--- _id: '14845' abstract: - lang: eng text: We study a linear rotor in a bosonic bath within the angulon formalism. Our focus is on systems where isotropic or anisotropic impurity-boson interactions support a shallow bound state. To study the fate of the angulon in the vicinity of bound-state formation, we formulate a beyond-linear-coupling angulon Hamiltonian. First, we use it to study attractive, spherically symmetric impurity-boson interactions for which the linear rotor can be mapped onto a static impurity. The well-known polaron formalism provides an adequate description in this limit. Second, we consider anisotropic potentials, and show that the presence of a shallow bound state with pronounced anisotropic character leads to a many-body instability that washes out the angulon dynamics. acknowledgement: "We would like to thank G. Bighin, I. Cherepanov, E. Paerschke, and E. Yakaboylu for insightful discussions on a wide range of topics. This work has been supported by the European Research Council (ERC) Starting Grant No. 801770 (ANGULON). A.G. and A.G.V. acknowledge support from the European Union’s Horizon 2020 research and innovation\r\nprogram under the Marie Skłodowska-Curie Grant Agreement No. 754411. Numerical calculations were performed on the Euler cluster managed by the HPC team at ETH Zurich.\r\nR.S. acknowledges support by the Deutsche Forschungsgemeinschaft under Germany’s Excellence Strategy Grant No. EXC 2181/1-390900948 (the Heidelberg STRUCTURES Excellence Cluster). T.D. acknowledges support from the Isaac Newton Studentship and the Science and Technology Facilities Council under Grant No. ST/V50659X/1." article_number: '014102' article_processing_charge: No article_type: original author: - first_name: Tibor full_name: Dome, Tibor id: 7e3293e2-b9dc-11ee-97a9-cd73400f6994 last_name: Dome orcid: 0000-0003-2586-3702 - first_name: Artem full_name: Volosniev, Artem id: 37D278BC-F248-11E8-B48F-1D18A9856A87 last_name: Volosniev orcid: 0000-0003-0393-5525 - first_name: Areg full_name: Ghazaryan, Areg id: 4AF46FD6-F248-11E8-B48F-1D18A9856A87 last_name: Ghazaryan orcid: 0000-0001-9666-3543 - first_name: Laleh full_name: Safari, Laleh id: 3C325E5E-F248-11E8-B48F-1D18A9856A87 last_name: Safari - first_name: Richard full_name: Schmidt, Richard last_name: Schmidt - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 citation: ama: Dome T, Volosniev A, Ghazaryan A, Safari L, Schmidt R, Lemeshko M. Linear rotor in an ideal Bose gas near the threshold for binding. Physical Review B. 2024;109(1). doi:10.1103/PhysRevB.109.014102 apa: Dome, T., Volosniev, A., Ghazaryan, A., Safari, L., Schmidt, R., & Lemeshko, M. (2024). Linear rotor in an ideal Bose gas near the threshold for binding. Physical Review B. American Physical Society. https://doi.org/10.1103/PhysRevB.109.014102 chicago: Dome, Tibor, Artem Volosniev, Areg Ghazaryan, Laleh Safari, Richard Schmidt, and Mikhail Lemeshko. “Linear Rotor in an Ideal Bose Gas near the Threshold for Binding.” Physical Review B. American Physical Society, 2024. https://doi.org/10.1103/PhysRevB.109.014102. ieee: T. Dome, A. Volosniev, A. Ghazaryan, L. Safari, R. Schmidt, and M. Lemeshko, “Linear rotor in an ideal Bose gas near the threshold for binding,” Physical Review B, vol. 109, no. 1. American Physical Society, 2024. ista: Dome T, Volosniev A, Ghazaryan A, Safari L, Schmidt R, Lemeshko M. 2024. Linear rotor in an ideal Bose gas near the threshold for binding. Physical Review B. 109(1), 014102. mla: Dome, Tibor, et al. “Linear Rotor in an Ideal Bose Gas near the Threshold for Binding.” Physical Review B, vol. 109, no. 1, 014102, American Physical Society, 2024, doi:10.1103/PhysRevB.109.014102. short: T. Dome, A. Volosniev, A. Ghazaryan, L. Safari, R. Schmidt, M. Lemeshko, Physical Review B 109 (2024). date_created: 2024-01-21T23:00:57Z date_published: 2024-01-01T00:00:00Z date_updated: 2024-01-23T10:51:09Z day: '01' department: - _id: MiLe doi: 10.1103/PhysRevB.109.014102 ec_funded: 1 intvolume: ' 109' issue: '1' language: - iso: eng month: '01' oa_version: None project: - _id: 2688CF98-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '801770' name: 'Angulon: physics and applications of a new quasiparticle' - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Physical Review B publication_identifier: eissn: - 2469-9969 issn: - 2469-9950 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Linear rotor in an ideal Bose gas near the threshold for binding type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 109 year: '2024' ... --- _id: '14851' abstract: - lang: ger text: Die Quantenrotation ist ein spannendes Phänomen, das in vielen verschiedenen Systemen auftritt, von Molekülen und Atomen bis hin zu subatomaren Teilchen wie Neutronen und Protonen. Durch den Einsatz von starken Laserpulsen ist es möglich, die mathematisch anspruchsvolle Topologie der Rotation von Molekülen aufzudecken und topologisch geschützte Zustände zu erzeugen, die unerwartetes Verhalten zeigen. Diese Entdeckungen könnten Auswirkungen auf die Molekülphysik und physikalische Chemie haben und die Entwicklung neuer Technologien ermöglichen. Die Verbindung von Quantenrotation und Topologie stellt ein aufregendes, interdisziplinäres Forschungsfeld dar und bietet neue Wege zur Kontrolle und Nutzung von quantenmechanischen Phänomenen. article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Volker full_name: Karle, Volker id: D7C012AE-D7ED-11E9-95E8-1EC5E5697425 last_name: Karle orcid: 0000-0002-6963-0129 - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 citation: ama: Karle V, Lemeshko M. Die faszinierende Topologie rotierender Quanten. Physik in unserer Zeit. 2024;55(1):28-33. doi:10.1002/piuz.202301690 apa: Karle, V., & Lemeshko, M. (2024). Die faszinierende Topologie rotierender Quanten. Physik in unserer Zeit. Wiley. https://doi.org/10.1002/piuz.202301690 chicago: Karle, Volker, and Mikhail Lemeshko. “Die faszinierende Topologie rotierender Quanten.” Physik in unserer Zeit. Wiley, 2024. https://doi.org/10.1002/piuz.202301690. ieee: V. Karle and M. Lemeshko, “Die faszinierende Topologie rotierender Quanten,” Physik in unserer Zeit, vol. 55, no. 1. Wiley, pp. 28–33, 2024. ista: Karle V, Lemeshko M. 2024. Die faszinierende Topologie rotierender Quanten. Physik in unserer Zeit. 55(1), 28–33. mla: Karle, Volker, and Mikhail Lemeshko. “Die faszinierende Topologie rotierender Quanten.” Physik in unserer Zeit, vol. 55, no. 1, Wiley, 2024, pp. 28–33, doi:10.1002/piuz.202301690. short: V. Karle, M. Lemeshko, Physik in unserer Zeit 55 (2024) 28–33. date_created: 2024-01-22T08:19:36Z date_published: 2024-01-01T00:00:00Z date_updated: 2024-02-15T14:29:04Z day: '01' ddc: - '530' department: - _id: MiLe doi: 10.1002/piuz.202301690 file: - access_level: open_access checksum: 3051dadcf9bc57da97e36b647c596ab1 content_type: application/pdf creator: dernst date_created: 2024-01-23T12:18:07Z date_updated: 2024-01-23T12:18:07Z file_id: '14878' file_name: 2024_PhysikZeit_Karle.pdf file_size: 1155244 relation: main_file success: 1 file_date_updated: 2024-01-23T12:18:07Z has_accepted_license: '1' intvolume: ' 55' issue: '1' keyword: - General Earth and Planetary Sciences - General Environmental Science language: - iso: ger month: '01' oa: 1 oa_version: Published Version page: 28-33 publication: Physik in unserer Zeit publication_identifier: eissn: - 1521-3943 issn: - 0031-9252 publication_status: published publisher: Wiley quality_controlled: '1' status: public title: Die faszinierende Topologie rotierender Quanten tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 55 year: '2024' ... --- _id: '15004' abstract: - lang: eng text: The impulsive limit (the “sudden approximation”) has been widely employed to describe the interaction between molecules and short, far-off-resonant laser pulses. This approximation assumes that the timescale of the laser-molecule interaction is significantly shorter than the internal rotational period of the molecule, resulting in the rotational motion being instantaneously “frozen” during the interaction. This simplified description of the laser-molecule interaction is incorporated in various theoretical models predicting rotational dynamics of molecules driven by short laser pulses. In this theoretical work, we develop an effective theory for ultrashort laser pulses by examining the full time-evolution operator and solving the time-dependent Schrödinger equation at the operator level. Our findings reveal a critical angular momentum, lcrit, at which the impulsive limit breaks down. In other words, the validity of the sudden approximation depends not only on the pulse duration but also on its intensity, since the latter determines how many angular momentum states are populated. We explore both ultrashort multicycle (Gaussian) pulses and the somewhat less studied half-cycle pulses, which produce distinct effective potentials. We discuss the limitations of the impulsive limit and propose a method that rescales the effective matrix elements, enabling an improved and more accurate description of laser-molecule interactions. acknowledgement: We thank Bretislav Friedrich, Marjan Mirahmadi, Artem Volosniev, and Burkhard Schmidt for insightful discussions. M.L. acknowledges support by the European Research Council (ERC) under Starting Grant No. 801770 (ANGULON). article_number: '023101' article_processing_charge: No article_type: original author: - first_name: Volker full_name: Karle, Volker id: D7C012AE-D7ED-11E9-95E8-1EC5E5697425 last_name: Karle orcid: 0000-0002-6963-0129 - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 citation: ama: 'Karle V, Lemeshko M. Modeling laser pulses as δ kicks: Reevaluating the impulsive limit in molecular rotational dynamics. Physical Review A. 2024;109(2). doi:10.1103/PhysRevA.109.023101' apa: 'Karle, V., & Lemeshko, M. (2024). Modeling laser pulses as δ kicks: Reevaluating the impulsive limit in molecular rotational dynamics. Physical Review A. American Physical Society. https://doi.org/10.1103/PhysRevA.109.023101' chicago: 'Karle, Volker, and Mikhail Lemeshko. “Modeling Laser Pulses as δ Kicks: Reevaluating the Impulsive Limit in Molecular Rotational Dynamics.” Physical Review A. American Physical Society, 2024. https://doi.org/10.1103/PhysRevA.109.023101.' ieee: 'V. Karle and M. Lemeshko, “Modeling laser pulses as δ kicks: Reevaluating the impulsive limit in molecular rotational dynamics,” Physical Review A, vol. 109, no. 2. American Physical Society, 2024.' ista: 'Karle V, Lemeshko M. 2024. Modeling laser pulses as δ kicks: Reevaluating the impulsive limit in molecular rotational dynamics. Physical Review A. 109(2), 023101.' mla: 'Karle, Volker, and Mikhail Lemeshko. “Modeling Laser Pulses as δ Kicks: Reevaluating the Impulsive Limit in Molecular Rotational Dynamics.” Physical Review A, vol. 109, no. 2, 023101, American Physical Society, 2024, doi:10.1103/PhysRevA.109.023101.' short: V. Karle, M. Lemeshko, Physical Review A 109 (2024). date_created: 2024-02-18T23:01:01Z date_published: 2024-02-01T00:00:00Z date_updated: 2024-02-26T09:45:20Z day: '01' department: - _id: MiLe doi: 10.1103/PhysRevA.109.023101 ec_funded: 1 external_id: arxiv: - '2307.07256' intvolume: ' 109' issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2307.07256 month: '02' oa: 1 oa_version: Preprint project: - _id: 2688CF98-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '801770' name: 'Angulon: physics and applications of a new quasiparticle' publication: Physical Review A publication_identifier: eissn: - 2469-9934 issn: - 2469-9926 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: 'Modeling laser pulses as δ kicks: Reevaluating the impulsive limit in molecular rotational dynamics' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 109 year: '2024' ... --- _id: '15045' abstract: - lang: eng text: Coupling of orbital motion to a spin degree of freedom gives rise to various transport phenomena in quantum systems that are beyond the standard paradigms of classical physics. Here, we discuss features of spin-orbit dynamics that can be visualized using a classical model with two coupled angular degrees of freedom. Specifically, we demonstrate classical ‘spin’ filtering through our model and show that the interplay between angular degrees of freedom and dissipation can lead to asymmetric ‘spin’ transport. acknowledgement: "We thank Mikhail Lemeshko and members of his group for many inspiring discussions; Alberto Cappellaro for comments on the manuscript.\r\nOpen access funding provided by Institute of Science and Technology (IST Austria)." article_number: '12' article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Atul full_name: Varshney, Atul id: 2A2006B2-F248-11E8-B48F-1D18A9856A87 last_name: Varshney orcid: 0000-0002-3072-5999 - first_name: Areg full_name: Ghazaryan, Areg id: 4AF46FD6-F248-11E8-B48F-1D18A9856A87 last_name: Ghazaryan orcid: 0000-0001-9666-3543 - first_name: Artem full_name: Volosniev, Artem id: 37D278BC-F248-11E8-B48F-1D18A9856A87 last_name: Volosniev orcid: 0000-0003-0393-5525 citation: ama: Varshney A, Ghazaryan A, Volosniev A. Classical ‘spin’ filtering with two degrees of freedom and dissipation. Few-Body Systems. 2024;65. doi:10.1007/s00601-024-01880-x apa: Varshney, A., Ghazaryan, A., & Volosniev, A. (2024). Classical ‘spin’ filtering with two degrees of freedom and dissipation. Few-Body Systems. Springer Nature. https://doi.org/10.1007/s00601-024-01880-x chicago: Varshney, Atul, Areg Ghazaryan, and Artem Volosniev. “Classical ‘Spin’ Filtering with Two Degrees of Freedom and Dissipation.” Few-Body Systems. Springer Nature, 2024. https://doi.org/10.1007/s00601-024-01880-x. ieee: A. Varshney, A. Ghazaryan, and A. Volosniev, “Classical ‘spin’ filtering with two degrees of freedom and dissipation,” Few-Body Systems, vol. 65. Springer Nature, 2024. ista: Varshney A, Ghazaryan A, Volosniev A. 2024. Classical ‘spin’ filtering with two degrees of freedom and dissipation. Few-Body Systems. 65, 12. mla: Varshney, Atul, et al. “Classical ‘Spin’ Filtering with Two Degrees of Freedom and Dissipation.” Few-Body Systems, vol. 65, 12, Springer Nature, 2024, doi:10.1007/s00601-024-01880-x. short: A. Varshney, A. Ghazaryan, A. Volosniev, Few-Body Systems 65 (2024). date_created: 2024-03-01T11:39:33Z date_published: 2024-02-17T00:00:00Z date_updated: 2024-03-04T07:08:16Z day: '17' ddc: - '530' department: - _id: MiLe doi: 10.1007/s00601-024-01880-x external_id: arxiv: - '2401.08454' file: - access_level: open_access checksum: c4e08cc7bc756da69b1b36fda7bb92fb content_type: application/pdf creator: dernst date_created: 2024-03-04T07:07:10Z date_updated: 2024-03-04T07:07:10Z file_id: '15049' file_name: 2024_FewBodySys_Varshney.pdf file_size: 436712 relation: main_file success: 1 file_date_updated: 2024-03-04T07:07:10Z has_accepted_license: '1' intvolume: ' 65' keyword: - Atomic and Molecular Physics - and Optics language: - iso: eng month: '02' oa: 1 oa_version: Published Version publication: Few-Body Systems publication_identifier: issn: - 1432-5411 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Classical ‘spin’ filtering with two degrees of freedom and dissipation tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 65 year: '2024' ... --- _id: '15053' abstract: - lang: eng text: Atom-based quantum simulators have had many successes in tackling challenging quantum many-body problems, owing to the precise and dynamical control that they provide over the systems' parameters. They are, however, often optimized to address a specific type of problem. Here, we present the design and implementation of a 6Li-based quantum gas platform that provides wide-ranging capabilities and is able to address a variety of quantum many-body problems. Our two-chamber architecture relies on a robust combination of gray molasses and optical transport from a laser-cooling chamber to a glass cell with excellent optical access. There, we first create unitary Fermi superfluids in a three-dimensional axially symmetric harmonic trap and characterize them using in situ thermometry, reaching temperatures below 20 nK. This allows us to enter the deep superfluid regime with samples of extreme diluteness, where the interparticle spacing is sufficiently large for direct single-atom imaging. Second, we generate optical lattice potentials with triangular and honeycomb geometry in which we study diffraction of molecular Bose-Einstein condensates, and show how going beyond the Kapitza-Dirac regime allows us to unambiguously distinguish between the two geometries. With the ability to probe quantum many-body physics in both discrete and continuous space, and its suitability for bulk and single-atom imaging, our setup represents an important step towards achieving a wide-scope quantum simulator. acknowledgement: We thank Clara Bachorz, Darby Bates, Markus Bohlen, Valentin Crépel, Yann Kiefer, Joanna Lis, Mihail Rabinovic, and Julian Struck for experimental assistance in the early stages of this project, and Sebastian Will for a critical reading of the manuscript. This work has been supported by Agence Nationale de la Recherche (Grant No. ANR-21-CE30-0021), the European Research Council (Grant No. ERC-2016-ADG-743159), CNRS (Tremplin@INP 2020), and Région Ile-de-France in the framework of DIM SIRTEQ (Super2D and SISCo) and DIM QuanTiP. article_number: '013158' article_processing_charge: Yes article_type: original author: - first_name: Shuwei full_name: Jin, Shuwei last_name: Jin - first_name: Kunlun full_name: Dai, Kunlun last_name: Dai - first_name: Joris full_name: Verstraten, Joris last_name: Verstraten - first_name: Maxime full_name: Dixmerias, Maxime last_name: Dixmerias - first_name: Ragheed full_name: Al Hyder, Ragheed id: d1c405be-ae15-11ed-8510-ccf53278162e last_name: Al Hyder - first_name: Christophe full_name: Salomon, Christophe last_name: Salomon - first_name: Bruno full_name: Peaudecerf, Bruno last_name: Peaudecerf - first_name: Tim full_name: de Jongh, Tim last_name: de Jongh - first_name: Tarik full_name: Yefsah, Tarik last_name: Yefsah citation: ama: Jin S, Dai K, Verstraten J, et al. Multipurpose platform for analog quantum simulation. Physical Review Research. 2024;6(1). doi:10.1103/physrevresearch.6.013158 apa: Jin, S., Dai, K., Verstraten, J., Dixmerias, M., Al Hyder, R., Salomon, C., … Yefsah, T. (2024). Multipurpose platform for analog quantum simulation. Physical Review Research. American Physical Society. https://doi.org/10.1103/physrevresearch.6.013158 chicago: Jin, Shuwei, Kunlun Dai, Joris Verstraten, Maxime Dixmerias, Ragheed Al Hyder, Christophe Salomon, Bruno Peaudecerf, Tim de Jongh, and Tarik Yefsah. “Multipurpose Platform for Analog Quantum Simulation.” Physical Review Research. American Physical Society, 2024. https://doi.org/10.1103/physrevresearch.6.013158. ieee: S. Jin et al., “Multipurpose platform for analog quantum simulation,” Physical Review Research, vol. 6, no. 1. American Physical Society, 2024. ista: Jin S, Dai K, Verstraten J, Dixmerias M, Al Hyder R, Salomon C, Peaudecerf B, de Jongh T, Yefsah T. 2024. Multipurpose platform for analog quantum simulation. Physical Review Research. 6(1), 013158. mla: Jin, Shuwei, et al. “Multipurpose Platform for Analog Quantum Simulation.” Physical Review Research, vol. 6, no. 1, 013158, American Physical Society, 2024, doi:10.1103/physrevresearch.6.013158. short: S. Jin, K. Dai, J. Verstraten, M. Dixmerias, R. Al Hyder, C. Salomon, B. Peaudecerf, T. de Jongh, T. Yefsah, Physical Review Research 6 (2024). date_created: 2024-03-04T07:42:52Z date_published: 2024-02-13T00:00:00Z date_updated: 2024-03-04T07:55:29Z day: '13' ddc: - '530' department: - _id: MiLe doi: 10.1103/physrevresearch.6.013158 external_id: arxiv: - '2304.08433' file: - access_level: open_access checksum: ba2ae3e3a011f8897d3803c9366a67e2 content_type: application/pdf creator: dernst date_created: 2024-03-04T07:53:08Z date_updated: 2024-03-04T07:53:08Z file_id: '15054' file_name: 2024_PhysicalReviewResearch_Jin.pdf file_size: 4025988 relation: main_file success: 1 file_date_updated: 2024-03-04T07:53:08Z has_accepted_license: '1' intvolume: ' 6' issue: '1' keyword: - General Physics and Astronomy language: - iso: eng month: '02' oa: 1 oa_version: Published Version publication: Physical Review Research publication_identifier: issn: - 2643-1564 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Multipurpose platform for analog quantum simulation tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 6 year: '2024' ... --- _id: '15167' abstract: - lang: eng text: We perform a diagrammatic analysis of the energy of a mobile impurity immersed in a strongly interacting two-component Fermi gas to second order in the impurity-bath interaction. These corrections demonstrate divergent behavior in the limit of large impurity momentum. We show the fundamental processes responsible for these logarithmically divergent terms. We study the problem in the general case without any assumptions regarding the fermion-fermion interactions in the bath. We show that the divergent term can be summed up to all orders in the Fermi-Fermi interaction and that the resulting expression is equivalent to the one obtained in the few-body calculation. Finally, we provide a perturbative calculation to the second order in the Fermi-Fermi interaction, and we show the diagrams responsible for these terms. acknowledgement: We thank Félix Werner and Kris Van Houcke for interesting discussions. article_number: '033315' article_processing_charge: No article_type: original author: - first_name: Ragheed full_name: Al Hyder, Ragheed id: d1c405be-ae15-11ed-8510-ccf53278162e last_name: Al Hyder - first_name: F. full_name: Chevy, F. last_name: Chevy - first_name: X. full_name: Leyronas, X. last_name: Leyronas citation: ama: Al Hyder R, Chevy F, Leyronas X. Exploring beyond-mean-field logarithmic divergences in Fermi-polaron energy. Physical Review A. 2024;109(3). doi:10.1103/PhysRevA.109.033315 apa: Al Hyder, R., Chevy, F., & Leyronas, X. (2024). Exploring beyond-mean-field logarithmic divergences in Fermi-polaron energy. Physical Review A. American Physical Society. https://doi.org/10.1103/PhysRevA.109.033315 chicago: Al Hyder, Ragheed, F. Chevy, and X. Leyronas. “Exploring Beyond-Mean-Field Logarithmic Divergences in Fermi-Polaron Energy.” Physical Review A. American Physical Society, 2024. https://doi.org/10.1103/PhysRevA.109.033315. ieee: R. Al Hyder, F. Chevy, and X. Leyronas, “Exploring beyond-mean-field logarithmic divergences in Fermi-polaron energy,” Physical Review A, vol. 109, no. 3. American Physical Society, 2024. ista: Al Hyder R, Chevy F, Leyronas X. 2024. Exploring beyond-mean-field logarithmic divergences in Fermi-polaron energy. Physical Review A. 109(3), 033315. mla: Al Hyder, Ragheed, et al. “Exploring Beyond-Mean-Field Logarithmic Divergences in Fermi-Polaron Energy.” Physical Review A, vol. 109, no. 3, 033315, American Physical Society, 2024, doi:10.1103/PhysRevA.109.033315. short: R. Al Hyder, F. Chevy, X. Leyronas, Physical Review A 109 (2024). date_created: 2024-03-24T23:00:59Z date_published: 2024-03-19T00:00:00Z date_updated: 2024-03-25T07:36:55Z day: '19' department: - _id: MiLe doi: 10.1103/PhysRevA.109.033315 external_id: arxiv: - '2311.14536' intvolume: ' 109' issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2311.14536 month: '03' oa: 1 oa_version: Preprint publication: Physical Review A publication_identifier: eissn: - 2469-9934 issn: - 2469-9926 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Exploring beyond-mean-field logarithmic divergences in Fermi-polaron energy type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 109 year: '2024' ... --- _id: '15181' abstract: - lang: eng text: We demonstrate the failure of the adiabatic Born-Oppenheimer approximation to describe the ground state of a quantum impurity within an ultracold Fermi gas despite substantial mass differences between the bath and impurity species. Increasing repulsion leads to the appearance of nonadiabatic couplings between the fast bath and slow impurity degrees of freedom, which reduce the parity symmetry of the latter according to the pseudo Jahn-Teller effect. The presence of this mechanism is associated to a conical intersection involving the impurity position and the inverse of the interaction strength, which acts as a synthetic dimension. We elucidate the presence of these effects via a detailed ground-state analysis involving the comparison of ab initio fully correlated simulations with effective models. Our study suggests ultracold atomic ensembles as potent emulators of complex molecular phenomena. acknowledgement: "This work has been funded by the Cluster of Excellence “Advanced Imaging of Matter” of the Deutsche Forschungsgemeinschaft (DFG) - EXC 2056 - Project ID 390715994.\r\nG.M.K. gratefully acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 101034413." article_number: '013257' article_processing_charge: Yes article_type: original author: - first_name: A. full_name: Becker, A. last_name: Becker - first_name: Georgios full_name: Koutentakis, Georgios id: d7b23d3a-9e21-11ec-b482-f76739596b95 last_name: Koutentakis - first_name: P. full_name: Schmelcher, P. last_name: Schmelcher citation: ama: Becker A, Koutentakis G, Schmelcher P. Synthetic dimension-induced pseudo Jahn-Teller effect in one-dimensional confined fermions. Physical Review Research. 2024;6(1). doi:10.1103/physrevresearch.6.013257 apa: Becker, A., Koutentakis, G., & Schmelcher, P. (2024). Synthetic dimension-induced pseudo Jahn-Teller effect in one-dimensional confined fermions. Physical Review Research. American Physical Society. https://doi.org/10.1103/physrevresearch.6.013257 chicago: Becker, A., Georgios Koutentakis, and P. Schmelcher. “Synthetic Dimension-Induced Pseudo Jahn-Teller Effect in One-Dimensional Confined Fermions.” Physical Review Research. American Physical Society, 2024. https://doi.org/10.1103/physrevresearch.6.013257. ieee: A. Becker, G. Koutentakis, and P. Schmelcher, “Synthetic dimension-induced pseudo Jahn-Teller effect in one-dimensional confined fermions,” Physical Review Research, vol. 6, no. 1. American Physical Society, 2024. ista: Becker A, Koutentakis G, Schmelcher P. 2024. Synthetic dimension-induced pseudo Jahn-Teller effect in one-dimensional confined fermions. Physical Review Research. 6(1), 013257. mla: Becker, A., et al. “Synthetic Dimension-Induced Pseudo Jahn-Teller Effect in One-Dimensional Confined Fermions.” Physical Review Research, vol. 6, no. 1, 013257, American Physical Society, 2024, doi:10.1103/physrevresearch.6.013257. short: A. Becker, G. Koutentakis, P. Schmelcher, Physical Review Research 6 (2024). date_created: 2024-03-25T08:57:07Z date_published: 2024-03-01T00:00:00Z date_updated: 2024-03-25T09:27:37Z day: '01' ddc: - '530' department: - _id: MiLe doi: 10.1103/physrevresearch.6.013257 ec_funded: 1 external_id: arxiv: - '2310.17995' file: - access_level: open_access checksum: 4e0e58d1f58386fb016284c84db2a300 content_type: application/pdf creator: dernst date_created: 2024-03-25T09:24:55Z date_updated: 2024-03-25T09:24:55Z file_id: '15183' file_name: 2024_PhysicalReviewResearch_Becker.pdf file_size: 2207067 relation: main_file success: 1 file_date_updated: 2024-03-25T09:24:55Z has_accepted_license: '1' intvolume: ' 6' issue: '1' language: - iso: eng month: '03' oa: 1 oa_version: Published Version project: - _id: fc2ed2f7-9c52-11eb-aca3-c01059dda49c call_identifier: H2020 grant_number: '101034413' name: 'IST-BRIDGE: International postdoctoral program' publication: Physical Review Research publication_identifier: issn: - 2643-1564 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Synthetic dimension-induced pseudo Jahn-Teller effect in one-dimensional confined fermions tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 6 year: '2024' ... --- _id: '12534' abstract: - lang: eng text: Brownian motion of a mobile impurity in a bath is affected by spin-orbit coupling (SOC). Here, we discuss a Caldeira-Leggett-type model that can be used to propose and interpret quantum simulators of this problem in cold Bose gases. First, we derive a master equation that describes the model and explore it in a one-dimensional (1D) setting. To validate the standard assumptions needed for our derivation, we analyze available experimental data without SOC; as a byproduct, this analysis suggests that the quench dynamics of the impurity is beyond the 1D Bose-polaron approach at temperatures currently accessible in a cold-atom laboratory—motion of the impurity is mainly driven by dissipation. For systems with SOC, we demonstrate that 1D spin-orbit coupling can be gauged out even in the presence of dissipation—the information about SOC is incorporated in the initial conditions. Observables sensitive to this information (such as spin densities) can be used to study formation of steady spin polarization domains during quench dynamics. acknowledgement: "We thank Rafael Barfknecht for help at the initial stages of this project; Fabian Brauneis for useful discussions; Miguel A. Garcia-March, Georgios Koutentakis, and Simeon Mistakidis\r\nfor comments on the paper. M.L. acknowledges support by the European Research Council (ERC) Starting Grant No. 801770 (ANGULON)." article_number: '013029' article_processing_charge: No article_type: original author: - first_name: Areg full_name: Ghazaryan, Areg id: 4AF46FD6-F248-11E8-B48F-1D18A9856A87 last_name: Ghazaryan orcid: 0000-0001-9666-3543 - first_name: Alberto full_name: Cappellaro, Alberto id: 9d13b3cb-30a2-11eb-80dc-f772505e8660 last_name: Cappellaro orcid: 0000-0001-6110-2359 - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 - first_name: Artem full_name: Volosniev, Artem id: 37D278BC-F248-11E8-B48F-1D18A9856A87 last_name: Volosniev orcid: 0000-0003-0393-5525 citation: ama: Ghazaryan A, Cappellaro A, Lemeshko M, Volosniev A. Dissipative dynamics of an impurity with spin-orbit coupling. Physical Review Research. 2023;5(1). doi:10.1103/physrevresearch.5.013029 apa: Ghazaryan, A., Cappellaro, A., Lemeshko, M., & Volosniev, A. (2023). Dissipative dynamics of an impurity with spin-orbit coupling. Physical Review Research. American Physical Society. https://doi.org/10.1103/physrevresearch.5.013029 chicago: Ghazaryan, Areg, Alberto Cappellaro, Mikhail Lemeshko, and Artem Volosniev. “Dissipative Dynamics of an Impurity with Spin-Orbit Coupling.” Physical Review Research. American Physical Society, 2023. https://doi.org/10.1103/physrevresearch.5.013029. ieee: A. Ghazaryan, A. Cappellaro, M. Lemeshko, and A. Volosniev, “Dissipative dynamics of an impurity with spin-orbit coupling,” Physical Review Research, vol. 5, no. 1. American Physical Society, 2023. ista: Ghazaryan A, Cappellaro A, Lemeshko M, Volosniev A. 2023. Dissipative dynamics of an impurity with spin-orbit coupling. Physical Review Research. 5(1), 013029. mla: Ghazaryan, Areg, et al. “Dissipative Dynamics of an Impurity with Spin-Orbit Coupling.” Physical Review Research, vol. 5, no. 1, 013029, American Physical Society, 2023, doi:10.1103/physrevresearch.5.013029. short: A. Ghazaryan, A. Cappellaro, M. Lemeshko, A. Volosniev, Physical Review Research 5 (2023). date_created: 2023-02-10T09:02:26Z date_published: 2023-01-20T00:00:00Z date_updated: 2023-02-20T07:02:00Z day: '20' ddc: - '530' department: - _id: MiLe doi: 10.1103/physrevresearch.5.013029 ec_funded: 1 file: - access_level: open_access checksum: 6068b62874c0099628a108bb9c5c6bd2 content_type: application/pdf creator: dernst date_created: 2023-02-13T10:38:10Z date_updated: 2023-02-13T10:38:10Z file_id: '12546' file_name: 2023_PhysicalReviewResearch_Ghazaryan.pdf file_size: 865150 relation: main_file success: 1 file_date_updated: 2023-02-13T10:38:10Z has_accepted_license: '1' intvolume: ' 5' issue: '1' language: - iso: eng month: '01' oa: 1 oa_version: Published Version project: - _id: 2688CF98-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '801770' name: 'Angulon: physics and applications of a new quasiparticle' publication: Physical Review Research publication_identifier: issn: - 2643-1564 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Dissipative dynamics of an impurity with spin-orbit coupling tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 5 year: '2023' ... --- _id: '13251' abstract: - lang: eng text: A rotating organic cation and a dynamically disordered soft inorganic cage are the hallmark features of organic-inorganic lead-halide perovskites. Understanding the interplay between these two subsystems is a challenging problem, but it is this coupling that is widely conjectured to be responsible for the unique behavior of photocarriers in these materials. In this work, we use the fact that the polarizability of the organic cation strongly depends on the ambient electrostatic environment to put the molecule forward as a sensitive probe of the local crystal fields inside the lattice cell. We measure the average polarizability of the C/N–H bond stretching mode by means of infrared spectroscopy, which allows us to deduce the character of the motion of the cation molecule, find the magnitude of the local crystal field, and place an estimate on the strength of the hydrogen bond between the hydrogen and halide atoms. Our results pave the way for understanding electric fields in lead-halide perovskites using infrared bond spectroscopy. acknowledgement: "We thank Bingqing Cheng and Hong-Zhou Ye for valuable discussions; Y.W.’s work at IST Austria was supported through ISTernship summer internship program funded by OeADGmbH; D.L. and Z.A. acknowledge support by IST Austria (ISTA); M.L. acknowledges support by the European Research Council (ERC) Starting Grant No. 801770 (ANGULON).\r\nA.A.Z. and O.M.B. acknowledge support by KAUST." article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Yujing full_name: Wei, Yujing id: 0c5ff007-2600-11ee-b896-98bd8d663294 last_name: Wei orcid: 0000-0001-8913-9719 - first_name: Artem full_name: Volosniev, Artem id: 37D278BC-F248-11E8-B48F-1D18A9856A87 last_name: Volosniev orcid: 0000-0003-0393-5525 - first_name: Dusan full_name: Lorenc, Dusan id: 40D8A3E6-F248-11E8-B48F-1D18A9856A87 last_name: Lorenc - first_name: Ayan A. full_name: Zhumekenov, Ayan A. last_name: Zhumekenov - first_name: Osman M. full_name: Bakr, Osman M. last_name: Bakr - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 - first_name: Zhanybek full_name: Alpichshev, Zhanybek id: 45E67A2A-F248-11E8-B48F-1D18A9856A87 last_name: Alpichshev orcid: 0000-0002-7183-5203 citation: ama: Wei Y, Volosniev A, Lorenc D, et al. Bond polarizability as a probe of local crystal fields in hybrid lead-halide perovskites. The Journal of Physical Chemistry Letters. 2023;14(27):6309-6314. doi:10.1021/acs.jpclett.3c01158 apa: Wei, Y., Volosniev, A., Lorenc, D., Zhumekenov, A. A., Bakr, O. M., Lemeshko, M., & Alpichshev, Z. (2023). Bond polarizability as a probe of local crystal fields in hybrid lead-halide perovskites. The Journal of Physical Chemistry Letters. American Chemical Society. https://doi.org/10.1021/acs.jpclett.3c01158 chicago: Wei, Yujing, Artem Volosniev, Dusan Lorenc, Ayan A. Zhumekenov, Osman M. Bakr, Mikhail Lemeshko, and Zhanybek Alpichshev. “Bond Polarizability as a Probe of Local Crystal Fields in Hybrid Lead-Halide Perovskites.” The Journal of Physical Chemistry Letters. American Chemical Society, 2023. https://doi.org/10.1021/acs.jpclett.3c01158. ieee: Y. Wei et al., “Bond polarizability as a probe of local crystal fields in hybrid lead-halide perovskites,” The Journal of Physical Chemistry Letters, vol. 14, no. 27. American Chemical Society, pp. 6309–6314, 2023. ista: Wei Y, Volosniev A, Lorenc D, Zhumekenov AA, Bakr OM, Lemeshko M, Alpichshev Z. 2023. Bond polarizability as a probe of local crystal fields in hybrid lead-halide perovskites. The Journal of Physical Chemistry Letters. 14(27), 6309–6314. mla: Wei, Yujing, et al. “Bond Polarizability as a Probe of Local Crystal Fields in Hybrid Lead-Halide Perovskites.” The Journal of Physical Chemistry Letters, vol. 14, no. 27, American Chemical Society, 2023, pp. 6309–14, doi:10.1021/acs.jpclett.3c01158. short: Y. Wei, A. Volosniev, D. Lorenc, A.A. Zhumekenov, O.M. Bakr, M. Lemeshko, Z. Alpichshev, The Journal of Physical Chemistry Letters 14 (2023) 6309–6314. date_created: 2023-07-18T11:13:17Z date_published: 2023-07-05T00:00:00Z date_updated: 2023-07-19T06:59:19Z day: '05' ddc: - '530' department: - _id: MiLe - _id: ZhAl doi: 10.1021/acs.jpclett.3c01158 ec_funded: 1 external_id: arxiv: - '2304.14198' isi: - '001022811500001' file: - access_level: open_access checksum: c0c040063f06a51b9c463adc504f1a23 content_type: application/pdf creator: dernst date_created: 2023-07-19T06:55:39Z date_updated: 2023-07-19T06:55:39Z file_id: '13253' file_name: 2023_JourPhysChemistry_Wei.pdf file_size: 2121252 relation: main_file success: 1 file_date_updated: 2023-07-19T06:55:39Z has_accepted_license: '1' intvolume: ' 14' isi: 1 issue: '27' keyword: - General Materials Science - Physical and Theoretical Chemistry language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: 6309-6314 project: - _id: 2688CF98-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '801770' name: 'Angulon: physics and applications of a new quasiparticle' publication: The Journal of Physical Chemistry Letters publication_identifier: eissn: - 1948-7185 publication_status: published publisher: American Chemical Society quality_controlled: '1' status: public title: Bond polarizability as a probe of local crystal fields in hybrid lead-halide perovskites tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 14 year: '2023' ... --- _id: '13276' abstract: - lang: eng text: We introduce a generic and accessible implementation of an exact diagonalization method for studying few-fermion models. Our aim is to provide a testbed for the newcomers to the field as well as a stepping stone for trying out novel optimizations and approximations. This userguide consists of a description of the algorithm, and several examples in varying orders of sophistication. In particular, we exemplify our routine using an effective-interaction approach that fixes the low-energy physics. We benchmark this approach against the existing data, and show that it is able to deliver state-of-the-art numerical results at a significantly reduced computational cost. acknowledgement: "We acknowledge fruitful discussions with Hans-Werner Hammer and thank Gerhard Zürn and\r\nPietro Massignan for sending us their data. We thank Fabian Brauneis for beta-testing the\r\nprovided code-package, and comments on the manuscript.\r\nL.R. is supported by FP7/ERC Consolidator Grant QSIMCORR, No.\r\n771891, and the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under\r\nGermany’s Excellence Strategy –EXC–2111–390814868. A.G.V. acknowledges support\r\nby European Union’s Horizon 2020 research and innovation programme under the Marie\r\nSkłodowska-Curie Grant Agreement No. 754411." article_number: '12' article_processing_charge: No article_type: original author: - first_name: Lukas full_name: Rammelmüller, Lukas last_name: Rammelmüller - first_name: David full_name: Huber, David last_name: Huber - first_name: Artem full_name: Volosniev, Artem id: 37D278BC-F248-11E8-B48F-1D18A9856A87 last_name: Volosniev orcid: 0000-0003-0393-5525 citation: ama: Rammelmüller L, Huber D, Volosniev A. A modular implementation of an effective interaction approach for harmonically trapped fermions in 1D. SciPost Physics Codebases. 2023. doi:10.21468/scipostphyscodeb.12 apa: Rammelmüller, L., Huber, D., & Volosniev, A. (2023). A modular implementation of an effective interaction approach for harmonically trapped fermions in 1D. SciPost Physics Codebases. SciPost Foundation. https://doi.org/10.21468/scipostphyscodeb.12 chicago: Rammelmüller, Lukas, David Huber, and Artem Volosniev. “A Modular Implementation of an Effective Interaction Approach for Harmonically Trapped Fermions in 1D.” SciPost Physics Codebases. SciPost Foundation, 2023. https://doi.org/10.21468/scipostphyscodeb.12. ieee: L. Rammelmüller, D. Huber, and A. Volosniev, “A modular implementation of an effective interaction approach for harmonically trapped fermions in 1D,” SciPost Physics Codebases. SciPost Foundation, 2023. ista: Rammelmüller L, Huber D, Volosniev A. 2023. A modular implementation of an effective interaction approach for harmonically trapped fermions in 1D. SciPost Physics Codebases., 12. mla: Rammelmüller, Lukas, et al. “A Modular Implementation of an Effective Interaction Approach for Harmonically Trapped Fermions in 1D.” SciPost Physics Codebases, 12, SciPost Foundation, 2023, doi:10.21468/scipostphyscodeb.12. short: L. Rammelmüller, D. Huber, A. Volosniev, SciPost Physics Codebases (2023). date_created: 2023-07-24T10:47:15Z date_published: 2023-04-19T00:00:00Z date_updated: 2023-07-31T09:16:02Z day: '19' ddc: - '530' department: - _id: MiLe doi: 10.21468/scipostphyscodeb.12 ec_funded: 1 external_id: arxiv: - '2202.04603' file: - access_level: open_access checksum: f583a70fe915d2208c803f5afb426daa content_type: application/pdf creator: dernst date_created: 2023-07-31T09:09:23Z date_updated: 2023-07-31T09:09:23Z file_id: '13330' file_name: 2023_SciPostPhysCodebase_Rammelmueller.pdf file_size: 551418 relation: main_file success: 1 file_date_updated: 2023-07-31T09:09:23Z has_accepted_license: '1' language: - iso: eng month: '04' oa: 1 oa_version: Published Version project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: SciPost Physics Codebases publication_identifier: issn: - 2949-804X publication_status: published publisher: SciPost Foundation quality_controlled: '1' related_material: record: - id: '13275' relation: research_data status: public status: public title: A modular implementation of an effective interaction approach for harmonically trapped fermions in 1D tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '13275' abstract: - lang: eng text: We introduce a generic and accessible implementation of an exact diagonalization method for studying few-fermion models. Our aim is to provide a testbed for the newcomers to the field as well as a stepping stone for trying out novel optimizations and approximations. This userguide consists of a description of the algorithm, and several examples in varying orders of sophistication. In particular, we exemplify our routine using an effective-interaction approach that fixes the low-energy physics. We benchmark this approach against the existing data, and show that it is able to deliver state-of-the-art numerical results at a significantly reduced computational cost. article_processing_charge: No author: - first_name: Lukas full_name: Rammelmüller, Lukas last_name: Rammelmüller - first_name: David full_name: Huber, David last_name: Huber - first_name: Artem full_name: Volosniev, Artem id: 37D278BC-F248-11E8-B48F-1D18A9856A87 last_name: Volosniev orcid: 0000-0003-0393-5525 citation: ama: Rammelmüller L, Huber D, Volosniev A. Codebase release 1.0 for FermiFCI. 2023. doi:10.21468/scipostphyscodeb.12-r1.0 apa: Rammelmüller, L., Huber, D., & Volosniev, A. (2023). Codebase release 1.0 for FermiFCI. SciPost Foundation. https://doi.org/10.21468/scipostphyscodeb.12-r1.0 chicago: Rammelmüller, Lukas, David Huber, and Artem Volosniev. “Codebase Release 1.0 for FermiFCI.” SciPost Foundation, 2023. https://doi.org/10.21468/scipostphyscodeb.12-r1.0. ieee: L. Rammelmüller, D. Huber, and A. Volosniev, “Codebase release 1.0 for FermiFCI.” SciPost Foundation, 2023. ista: Rammelmüller L, Huber D, Volosniev A. 2023. Codebase release 1.0 for FermiFCI, SciPost Foundation, 10.21468/scipostphyscodeb.12-r1.0. mla: Rammelmüller, Lukas, et al. Codebase Release 1.0 for FermiFCI. SciPost Foundation, 2023, doi:10.21468/scipostphyscodeb.12-r1.0. short: L. Rammelmüller, D. Huber, A. Volosniev, (2023). date_created: 2023-07-24T10:46:23Z date_published: 2023-04-19T00:00:00Z date_updated: 2023-07-31T09:16:02Z day: '19' ddc: - '530' department: - _id: MiLe doi: 10.21468/scipostphyscodeb.12-r1.0 ec_funded: 1 main_file_link: - open_access: '1' url: https://doi.org/10.21468/SciPostPhysCodeb.12-r1.0 month: '04' oa: 1 oa_version: Published Version project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publisher: SciPost Foundation related_material: record: - id: '13276' relation: used_in_publication status: public status: public title: Codebase release 1.0 for FermiFCI type: research_data_reference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '12723' abstract: - lang: eng text: 'Lead halide perovskites enjoy a number of remarkable optoelectronic properties. To explain their origin, it is necessary to study how electromagnetic fields interact with these systems. We address this problem here by studying two classical quantities: Faraday rotation and the complex refractive index in a paradigmatic perovskite CH3NH3PbBr3 in a broad wavelength range. We find that the minimal coupling of electromagnetic fields to the k⋅p Hamiltonian is insufficient to describe the observed data even on the qualitative level. To amend this, we demonstrate that there exists a relevant atomic-level coupling between electromagnetic fields and the spin degree of freedom. This spin-electric coupling allows for quantitative description of a number of previous as well as present experimental data. In particular, we use it here to show that the Faraday effect in lead halide perovskites is dominated by the Zeeman splitting of the energy levels and has a substantial beyond-Becquerel contribution. Finally, we present general symmetry-based phenomenological arguments that in the low-energy limit our effective model includes all basis coupling terms to the electromagnetic field in the linear order.' article_number: '106901' article_processing_charge: No article_type: original author: - first_name: Artem full_name: Volosniev, Artem id: 37D278BC-F248-11E8-B48F-1D18A9856A87 last_name: Volosniev orcid: 0000-0003-0393-5525 - first_name: Abhishek full_name: Shiva Kumar, Abhishek id: 5e9a6931-eb97-11eb-a6c2-e96f7058d77a last_name: Shiva Kumar - first_name: Dusan full_name: Lorenc, Dusan id: 40D8A3E6-F248-11E8-B48F-1D18A9856A87 last_name: Lorenc - first_name: Younes full_name: Ashourishokri, Younes id: e32c111f-f6e0-11ea-865d-eb955baea334 last_name: Ashourishokri - first_name: Ayan A. full_name: Zhumekenov, Ayan A. last_name: Zhumekenov - first_name: Osman M. full_name: Bakr, Osman M. last_name: Bakr - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 - first_name: Zhanybek full_name: Alpichshev, Zhanybek id: 45E67A2A-F248-11E8-B48F-1D18A9856A87 last_name: Alpichshev orcid: 0000-0002-7183-5203 citation: ama: Volosniev A, Shiva Kumar A, Lorenc D, et al. Spin-electric coupling in lead halide perovskites. Physical Review Letters. 2023;130(10). doi:10.1103/physrevlett.130.106901 apa: Volosniev, A., Shiva Kumar, A., Lorenc, D., Ashourishokri, Y., Zhumekenov, A. A., Bakr, O. M., … Alpichshev, Z. (2023). Spin-electric coupling in lead halide perovskites. Physical Review Letters. American Physical Society. https://doi.org/10.1103/physrevlett.130.106901 chicago: Volosniev, Artem, Abhishek Shiva Kumar, Dusan Lorenc, Younes Ashourishokri, Ayan A. Zhumekenov, Osman M. Bakr, Mikhail Lemeshko, and Zhanybek Alpichshev. “Spin-Electric Coupling in Lead Halide Perovskites.” Physical Review Letters. American Physical Society, 2023. https://doi.org/10.1103/physrevlett.130.106901. ieee: A. Volosniev et al., “Spin-electric coupling in lead halide perovskites,” Physical Review Letters, vol. 130, no. 10. American Physical Society, 2023. ista: Volosniev A, Shiva Kumar A, Lorenc D, Ashourishokri Y, Zhumekenov AA, Bakr OM, Lemeshko M, Alpichshev Z. 2023. Spin-electric coupling in lead halide perovskites. Physical Review Letters. 130(10), 106901. mla: Volosniev, Artem, et al. “Spin-Electric Coupling in Lead Halide Perovskites.” Physical Review Letters, vol. 130, no. 10, 106901, American Physical Society, 2023, doi:10.1103/physrevlett.130.106901. short: A. Volosniev, A. Shiva Kumar, D. Lorenc, Y. Ashourishokri, A.A. Zhumekenov, O.M. Bakr, M. Lemeshko, Z. Alpichshev, Physical Review Letters 130 (2023). date_created: 2023-03-14T13:11:59Z date_published: 2023-03-10T00:00:00Z date_updated: 2023-08-01T13:39:04Z day: '10' department: - _id: GradSch - _id: ZhAl - _id: MiLe doi: 10.1103/physrevlett.130.106901 external_id: arxiv: - '2203.09443' isi: - '000982435900002' intvolume: ' 130' isi: 1 issue: '10' keyword: - General Physics and Astronomy language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2203.09443 month: '03' oa: 1 oa_version: Preprint publication: Physical Review Letters publication_identifier: eissn: - 1079-7114 issn: - 0031-9007 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Spin-electric coupling in lead halide perovskites type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 130 year: '2023' ... --- _id: '12724' abstract: - lang: eng text: 'We use general symmetry-based arguments to construct an effective model suitable for studying optical properties of lead halide perovskites. To build the model, we identify an atomic-level interaction between electromagnetic fields and the spin degree of freedom that should be added to a minimally coupled k⋅p Hamiltonian. As a first application, we study two basic optical characteristics of the material: the Verdet constant and the refractive index. Beyond these linear characteristics of the material, the model is suitable for calculating nonlinear effects such as the third-order optical susceptibility. Analysis of this quantity shows that the geometrical properties of the spin-electric term imply isotropic optical response of the system, and that optical anisotropy of lead halide perovskites is a manifestation of hopping of charge carriers. To illustrate this, we discuss third-harmonic generation.' article_number: '125201' article_processing_charge: No article_type: original author: - first_name: Artem full_name: Volosniev, Artem id: 37D278BC-F248-11E8-B48F-1D18A9856A87 last_name: Volosniev orcid: 0000-0003-0393-5525 - first_name: Abhishek full_name: Shiva Kumar, Abhishek id: 5e9a6931-eb97-11eb-a6c2-e96f7058d77a last_name: Shiva Kumar - first_name: Dusan full_name: Lorenc, Dusan id: 40D8A3E6-F248-11E8-B48F-1D18A9856A87 last_name: Lorenc - first_name: Younes full_name: Ashourishokri, Younes id: e32c111f-f6e0-11ea-865d-eb955baea334 last_name: Ashourishokri - first_name: Ayan full_name: Zhumekenov, Ayan last_name: Zhumekenov - first_name: Osman M. full_name: Bakr, Osman M. last_name: Bakr - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 - first_name: Zhanybek full_name: Alpichshev, Zhanybek id: 45E67A2A-F248-11E8-B48F-1D18A9856A87 last_name: Alpichshev orcid: 0000-0002-7183-5203 citation: ama: Volosniev A, Shiva Kumar A, Lorenc D, et al. Effective model for studying optical properties of lead halide perovskites. Physical Review B. 2023;107(12). doi:10.1103/physrevb.107.125201 apa: Volosniev, A., Shiva Kumar, A., Lorenc, D., Ashourishokri, Y., Zhumekenov, A., Bakr, O. M., … Alpichshev, Z. (2023). Effective model for studying optical properties of lead halide perovskites. Physical Review B. American Physical Society. https://doi.org/10.1103/physrevb.107.125201 chicago: Volosniev, Artem, Abhishek Shiva Kumar, Dusan Lorenc, Younes Ashourishokri, Ayan Zhumekenov, Osman M. Bakr, Mikhail Lemeshko, and Zhanybek Alpichshev. “Effective Model for Studying Optical Properties of Lead Halide Perovskites.” Physical Review B. American Physical Society, 2023. https://doi.org/10.1103/physrevb.107.125201. ieee: A. Volosniev et al., “Effective model for studying optical properties of lead halide perovskites,” Physical Review B, vol. 107, no. 12. American Physical Society, 2023. ista: Volosniev A, Shiva Kumar A, Lorenc D, Ashourishokri Y, Zhumekenov A, Bakr OM, Lemeshko M, Alpichshev Z. 2023. Effective model for studying optical properties of lead halide perovskites. Physical Review B. 107(12), 125201. mla: Volosniev, Artem, et al. “Effective Model for Studying Optical Properties of Lead Halide Perovskites.” Physical Review B, vol. 107, no. 12, 125201, American Physical Society, 2023, doi:10.1103/physrevb.107.125201. short: A. Volosniev, A. Shiva Kumar, D. Lorenc, Y. Ashourishokri, A. Zhumekenov, O.M. Bakr, M. Lemeshko, Z. Alpichshev, Physical Review B 107 (2023). date_created: 2023-03-14T13:13:05Z date_published: 2023-03-15T00:00:00Z date_updated: 2023-08-01T13:39:47Z day: '15' department: - _id: GradSch - _id: ZhAl - _id: MiLe doi: 10.1103/physrevb.107.125201 external_id: arxiv: - '2204.04022' isi: - '000972602200006' intvolume: ' 107' isi: 1 issue: '12' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2204.04022 month: '03' oa: 1 oa_version: Preprint publication: Physical Review B publication_identifier: eissn: - 2469-9969 issn: - 2469-9950 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Effective model for studying optical properties of lead halide perovskites type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 107 year: '2023' ... --- _id: '12788' abstract: - lang: eng text: We show that the simplest of existing molecules—closed-shell diatomics not interacting with one another—host topological charges when driven by periodic far-off-resonant laser pulses. A periodically kicked molecular rotor can be mapped onto a “crystalline” lattice in angular momentum space. This allows us to define quasimomenta and the band structure in the Floquet representation, by analogy with the Bloch waves of solid-state physics. Applying laser pulses spaced by 1/3 of the molecular rotational period creates a lattice with three atoms per unit cell with staggered hopping. Within the synthetic dimension of the laser strength, we discover Dirac cones with topological charges. These Dirac cones, topologically protected by reflection and time-reversal symmetry, are reminiscent of (although not equivalent to) that seen in graphene. They—and the corresponding edge states—are broadly tunable by adjusting the laser strength and can be observed in present-day experiments by measuring molecular alignment and populations of rotational levels. This paves the way to study controllable topological physics in gas-phase experiments with small molecules as well as to classify dynamical molecular states by their topological invariants. acknowledgement: M. L. acknowledges support by the European Research Council (ERC) Starting Grant No. 801770 (ANGULON). article_number: '103202' article_processing_charge: No article_type: original author: - first_name: Volker full_name: Karle, Volker id: D7C012AE-D7ED-11E9-95E8-1EC5E5697425 last_name: Karle - first_name: Areg full_name: Ghazaryan, Areg id: 4AF46FD6-F248-11E8-B48F-1D18A9856A87 last_name: Ghazaryan orcid: 0000-0001-9666-3543 - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 citation: ama: Karle V, Ghazaryan A, Lemeshko M. Topological charges of periodically kicked molecules. Physical Review Letters. 2023;130(10). doi:10.1103/PhysRevLett.130.103202 apa: Karle, V., Ghazaryan, A., & Lemeshko, M. (2023). Topological charges of periodically kicked molecules. Physical Review Letters. American Physical Society. https://doi.org/10.1103/PhysRevLett.130.103202 chicago: Karle, Volker, Areg Ghazaryan, and Mikhail Lemeshko. “Topological Charges of Periodically Kicked Molecules.” Physical Review Letters. American Physical Society, 2023. https://doi.org/10.1103/PhysRevLett.130.103202. ieee: V. Karle, A. Ghazaryan, and M. Lemeshko, “Topological charges of periodically kicked molecules,” Physical Review Letters, vol. 130, no. 10. American Physical Society, 2023. ista: Karle V, Ghazaryan A, Lemeshko M. 2023. Topological charges of periodically kicked molecules. Physical Review Letters. 130(10), 103202. mla: Karle, Volker, et al. “Topological Charges of Periodically Kicked Molecules.” Physical Review Letters, vol. 130, no. 10, 103202, American Physical Society, 2023, doi:10.1103/PhysRevLett.130.103202. short: V. Karle, A. Ghazaryan, M. Lemeshko, Physical Review Letters 130 (2023). date_created: 2023-04-02T22:01:10Z date_published: 2023-03-10T00:00:00Z date_updated: 2023-08-01T14:02:06Z day: '10' department: - _id: MiLe doi: 10.1103/PhysRevLett.130.103202 ec_funded: 1 external_id: arxiv: - '2206.07067' isi: - '000957635500003' intvolume: ' 130' isi: 1 issue: '10' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2206.07067 month: '03' oa: 1 oa_version: Preprint project: - _id: 2688CF98-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '801770' name: 'Angulon: physics and applications of a new quasiparticle' publication: Physical Review Letters publication_identifier: eissn: - 1079-7114 issn: - 0031-9007 publication_status: published publisher: American Physical Society quality_controlled: '1' related_material: link: - description: News on the ISTA website relation: press_release url: https://ista.ac.at/en/news/topology-of-rotating-molecules/ scopus_import: '1' status: public title: Topological charges of periodically kicked molecules type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 130 year: '2023' ... --- _id: '12790' abstract: - lang: eng text: Motivated by the recent discoveries of superconductivity in bilayer and trilayer graphene, we theoretically investigate superconductivity and other interaction-driven phases in multilayer graphene stacks. To this end, we study the density of states of multilayer graphene with up to four layers at the single-particle band structure level in the presence of a transverse electric field. Among the considered structures, tetralayer graphene with rhombohedral (ABCA) stacking reaches the highest density of states. We study the phases that can arise in ABCA graphene by tuning the carrier density and transverse electric field. For a broad region of the tuning parameters, the presence of strong Coulomb repulsion leads to a spontaneous spin and valley symmetry breaking via Stoner transitions. Using a model that incorporates the spontaneous spin and valley polarization, we explore the Kohn-Luttinger mechanism for superconductivity driven by repulsive Coulomb interactions. We find that the strongest superconducting instability is in the p-wave channel, and occurs in proximity to the onset of Stoner transitions. Interestingly, we find a range of densities and transverse electric fields where superconductivity develops out of a strongly corrugated, singly connected Fermi surface in each valley, leading to a topologically nontrivial chiral p+ip superconducting state with an even number of copropagating chiral Majorana edge modes. Our work establishes ABCA-stacked tetralayer graphene as a promising platform for observing strongly correlated physics and topological superconductivity. acknowledgement: E.B. and T.H. were supported by the European Research Council (ERC) under grant HQMAT (Grant Agreement No. 817799), by the Israel-USA Binational Science Foundation (BSF), and by a Research grant from Irving and Cherna Moskowitz. article_number: '104502' article_processing_charge: No article_type: original author: - first_name: Areg full_name: Ghazaryan, Areg id: 4AF46FD6-F248-11E8-B48F-1D18A9856A87 last_name: Ghazaryan orcid: 0000-0001-9666-3543 - first_name: Tobias full_name: Holder, Tobias last_name: Holder - first_name: Erez full_name: Berg, Erez last_name: Berg - first_name: Maksym full_name: Serbyn, Maksym id: 47809E7E-F248-11E8-B48F-1D18A9856A87 last_name: Serbyn orcid: 0000-0002-2399-5827 citation: ama: Ghazaryan A, Holder T, Berg E, Serbyn M. Multilayer graphenes as a platform for interaction-driven physics and topological superconductivity. Physical Review B. 2023;107(10). doi:10.1103/PhysRevB.107.104502 apa: Ghazaryan, A., Holder, T., Berg, E., & Serbyn, M. (2023). Multilayer graphenes as a platform for interaction-driven physics and topological superconductivity. Physical Review B. American Physical Society. https://doi.org/10.1103/PhysRevB.107.104502 chicago: Ghazaryan, Areg, Tobias Holder, Erez Berg, and Maksym Serbyn. “Multilayer Graphenes as a Platform for Interaction-Driven Physics and Topological Superconductivity.” Physical Review B. American Physical Society, 2023. https://doi.org/10.1103/PhysRevB.107.104502. ieee: A. Ghazaryan, T. Holder, E. Berg, and M. Serbyn, “Multilayer graphenes as a platform for interaction-driven physics and topological superconductivity,” Physical Review B, vol. 107, no. 10. American Physical Society, 2023. ista: Ghazaryan A, Holder T, Berg E, Serbyn M. 2023. Multilayer graphenes as a platform for interaction-driven physics and topological superconductivity. Physical Review B. 107(10), 104502. mla: Ghazaryan, Areg, et al. “Multilayer Graphenes as a Platform for Interaction-Driven Physics and Topological Superconductivity.” Physical Review B, vol. 107, no. 10, 104502, American Physical Society, 2023, doi:10.1103/PhysRevB.107.104502. short: A. Ghazaryan, T. Holder, E. Berg, M. Serbyn, Physical Review B 107 (2023). date_created: 2023-04-02T22:01:10Z date_published: 2023-03-01T00:00:00Z date_updated: 2023-08-01T13:59:29Z day: '01' department: - _id: MaSe - _id: MiLe doi: 10.1103/PhysRevB.107.104502 external_id: arxiv: - '2211.02492' isi: - '000945526400003' intvolume: ' 107' isi: 1 issue: '10' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2211.02492 month: '03' oa: 1 oa_version: Preprint publication: Physical Review B publication_identifier: eissn: - 2469-9969 issn: - 2469-9950 publication_status: published publisher: American Physical Society quality_controlled: '1' related_material: link: - description: News on the ISTA website relation: press_release url: https://ista.ac.at/en/news/reaching-superconductivity-layer-by-layer/ scopus_import: '1' status: public title: Multilayer graphenes as a platform for interaction-driven physics and topological superconductivity type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 107 year: '2023' ... --- _id: '12831' abstract: - lang: eng text: The angulon, a quasiparticle formed by a quantum rotor dressed by the excitations of a many-body bath, can be used to describe an impurity rotating in a fluid or solid environment. Here, we propose a coherent state ansatz in the co-rotating frame, which provides a comprehensive theoretical description of angulons. We reveal the quasiparticle properties, such as energies, quasiparticle weights, and spectral functions, and show that our ansatz yields a persistent decrease in the impurity’s rotational constant due to many-body dressing, which is consistent with experimental observations. From our study, a picture of the angulon emerges as an effective spin interacting with a magnetic field that is self-consistently generated by the molecule’s rotation. Moreover, we discuss rotational spectroscopy, which focuses on the response of rotating molecules to a laser perturbation in the linear response regime. Importantly, we take into account initial-state interactions that have been neglected in prior studies and reveal their impact on the excitation spectrum. To examine the angulon instability regime, we use a single-excitation ansatz and obtain results consistent with experiments, in which a broadening of spectral lines is observed while phonon wings remain highly suppressed due to initial-state interactions. acknowledgement: We thank Ignacio Cirac, Christian Schmauder, and Henrik Stapelfeldt for their valuable discussions. We acknowledge support by the Max Planck Society and the Deutsche Forschungsgemeinschaft under Germany’s Excellence Strategy EXC 2181/1—390900948 (the Heidelberg STRUCTURES Excellence Cluster). M.L. acknowledges support from the European Research Council (ERC) Starting Grant No. 801770 (ANGULON). T.S. is supported by the National Key Research and Development Program of China (Grant No. 2017YFA0718304) and the National Natural Science Foundation of China (Grant Nos. 11974363, 12135018, and 12047503). article_number: '134301' article_processing_charge: No article_type: original author: - first_name: Zhongda full_name: Zeng, Zhongda last_name: Zeng - first_name: Enderalp full_name: Yakaboylu, Enderalp id: 38CB71F6-F248-11E8-B48F-1D18A9856A87 last_name: Yakaboylu orcid: 0000-0001-5973-0874 - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 - first_name: Tao full_name: Shi, Tao last_name: Shi - first_name: Richard full_name: Schmidt, Richard last_name: Schmidt citation: ama: Zeng Z, Yakaboylu E, Lemeshko M, Shi T, Schmidt R. Variational theory of angulons and their rotational spectroscopy. The Journal of Chemical Physics. 2023;158(13). doi:10.1063/5.0135893 apa: Zeng, Z., Yakaboylu, E., Lemeshko, M., Shi, T., & Schmidt, R. (2023). Variational theory of angulons and their rotational spectroscopy. The Journal of Chemical Physics. American Institute of Physics. https://doi.org/10.1063/5.0135893 chicago: Zeng, Zhongda, Enderalp Yakaboylu, Mikhail Lemeshko, Tao Shi, and Richard Schmidt. “Variational Theory of Angulons and Their Rotational Spectroscopy.” The Journal of Chemical Physics. American Institute of Physics, 2023. https://doi.org/10.1063/5.0135893. ieee: Z. Zeng, E. Yakaboylu, M. Lemeshko, T. Shi, and R. Schmidt, “Variational theory of angulons and their rotational spectroscopy,” The Journal of Chemical Physics, vol. 158, no. 13. American Institute of Physics, 2023. ista: Zeng Z, Yakaboylu E, Lemeshko M, Shi T, Schmidt R. 2023. Variational theory of angulons and their rotational spectroscopy. The Journal of Chemical Physics. 158(13), 134301. mla: Zeng, Zhongda, et al. “Variational Theory of Angulons and Their Rotational Spectroscopy.” The Journal of Chemical Physics, vol. 158, no. 13, 134301, American Institute of Physics, 2023, doi:10.1063/5.0135893. short: Z. Zeng, E. Yakaboylu, M. Lemeshko, T. Shi, R. Schmidt, The Journal of Chemical Physics 158 (2023). date_created: 2023-04-16T22:01:07Z date_published: 2023-04-07T00:00:00Z date_updated: 2023-08-01T14:08:47Z day: '07' ddc: - '530' department: - _id: MiLe doi: 10.1063/5.0135893 ec_funded: 1 external_id: arxiv: - '2211.08070' isi: - '000970038800001' file: - access_level: open_access checksum: 8d801babea4df48e08895c76571bb19e content_type: application/pdf creator: dernst date_created: 2023-04-17T07:28:38Z date_updated: 2023-04-17T07:28:38Z file_id: '12841' file_name: 2023_JourChemicalPhysics_Zeng.pdf file_size: 7388057 relation: main_file success: 1 file_date_updated: 2023-04-17T07:28:38Z has_accepted_license: '1' intvolume: ' 158' isi: 1 issue: '13' language: - iso: eng month: '04' oa: 1 oa_version: Published Version project: - _id: 2688CF98-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '801770' name: 'Angulon: physics and applications of a new quasiparticle' publication: The Journal of Chemical Physics publication_identifier: eissn: - 1089-7690 publication_status: published publisher: American Institute of Physics quality_controlled: '1' scopus_import: '1' status: public title: Variational theory of angulons and their rotational spectroscopy tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 158 year: '2023' ... --- _id: '12914' abstract: - lang: eng text: We numerically study two methods of measuring tunneling times using a quantum clock. In the conventional method using the Larmor clock, we show that the Larmor tunneling time can be shorter for higher tunneling barriers. In the second method, we study the probability of a spin-flip of a particle when it is transmitted through a potential barrier including a spatially rotating field interacting with its spin. According to the adiabatic theorem, the probability depends on the velocity of the particle inside the barrier. It is numerically observed that the probability increases for higher barriers, which is consistent with the result obtained by the Larmor clock. By comparing outcomes for different initial spin states, we suggest that one of the main causes of the apparent decrease in the tunneling time can be the filtering effect occurring at the end of the barrier. acknowledgement: We thank W. H. Zurek, N. Sinitsyn, M. O. Scully, M. Arndt, and C. H. Marrows for helpful discussions. F.S. acknowledges support from the Los Alamos National Laboratory LDRD program under Project No. 20230049DR and the Center for Nonlinear Studies. F.S. also thanks the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant No. 754411 for support. W.G.U. thanks the Natural Science and Engineering Research Council of Canada, the Hagler Institute of Texas A&M University, the Helmholz Inst HZDR, Germany for support while this work was being done. article_number: '042216' article_processing_charge: No article_type: original author: - first_name: Fumika full_name: Suzuki, Fumika id: 650C99FC-1079-11EA-A3C0-73AE3DDC885E last_name: Suzuki orcid: 0000-0003-4982-5970 - first_name: William G. full_name: Unruh, William G. last_name: Unruh citation: ama: Suzuki F, Unruh WG. Numerical quantum clock simulations for measuring tunneling times. Physical Review A. 2023;107(4). doi:10.1103/PhysRevA.107.042216 apa: Suzuki, F., & Unruh, W. G. (2023). Numerical quantum clock simulations for measuring tunneling times. Physical Review A. American Physical Society. https://doi.org/10.1103/PhysRevA.107.042216 chicago: Suzuki, Fumika, and William G. Unruh. “Numerical Quantum Clock Simulations for Measuring Tunneling Times.” Physical Review A. American Physical Society, 2023. https://doi.org/10.1103/PhysRevA.107.042216. ieee: F. Suzuki and W. G. Unruh, “Numerical quantum clock simulations for measuring tunneling times,” Physical Review A, vol. 107, no. 4. American Physical Society, 2023. ista: Suzuki F, Unruh WG. 2023. Numerical quantum clock simulations for measuring tunneling times. Physical Review A. 107(4), 042216. mla: Suzuki, Fumika, and William G. Unruh. “Numerical Quantum Clock Simulations for Measuring Tunneling Times.” Physical Review A, vol. 107, no. 4, 042216, American Physical Society, 2023, doi:10.1103/PhysRevA.107.042216. short: F. Suzuki, W.G. Unruh, Physical Review A 107 (2023). date_created: 2023-05-07T22:01:03Z date_published: 2023-04-20T00:00:00Z date_updated: 2023-08-01T14:33:21Z day: '20' department: - _id: MiLe doi: 10.1103/PhysRevA.107.042216 ec_funded: 1 external_id: arxiv: - '2207.13130' isi: - '000975799300006' intvolume: ' 107' isi: 1 issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2207.13130 month: '04' oa: 1 oa_version: Preprint project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Physical Review A publication_identifier: eissn: - 2469-9934 issn: - 2469-9926 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Numerical quantum clock simulations for measuring tunneling times type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 107 year: '2023' ... --- _id: '13233' abstract: - lang: eng text: We study the impact of finite-range physics on the zero-range-model analysis of three-body recombination in ultracold atoms. We find that temperature dependence of the zero-range parameters can vary from one set of measurements to another as it may be driven by the distribution of error bars in the experiment, and not by the underlying three-body physics. To study finite-temperature effects in three-body recombination beyond the zero-range physics, we introduce and examine a finite-range model based upon a hyperspherical formalism. The systematic error discussed in this Letter may provide a significant contribution to the error bars of measured three-body parameters. acknowledgement: We thank Jan Arlt, Hans-Werner Hammer, and Karsten Riisager for useful discussions. M.L. acknowledges support by the European Research Council (ERC) Starting Grant No. 801770 (ANGULON). article_number: L061304 article_processing_charge: No article_type: letter_note author: - first_name: Sofya full_name: Agafonova, Sofya id: 09501ff6-dca7-11ea-a8ae-b3e0b9166e80 last_name: Agafonova - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 - first_name: Artem full_name: Volosniev, Artem id: 37D278BC-F248-11E8-B48F-1D18A9856A87 last_name: Volosniev orcid: 0000-0003-0393-5525 citation: ama: Agafonova S, Lemeshko M, Volosniev A. Finite-range bias in fitting three-body loss to the zero-range model. Physical Review A. 2023;107(6). doi:10.1103/PhysRevA.107.L061304 apa: Agafonova, S., Lemeshko, M., & Volosniev, A. (2023). Finite-range bias in fitting three-body loss to the zero-range model. Physical Review A. American Physical Society. https://doi.org/10.1103/PhysRevA.107.L061304 chicago: Agafonova, Sofya, Mikhail Lemeshko, and Artem Volosniev. “Finite-Range Bias in Fitting Three-Body Loss to the Zero-Range Model.” Physical Review A. American Physical Society, 2023. https://doi.org/10.1103/PhysRevA.107.L061304. ieee: S. Agafonova, M. Lemeshko, and A. Volosniev, “Finite-range bias in fitting three-body loss to the zero-range model,” Physical Review A, vol. 107, no. 6. American Physical Society, 2023. ista: Agafonova S, Lemeshko M, Volosniev A. 2023. Finite-range bias in fitting three-body loss to the zero-range model. Physical Review A. 107(6), L061304. mla: Agafonova, Sofya, et al. “Finite-Range Bias in Fitting Three-Body Loss to the Zero-Range Model.” Physical Review A, vol. 107, no. 6, L061304, American Physical Society, 2023, doi:10.1103/PhysRevA.107.L061304. short: S. Agafonova, M. Lemeshko, A. Volosniev, Physical Review A 107 (2023). date_created: 2023-07-16T22:01:10Z date_published: 2023-06-20T00:00:00Z date_updated: 2023-08-02T06:31:52Z day: '20' department: - _id: MiLe - _id: OnHo doi: 10.1103/PhysRevA.107.L061304 ec_funded: 1 external_id: arxiv: - '2302.01022' isi: - '001019748000005' intvolume: ' 107' isi: 1 issue: '6' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2302.01022 month: '06' oa: 1 oa_version: Preprint project: - _id: 2688CF98-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '801770' name: 'Angulon: physics and applications of a new quasiparticle' publication: Physical Review A publication_identifier: eissn: - 2469-9934 issn: - 2469-9926 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Finite-range bias in fitting three-body loss to the zero-range model type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 107 year: '2023' ... --- _id: '13966' abstract: - lang: eng text: We present a low-scaling diagrammatic Monte Carlo approach to molecular correlation energies. Using combinatorial graph theory to encode many-body Hugenholtz diagrams, we sample the Møller-Plesset (MPn) perturbation series, obtaining accurate correlation energies up to n=5, with quadratic scaling in the number of basis functions. Our technique reduces the computational complexity of the molecular many-fermion correlation problem, opening up the possibility of low-scaling, accurate stochastic computations for a wide class of many-body systems described by Hugenholtz diagrams. acknowledgement: We acknowledge stimulating discussions with Sergey Varganov, Artur Izmaylov, Jacek Kłos, Piotr Żuchowski, Dominika Zgid, Nikolay Prokof'ev, Boris Svistunov, Robert Parrish, and Andreas Heßelmann. G.B. and Q.P.H. acknowledge support from the Austrian Science Fund (FWF) under Projects No. M2641-N27 and No. M2751. M.L. acknowledges support by the FWF under Project No. P29902-N27, and by the European Research Council (ERC) Starting Grant No. 801770 (ANGULON). T.V.T. was supported by the NSF CAREER award No. PHY-2045681. This work is supported by the German Research Foundation (DFG) under Germany's Excellence Strategy EXC2181/1-390900948 (the Heidelberg STRUCTURES Excellence Cluster). The authors acknowledge support by the state of Baden-Württemberg through bwHPC. article_number: '045115' article_processing_charge: No article_type: original author: - first_name: Giacomo full_name: Bighin, Giacomo id: 4CA96FD4-F248-11E8-B48F-1D18A9856A87 last_name: Bighin orcid: 0000-0001-8823-9777 - first_name: Quoc P full_name: Ho, Quoc P id: 3DD82E3C-F248-11E8-B48F-1D18A9856A87 last_name: Ho - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 - first_name: T. V. full_name: Tscherbul, T. V. last_name: Tscherbul citation: ama: 'Bighin G, Ho QP, Lemeshko M, Tscherbul TV. Diagrammatic Monte Carlo for electronic correlation in molecules: High-order many-body perturbation theory with low scaling. Physical Review B. 2023;108(4). doi:10.1103/PhysRevB.108.045115' apa: 'Bighin, G., Ho, Q. P., Lemeshko, M., & Tscherbul, T. V. (2023). Diagrammatic Monte Carlo for electronic correlation in molecules: High-order many-body perturbation theory with low scaling. Physical Review B. American Physical Society. https://doi.org/10.1103/PhysRevB.108.045115' chicago: 'Bighin, Giacomo, Quoc P Ho, Mikhail Lemeshko, and T. V. Tscherbul. “Diagrammatic Monte Carlo for Electronic Correlation in Molecules: High-Order Many-Body Perturbation Theory with Low Scaling.” Physical Review B. American Physical Society, 2023. https://doi.org/10.1103/PhysRevB.108.045115.' ieee: 'G. Bighin, Q. P. Ho, M. Lemeshko, and T. V. Tscherbul, “Diagrammatic Monte Carlo for electronic correlation in molecules: High-order many-body perturbation theory with low scaling,” Physical Review B, vol. 108, no. 4. American Physical Society, 2023.' ista: 'Bighin G, Ho QP, Lemeshko M, Tscherbul TV. 2023. Diagrammatic Monte Carlo for electronic correlation in molecules: High-order many-body perturbation theory with low scaling. Physical Review B. 108(4), 045115.' mla: 'Bighin, Giacomo, et al. “Diagrammatic Monte Carlo for Electronic Correlation in Molecules: High-Order Many-Body Perturbation Theory with Low Scaling.” Physical Review B, vol. 108, no. 4, 045115, American Physical Society, 2023, doi:10.1103/PhysRevB.108.045115.' short: G. Bighin, Q.P. Ho, M. Lemeshko, T.V. Tscherbul, Physical Review B 108 (2023). date_created: 2023-08-06T22:01:10Z date_published: 2023-07-15T00:00:00Z date_updated: 2023-08-07T08:41:29Z day: '15' department: - _id: MiLe - _id: TaHa doi: 10.1103/PhysRevB.108.045115 ec_funded: 1 external_id: arxiv: - '2203.12666' intvolume: ' 108' issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2203.12666 month: '07' oa: 1 oa_version: Preprint project: - _id: 26986C82-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M02641 name: A path-integral approach to composite impurities - _id: 26B96266-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M02751 name: Algebro-Geometric Applications of Factorization Homology - _id: 26031614-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29902 name: Quantum rotations in the presence of a many-body environment - _id: 2688CF98-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '801770' name: 'Angulon: physics and applications of a new quasiparticle' publication: Physical Review B publication_identifier: eissn: - 2469-9969 issn: - 2469-9950 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: 'Diagrammatic Monte Carlo for electronic correlation in molecules: High-order many-body perturbation theory with low scaling' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 108 year: '2023' ... --- _id: '14320' abstract: - lang: eng text: The development of two-dimensional materials has resulted in a diverse range of novel, high-quality compounds with increasing complexity. A key requirement for a comprehensive quantitative theory is the accurate determination of these materials' band structure parameters. However, this task is challenging due to the intricate band structures and the indirect nature of experimental probes. In this work, we introduce a general framework to derive band structure parameters from experimental data using deep neural networks. We applied our method to the penetration field capacitance measurement of trilayer graphene, an effective probe of its density of states. First, we demonstrate that a trained deep network gives accurate predictions for the penetration field capacitance as a function of tight-binding parameters. Next, we use the fast and accurate predictions from the trained network to automatically determine tight-binding parameters directly from experimental data, with extracted parameters being in a good agreement with values in the literature. We conclude by discussing potential applications of our method to other materials and experimental techniques beyond penetration field capacitance. acknowledgement: A.F.Y. acknowledges primary support from the Department of Energy under award DE-SC0020043, and additional support from the Gordon and Betty Moore Foundation under award GBMF9471 for group operations. article_number: '125411' article_processing_charge: No article_type: original author: - first_name: Paul M full_name: Henderson, Paul M id: 13C09E74-18D9-11E9-8878-32CFE5697425 last_name: Henderson orcid: 0000-0002-5198-7445 - first_name: Areg full_name: Ghazaryan, Areg id: 4AF46FD6-F248-11E8-B48F-1D18A9856A87 last_name: Ghazaryan orcid: 0000-0001-9666-3543 - first_name: Alexander A. full_name: Zibrov, Alexander A. last_name: Zibrov - first_name: Andrea F. full_name: Young, Andrea F. last_name: Young - first_name: Maksym full_name: Serbyn, Maksym id: 47809E7E-F248-11E8-B48F-1D18A9856A87 last_name: Serbyn orcid: 0000-0002-2399-5827 citation: ama: 'Henderson PM, Ghazaryan A, Zibrov AA, Young AF, Serbyn M. Deep learning extraction of band structure parameters from density of states: A case study on trilayer graphene. Physical Review B. 2023;108(12). doi:10.1103/physrevb.108.125411' apa: 'Henderson, P. M., Ghazaryan, A., Zibrov, A. A., Young, A. F., & Serbyn, M. (2023). Deep learning extraction of band structure parameters from density of states: A case study on trilayer graphene. Physical Review B. American Physical Society. https://doi.org/10.1103/physrevb.108.125411' chicago: 'Henderson, Paul M, Areg Ghazaryan, Alexander A. Zibrov, Andrea F. Young, and Maksym Serbyn. “Deep Learning Extraction of Band Structure Parameters from Density of States: A Case Study on Trilayer Graphene.” Physical Review B. American Physical Society, 2023. https://doi.org/10.1103/physrevb.108.125411.' ieee: 'P. M. Henderson, A. Ghazaryan, A. A. Zibrov, A. F. Young, and M. Serbyn, “Deep learning extraction of band structure parameters from density of states: A case study on trilayer graphene,” Physical Review B, vol. 108, no. 12. American Physical Society, 2023.' ista: 'Henderson PM, Ghazaryan A, Zibrov AA, Young AF, Serbyn M. 2023. Deep learning extraction of band structure parameters from density of states: A case study on trilayer graphene. Physical Review B. 108(12), 125411.' mla: 'Henderson, Paul M., et al. “Deep Learning Extraction of Band Structure Parameters from Density of States: A Case Study on Trilayer Graphene.” Physical Review B, vol. 108, no. 12, 125411, American Physical Society, 2023, doi:10.1103/physrevb.108.125411.' short: P.M. Henderson, A. Ghazaryan, A.A. Zibrov, A.F. Young, M. Serbyn, Physical Review B 108 (2023). date_created: 2023-09-12T07:12:12Z date_published: 2023-09-15T00:00:00Z date_updated: 2023-09-20T09:38:24Z day: '15' department: - _id: MaSe - _id: ChLa - _id: MiLe doi: 10.1103/physrevb.108.125411 external_id: arxiv: - '2210.06310' intvolume: ' 108' issue: '12' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.48550/arXiv.2210.06310 month: '09' oa: 1 oa_version: Preprint publication: Physical Review B publication_identifier: eissn: - 2469-9969 issn: - 2469-9950 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: 'Deep learning extraction of band structure parameters from density of states: A case study on trilayer graphene' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 108 year: '2023' ...