarrió, Mario and Naqvi, M. M. and Koers, E. J. and Till, K. and Gross, L. and Moayed, F. and Roland, A. and Heling, L. W. H. J. and Mashaghi, A. and Tans, S. J.}, booktitle = {Biophysics of Molecular Chaperones}, editor = {Hiller, Sebastian and Liu, Maili and He, Lichun}, isbn = {9781839162824}, pages = {278--318}, publisher = {Royal Society of Chemistry}, title = {{Probing Single Chaperone Substrates}}, doi = {10.1039/bk9781839165986-00278}, volume = {29}, year = {2023}, } @article{9794, abstract = {Lymph nodes (LNs) comprise two main structural elements: fibroblastic reticular cells that form dedicated niches for immune cell interaction and capsular fibroblasts that build a shell around the organ. Immunological challenge causes LNs to increase more than tenfold in size within a few days. Here, we characterized the biomechanics of LN swelling on the cellular and organ scale. We identified lymphocyte trapping by influx and proliferation as drivers of an outward pressure force, causing fibroblastic reticular cells of the T-zone (TRCs) and their associated conduits to stretch. After an initial phase of relaxation, TRCs sensed the resulting strain through cell matrix adhesions, which coordinated local growth and remodeling of the stromal network. While the expanded TRC network readopted its typical configuration, a massive fibrotic reaction of the organ capsule set in and countered further organ expansion. Thus, different fibroblast populations mechanically control LN swelling in a multitier fashion.}, author = {Assen, Frank P and Abe, Jun and Hons, Miroslav and Hauschild, Robert and Shamipour, Shayan and Kaufmann, Walter and Costanzo, Tommaso and Krens, Gabriel and Brown, Markus and Ludewig, Burkhard and Hippenmeyer, Simon and Heisenberg, Carl-Philipp J and Weninger, Wolfgang and Hannezo, Edouard B and Luther, Sanjiv A. and Stein, Jens V. and Sixt, Michael K}, issn = {1529-2916}, journal = {Nature Immunology}, pages = {1246--1255}, publisher = {Springer Nature}, title = {{Multitier mechanics control stromal adaptations in swelling lymph nodes}}, doi = {10.1038/s41590-022-01257-4}, volume = {23}, year = {2022}, } @article{11588, abstract = {Visualizing cell behavior and effector function on a single cell level has been crucial for understanding key aspects of mammalian biology. Due to their small size, large number and rapid recruitment into thrombi, there is a lack of data on fate and behavior of individual platelets in thrombosis and hemostasis. Here we report the use of platelet lineage restricted multi-color reporter mouse strains to delineate platelet function on a single cell level. We show that genetic labeling allows for single platelet and megakaryocyte (MK) tracking and morphological analysis in vivo and in vitro, while not affecting lineage functions. Using Cre-driven Confetti expression, we provide insights into temporal gene expression patterns as well as spatial clustering of MK in the bone marrow. In the vasculature, shape analysis of activated platelets recruited to thrombi identifies ubiquitous filopodia formation with no evidence of lamellipodia formation. Single cell tracking in complex thrombi reveals prominent myosin-dependent motility of platelets and highlights thrombus formation as a highly dynamic process amenable to modification and intervention of the acto-myosin cytoskeleton. Platelet function assays combining flow cytrometry, as well as in vivo, ex vivo and in vitro imaging show unaltered platelet functions of multicolor reporter mice compared to wild-type controls. In conclusion, platelet lineage multicolor reporter mice prove useful in furthering our understanding of platelet and MK biology on a single cell level.}, author = {Nicolai, Leo and Kaiser, Rainer and Escaig, Raphael and Hoffknecht, Marie Louise and Anjum, Afra and Leunig, Alexander and Pircher, Joachim and Ehrlich, Andreas and Lorenz, Michael and Ishikawa-Ankerhold, Hellen and Aird, William C. and Massberg, Steffen and Gärtner, Florian R}, issn = {1592-8721}, journal = {Haematologica}, number = {7}, pages = {1669--1680}, publisher = {Ferrata Storti Foundation}, title = {{Single platelet and megakaryocyte morpho-dynamics uncovered by multicolor reporter mouse strains in vitro and in vivo}}, doi = {10.3324/haematol.2021.278896}, volume = {107}, year = {2022}, } @article{11843, abstract = {A key attribute of persistent or recurring bacterial infections is the ability of the pathogen to evade the host’s immune response. Many Enterobacteriaceae express type 1 pili, a pre-adapted virulence trait, to invade host epithelial cells and establish persistent infections. However, the molecular mechanisms and strategies by which bacteria actively circumvent the immune response of the host remain poorly understood. Here, we identified CD14, the major co-receptor for lipopolysaccharide detection, on mouse dendritic cells (DCs) as a binding partner of FimH, the protein located at the tip of the type 1 pilus of Escherichia coli. The FimH amino acids involved in CD14 binding are highly conserved across pathogenic and non-pathogenic strains. Binding of the pathogenic strain CFT073 to CD14 reduced DC migration by overactivation of integrins and blunted expression of co-stimulatory molecules by overactivating the NFAT (nuclear factor of activated T-cells) pathway, both rate-limiting factors of T cell activation. This response was binary at the single-cell level, but averaged in larger populations exposed to both piliated and non-piliated pathogens, presumably via the exchange of immunomodulatory cytokines. While defining an active molecular mechanism of immune evasion by pathogens, the interaction between FimH and CD14 represents a potential target to interfere with persistent and recurrent infections, such as urinary tract infections or Crohn’s disease.}, author = {Tomasek, Kathrin and Leithner, Alexander F and Glatzová, Ivana and Lukesch, Michael S. and Guet, Calin C and Sixt, Michael K}, issn = {2050-084X}, journal = {eLife}, publisher = {eLife Sciences Publications}, title = {{Type 1 piliated uropathogenic Escherichia coli hijack the host immune response by binding to CD14}}, doi = {10.7554/eLife.78995}, volume = {11}, year = {2022}, } @article{12085, abstract = {Molecular catch bonds are ubiquitous in biology and essential for processes like leucocyte extravasion1 and cellular mechanosensing2. Unlike normal (slip) bonds, catch bonds strengthen under tension. The current paradigm is that this feature provides ‘strength on demand3’, thus enabling cells to increase rigidity under stress1,4,5,6. However, catch bonds are often weaker than slip bonds because they have cryptic binding sites that are usually buried7,8. Here we show that catch bonds render reconstituted cytoskeletal actin networks stronger than slip bonds, even though the individual bonds are weaker. Simulations show that slip bonds remain trapped in stress-free areas, whereas weak binding allows catch bonds to mitigate crack initiation by moving to high-tension areas. This ‘dissociation on demand’ explains how cells combine mechanical strength with the adaptability required for shape change, and is relevant to diseases where catch bonding is compromised7,9, including focal segmental glomerulosclerosis10 caused by the α-actinin-4 mutant studied here. We surmise that catch bonds are the key to create life-like materials.}, author = {Mulla, Yuval and Avellaneda Sarrió, Mario and Roland, Antoine and Baldauf, Lucia and Jung, Wonyeong and Kim, Taeyoon and Tans, Sander J. and Koenderink, Gijsje H.}, issn = {1476-4660}, journal = {Nature Materials}, number = {9}, pages = {1019--1023}, publisher = {Springer Nature}, title = {{Weak catch bonds make strong networks}}, doi = {10.1038/s41563-022-01288-0}, volume = {21}, year = {2022}, }