--- _id: '8769' abstract: - lang: eng text: One of the hallmarks of quantum statistics, tightly entwined with the concept of topological phases of matter, is the prediction of anyons. Although anyons are predicted to be realized in certain fractional quantum Hall systems, they have not yet been unambiguously detected in experiment. Here we introduce a simple quantum impurity model, where bosonic or fermionic impurities turn into anyons as a consequence of their interaction with the surrounding many-particle bath. A cloud of phonons dresses each impurity in such a way that it effectively attaches fluxes or vortices to it and thereby converts it into an Abelian anyon. The corresponding quantum impurity model, first, provides a different approach to the numerical solution of the many-anyon problem, along with a concrete perspective of anyons as emergent quasiparticles built from composite bosons or fermions. More importantly, the model paves the way toward realizing anyons using impurities in crystal lattices as well as ultracold gases. In particular, we consider two heavy electrons interacting with a two-dimensional lattice crystal in a magnetic field, and show that when the impurity-bath system is rotated at the cyclotron frequency, impurities behave as anyons as a consequence of the angular momentum exchange between the impurities and the bath. A possible experimental realization is proposed by identifying the statistics parameter in terms of the mean-square distance of the impurities and the magnetization of the impurity-bath system, both of which are accessible to experiment. Another proposed application is impurities immersed in a two-dimensional weakly interacting Bose gas. acknowledgement: "We are grateful to M. Correggi, A. Deuchert, and P. Schmelcher for valuable discussions. We also thank the anonymous referees for helping to clarify a few important points in the experimental realization. A.G. acknowledges support by the European Unions Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement\r\nNo 754411. D.L. acknowledges financial support from the Goran Gustafsson Foundation (grant no. 1804) and LMU Munich. R.S., M.L., and N.R. gratefully acknowledge financial support by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreements No 694227, No 801770, and No 758620, respectively)." article_number: '144109' article_processing_charge: No article_type: original author: - first_name: Enderalp full_name: Yakaboylu, Enderalp id: 38CB71F6-F248-11E8-B48F-1D18A9856A87 last_name: Yakaboylu orcid: 0000-0001-5973-0874 - first_name: Areg full_name: Ghazaryan, Areg id: 4AF46FD6-F248-11E8-B48F-1D18A9856A87 last_name: Ghazaryan orcid: 0000-0001-9666-3543 - first_name: D. full_name: Lundholm, D. last_name: Lundholm - first_name: N. full_name: Rougerie, N. last_name: Rougerie - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 - first_name: Robert full_name: Seiringer, Robert id: 4AFD0470-F248-11E8-B48F-1D18A9856A87 last_name: Seiringer orcid: 0000-0002-6781-0521 citation: ama: Yakaboylu E, Ghazaryan A, Lundholm D, Rougerie N, Lemeshko M, Seiringer R. Quantum impurity model for anyons. Physical Review B. 2020;102(14). doi:10.1103/physrevb.102.144109 apa: Yakaboylu, E., Ghazaryan, A., Lundholm, D., Rougerie, N., Lemeshko, M., & Seiringer, R. (2020). Quantum impurity model for anyons. Physical Review B. American Physical Society. https://doi.org/10.1103/physrevb.102.144109 chicago: Yakaboylu, Enderalp, Areg Ghazaryan, D. Lundholm, N. Rougerie, Mikhail Lemeshko, and Robert Seiringer. “Quantum Impurity Model for Anyons.” Physical Review B. American Physical Society, 2020. https://doi.org/10.1103/physrevb.102.144109. ieee: E. Yakaboylu, A. Ghazaryan, D. Lundholm, N. Rougerie, M. Lemeshko, and R. Seiringer, “Quantum impurity model for anyons,” Physical Review B, vol. 102, no. 14. American Physical Society, 2020. ista: Yakaboylu E, Ghazaryan A, Lundholm D, Rougerie N, Lemeshko M, Seiringer R. 2020. Quantum impurity model for anyons. Physical Review B. 102(14), 144109. mla: Yakaboylu, Enderalp, et al. “Quantum Impurity Model for Anyons.” Physical Review B, vol. 102, no. 14, 144109, American Physical Society, 2020, doi:10.1103/physrevb.102.144109. short: E. Yakaboylu, A. Ghazaryan, D. Lundholm, N. Rougerie, M. Lemeshko, R. Seiringer, Physical Review B 102 (2020). date_created: 2020-11-18T07:34:17Z date_published: 2020-10-01T00:00:00Z date_updated: 2023-09-05T12:12:30Z day: '01' department: - _id: MiLe - _id: RoSe doi: 10.1103/physrevb.102.144109 ec_funded: 1 external_id: arxiv: - '1912.07890' isi: - '000582563300001' intvolume: ' 102' isi: 1 issue: '14' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1912.07890 month: '10' oa: 1 oa_version: Preprint project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: 25C6DC12-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '694227' name: Analysis of quantum many-body systems - _id: 2688CF98-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '801770' name: 'Angulon: physics and applications of a new quasiparticle' publication: Physical Review B publication_identifier: eissn: - 2469-9969 issn: - 2469-9950 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Quantum impurity model for anyons type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 102 year: '2020' ... --- _id: '8587' abstract: - lang: eng text: Inspired by the possibility to experimentally manipulate and enhance chemical reactivity in helium nanodroplets, we investigate the effective interaction and the resulting correlations between two diatomic molecules immersed in a bath of bosons. By analogy with the bipolaron, we introduce the biangulon quasiparticle describing two rotating molecules that align with respect to each other due to the effective attractive interaction mediated by the excitations of the bath. We study this system in different parameter regimes and apply several theoretical approaches to describe its properties. Using a Born–Oppenheimer approximation, we investigate the dependence of the effective intermolecular interaction on the rotational state of the two molecules. In the strong-coupling regime, a product-state ansatz shows that the molecules tend to have a strong alignment in the ground state. To investigate the system in the weak-coupling regime, we apply a one-phonon excitation variational ansatz, which allows us to access the energy spectrum. In comparison to the angulon quasiparticle, the biangulon shows shifted angulon instabilities and an additional spectral instability, where resonant angular momentum transfer between the molecules and the bath takes place. These features are proposed as an experimentally observable signature for the formation of the biangulon quasiparticle. Finally, by using products of single angulon and bare impurity wave functions as basis states, we introduce a diagonalization scheme that allows us to describe the transition from two separated angulons to a biangulon as a function of the distance between the two molecules. acknowledgement: We are grateful to Areg Ghazaryan for valuable discussions. M.L. acknowledges support from the Austrian Science Fund (FWF) under Project No. P29902-N27 and from the European Research Council (ERC) Starting Grant No. 801770 (ANGULON). G.B. acknowledges support from the Austrian Science Fund (FWF) under Project No. M2461-N27. A.D. acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under the European Research Council (ERC) Grant Agreement No. 694227 and under the Marie Sklodowska-Curie Grant Agreement No. 836146. R.S. was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC-2111 – 390814868. article_number: '164302' article_processing_charge: No article_type: original author: - first_name: Xiang full_name: Li, Xiang id: 4B7E523C-F248-11E8-B48F-1D18A9856A87 last_name: Li - first_name: Enderalp full_name: Yakaboylu, Enderalp id: 38CB71F6-F248-11E8-B48F-1D18A9856A87 last_name: Yakaboylu orcid: 0000-0001-5973-0874 - first_name: Giacomo full_name: Bighin, Giacomo id: 4CA96FD4-F248-11E8-B48F-1D18A9856A87 last_name: Bighin orcid: 0000-0001-8823-9777 - first_name: Richard full_name: Schmidt, Richard last_name: Schmidt - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 - first_name: Andreas full_name: Deuchert, Andreas id: 4DA65CD0-F248-11E8-B48F-1D18A9856A87 last_name: Deuchert orcid: 0000-0003-3146-6746 citation: ama: Li X, Yakaboylu E, Bighin G, Schmidt R, Lemeshko M, Deuchert A. Intermolecular forces and correlations mediated by a phonon bath. The Journal of Chemical Physics. 2020;152(16). doi:10.1063/1.5144759 apa: Li, X., Yakaboylu, E., Bighin, G., Schmidt, R., Lemeshko, M., & Deuchert, A. (2020). Intermolecular forces and correlations mediated by a phonon bath. The Journal of Chemical Physics. AIP Publishing. https://doi.org/10.1063/1.5144759 chicago: Li, Xiang, Enderalp Yakaboylu, Giacomo Bighin, Richard Schmidt, Mikhail Lemeshko, and Andreas Deuchert. “Intermolecular Forces and Correlations Mediated by a Phonon Bath.” The Journal of Chemical Physics. AIP Publishing, 2020. https://doi.org/10.1063/1.5144759. ieee: X. Li, E. Yakaboylu, G. Bighin, R. Schmidt, M. Lemeshko, and A. Deuchert, “Intermolecular forces and correlations mediated by a phonon bath,” The Journal of Chemical Physics, vol. 152, no. 16. AIP Publishing, 2020. ista: Li X, Yakaboylu E, Bighin G, Schmidt R, Lemeshko M, Deuchert A. 2020. Intermolecular forces and correlations mediated by a phonon bath. The Journal of Chemical Physics. 152(16), 164302. mla: Li, Xiang, et al. “Intermolecular Forces and Correlations Mediated by a Phonon Bath.” The Journal of Chemical Physics, vol. 152, no. 16, 164302, AIP Publishing, 2020, doi:10.1063/1.5144759. short: X. Li, E. Yakaboylu, G. Bighin, R. Schmidt, M. Lemeshko, A. Deuchert, The Journal of Chemical Physics 152 (2020). date_created: 2020-09-30T10:33:17Z date_published: 2020-04-27T00:00:00Z date_updated: 2023-09-07T13:16:42Z day: '27' department: - _id: MiLe - _id: RoSe doi: 10.1063/1.5144759 ec_funded: 1 external_id: arxiv: - '1912.02658' isi: - '000530448300001' intvolume: ' 152' isi: 1 issue: '16' keyword: - Physical and Theoretical Chemistry - General Physics and Astronomy language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1912.02658 month: '04' oa: 1 oa_version: Preprint project: - _id: 26031614-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29902 name: Quantum rotations in the presence of a many-body environment - _id: 2688CF98-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '801770' name: 'Angulon: physics and applications of a new quasiparticle' - _id: 26986C82-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M02641 name: A path-integral approach to composite impurities - _id: 25C6DC12-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '694227' name: Analysis of quantum many-body systems publication: The Journal of Chemical Physics publication_identifier: eissn: - 1089-7690 issn: - 0021-9606 publication_status: published publisher: AIP Publishing quality_controlled: '1' related_material: record: - id: '8958' relation: dissertation_contains status: public status: public title: Intermolecular forces and correlations mediated by a phonon bath type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 152 year: '2020' ... --- _id: '8644' abstract: - lang: eng text: Determining the phase diagram of systems consisting of smaller subsystems 'connected' via a tunable coupling is a challenging task relevant for a variety of physical settings. A general question is whether new phases, not present in the uncoupled limit, may arise. We use machine learning and a suitable quasidistance between different points of the phase diagram to study layered spin models, in which the spin variables constituting each of the uncoupled systems (to which we refer as layers) are coupled to each other via an interlayer coupling. In such systems, in general, composite order parameters involving spins of different layers may emerge as a consequence of the interlayer coupling. We focus on the layered Ising and Ashkin–Teller models as a paradigmatic case study, determining their phase diagram via the application of a machine learning algorithm to the Monte Carlo data. Remarkably our technique is able to correctly characterize all the system phases also in the case of hidden order parameters, i.e. order parameters whose expression in terms of the microscopic configurations would require additional preprocessing of the data fed to the algorithm. We correctly retrieve the three known phases of the Ashkin–Teller model with ferromagnetic couplings, including the phase described by a composite order parameter. For the bilayer and trilayer Ising models the phases we find are only the ferromagnetic and the paramagnetic ones. Within the approach we introduce, owing to the construction of convolutional neural networks, naturally suitable for layered image-like data with arbitrary number of layers, no preprocessing of the Monte Carlo data is needed, also with regard to its spatial structure. The physical meaning of our results is discussed and compared with analytical data, where available. Yet, the method can be used without any a priori knowledge of the phases one seeks to find and can be applied to other models and structures. acknowledgement: We thank Gesualdo Delfino, Michele Fabrizio, Piero Ferrarese, Robert Konik, Christoph Lampert and Mikhail Lemeshko for stimulating discussions at various stages of this work. WR has received funding from the EU Horizon 2020 program under the Marie Skłodowska-Curie Grant Agreement No. 665385 and is a recipient of a DOC Fellowship of the Austrian Academy of Sciences. GB acknowledges support from the Austrian Science Fund (FWF), under project No. M2641-N27. ND acknowledges support by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) via Collaborative Research Center SFB 1225 (ISOQUANT)--project-id 273811115--and under Germany's Excellence Strategy 'EXC-2181/1-390900948' (the Heidelberg STRUCTURES Excellence Cluster). article_number: '093026' article_processing_charge: No article_type: original author: - first_name: Wojciech full_name: Rzadkowski, Wojciech id: 48C55298-F248-11E8-B48F-1D18A9856A87 last_name: Rzadkowski orcid: 0000-0002-1106-4419 - first_name: N full_name: Defenu, N last_name: Defenu - first_name: S full_name: Chiacchiera, S last_name: Chiacchiera - first_name: A full_name: Trombettoni, A last_name: Trombettoni - first_name: Giacomo full_name: Bighin, Giacomo id: 4CA96FD4-F248-11E8-B48F-1D18A9856A87 last_name: Bighin orcid: 0000-0001-8823-9777 citation: ama: Rzadkowski W, Defenu N, Chiacchiera S, Trombettoni A, Bighin G. Detecting composite orders in layered models via machine learning. New Journal of Physics. 2020;22(9). doi:10.1088/1367-2630/abae44 apa: Rzadkowski, W., Defenu, N., Chiacchiera, S., Trombettoni, A., & Bighin, G. (2020). Detecting composite orders in layered models via machine learning. New Journal of Physics. IOP Publishing. https://doi.org/10.1088/1367-2630/abae44 chicago: Rzadkowski, Wojciech, N Defenu, S Chiacchiera, A Trombettoni, and Giacomo Bighin. “Detecting Composite Orders in Layered Models via Machine Learning.” New Journal of Physics. IOP Publishing, 2020. https://doi.org/10.1088/1367-2630/abae44. ieee: W. Rzadkowski, N. Defenu, S. Chiacchiera, A. Trombettoni, and G. Bighin, “Detecting composite orders in layered models via machine learning,” New Journal of Physics, vol. 22, no. 9. IOP Publishing, 2020. ista: Rzadkowski W, Defenu N, Chiacchiera S, Trombettoni A, Bighin G. 2020. Detecting composite orders in layered models via machine learning. New Journal of Physics. 22(9), 093026. mla: Rzadkowski, Wojciech, et al. “Detecting Composite Orders in Layered Models via Machine Learning.” New Journal of Physics, vol. 22, no. 9, 093026, IOP Publishing, 2020, doi:10.1088/1367-2630/abae44. short: W. Rzadkowski, N. Defenu, S. Chiacchiera, A. Trombettoni, G. Bighin, New Journal of Physics 22 (2020). date_created: 2020-10-11T22:01:14Z date_published: 2020-09-01T00:00:00Z date_updated: 2023-09-07T13:44:16Z day: '01' ddc: - '530' department: - _id: MiLe doi: 10.1088/1367-2630/abae44 ec_funded: 1 external_id: isi: - '000573298000001' file: - access_level: open_access checksum: c9238fff422e7a957c3a0d559f756b3a content_type: application/pdf creator: dernst date_created: 2020-10-12T12:18:47Z date_updated: 2020-10-12T12:18:47Z file_id: '8650' file_name: 2020_NewJournalPhysics_Rzdkowski.pdf file_size: 2725143 relation: main_file success: 1 file_date_updated: 2020-10-12T12:18:47Z has_accepted_license: '1' intvolume: ' 22' isi: 1 issue: '9' language: - iso: eng month: '09' oa: 1 oa_version: Published Version project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program - _id: 05A235A0-7A3F-11EA-A408-12923DDC885E grant_number: '25681' name: Analytic and machine learning approaches to composite quantum impurities - _id: 26986C82-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M02641 name: A path-integral approach to composite impurities publication: New Journal of Physics publication_identifier: issn: - '13672630' publication_status: published publisher: IOP Publishing quality_controlled: '1' related_material: record: - id: '10759' relation: dissertation_contains status: public scopus_import: '1' status: public title: Detecting composite orders in layered models via machine learning tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 22 year: '2020' ... --- _id: '8958' abstract: - lang: eng text: "The oft-quoted dictum by Arthur Schawlow: ``A diatomic molecule has one atom too many'' has been disavowed. Inspired by the possibility to experimentally manipulate and enhance chemical reactivity in helium nanodroplets, we investigate the rotation of coupled cold molecules in the presence of a many-body environment.\r\nIn this thesis, we introduce new variational approaches to quantum impurities and apply them to the Fröhlich polaron - a quasiparticle formed out of an electron (or other point-like impurity) in a polar medium, and to the angulon - a quasiparticle formed out of a rotating molecule in a bosonic bath.\r\nWith this theoretical toolbox, we reveal the self-localization transition for the angulon quasiparticle. We show that, unlike for polarons, self-localization of angulons occurs at finite impurity-bath coupling already at the mean-field level. The transition is accompanied by the spherical-symmetry breaking of the angulon ground state and a discontinuity in the first derivative of the ground-state energy. Moreover, the type of symmetry breaking is dictated by the symmetry of the microscopic impurity-bath interaction, which leads to a number of distinct self-localized states. \r\nFor the system containing multiple impurities, by analogy with the bipolaron, we introduce the biangulon quasiparticle describing two rotating molecules that align with respect to each other due to the effective attractive interaction mediated by the excitations of the bath. We study this system from the strong-coupling regime to the weak molecule-bath interaction regime. We show that the molecules tend to have a strong alignment in the ground state, the biangulon shows shifted angulon instabilities and an additional spectral instability, where resonant angular momentum transfer between the molecules and the bath takes place. Finally, we introduce a diagonalization scheme that allows us to describe the transition from two separated angulons to a biangulon as a function of the distance between the two molecules." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Xiang full_name: Li, Xiang id: 4B7E523C-F248-11E8-B48F-1D18A9856A87 last_name: Li citation: ama: Li X. Rotation of coupled cold molecules in the presence of a many-body environment. 2020. doi:10.15479/AT:ISTA:8958 apa: Li, X. (2020). Rotation of coupled cold molecules in the presence of a many-body environment. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8958 chicago: Li, Xiang. “Rotation of Coupled Cold Molecules in the Presence of a Many-Body Environment.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8958. ieee: X. Li, “Rotation of coupled cold molecules in the presence of a many-body environment,” Institute of Science and Technology Austria, 2020. ista: Li X. 2020. Rotation of coupled cold molecules in the presence of a many-body environment. Institute of Science and Technology Austria. mla: Li, Xiang. Rotation of Coupled Cold Molecules in the Presence of a Many-Body Environment. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8958. short: X. Li, Rotation of Coupled Cold Molecules in the Presence of a Many-Body Environment, Institute of Science and Technology Austria, 2020. date_created: 2020-12-21T09:44:30Z date_published: 2020-12-21T00:00:00Z date_updated: 2023-09-20T11:30:58Z day: '21' ddc: - '539' degree_awarded: PhD department: - _id: MiLe doi: 10.15479/AT:ISTA:8958 ec_funded: 1 file: - access_level: open_access checksum: 3994c54a1241451d561db1d4f43bad30 content_type: application/pdf creator: xli date_created: 2020-12-22T10:55:56Z date_updated: 2020-12-22T10:55:56Z file_id: '8967' file_name: THESIS_Xiang_Li.pdf file_size: 3622305 relation: main_file success: 1 - access_level: closed checksum: 0954ecfc5554c05615c14de803341f00 content_type: application/x-zip-compressed creator: xli date_created: 2020-12-22T10:56:03Z date_updated: 2020-12-30T07:18:03Z file_id: '8968' file_name: THESIS_Xiang_Li.zip file_size: 4018859 relation: source_file file_date_updated: 2020-12-30T07:18:03Z has_accepted_license: '1' language: - iso: eng month: '12' oa: 1 oa_version: Published Version page: '125' project: - _id: 26031614-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29902 name: Quantum rotations in the presence of a many-body environment - _id: 2688CF98-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '801770' name: 'Angulon: physics and applications of a new quasiparticle' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '5886' relation: part_of_dissertation status: public - id: '8587' relation: part_of_dissertation status: public - id: '1120' relation: part_of_dissertation status: public status: public supervisor: - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 title: Rotation of coupled cold molecules in the presence of a many-body environment type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '7956' abstract: - lang: eng text: When short-range attractions are combined with long-range repulsions in colloidal particle systems, complex microphases can emerge. Here, we study a system of isotropic particles, which can form lamellar structures or a disordered fluid phase when temperature is varied. We show that, at equilibrium, the lamellar structure crystallizes, while out of equilibrium, the system forms a variety of structures at different shear rates and temperatures above melting. The shear-induced ordering is analyzed by means of principal component analysis and artificial neural networks, which are applied to data of reduced dimensionality. Our results reveal the possibility of inducing ordering by shear, potentially providing a feasible route to the fabrication of ordered lamellar structures from isotropic particles. article_number: '204905' article_processing_charge: No article_type: original author: - first_name: J. full_name: Pȩkalski, J. last_name: Pȩkalski - first_name: Wojciech full_name: Rzadkowski, Wojciech id: 48C55298-F248-11E8-B48F-1D18A9856A87 last_name: Rzadkowski orcid: 0000-0002-1106-4419 - first_name: A. Z. full_name: Panagiotopoulos, A. Z. last_name: Panagiotopoulos citation: ama: 'Pȩkalski J, Rzadkowski W, Panagiotopoulos AZ. Shear-induced ordering in systems with competing interactions: A machine learning study. The Journal of chemical physics. 2020;152(20). doi:10.1063/5.0005194' apa: 'Pȩkalski, J., Rzadkowski, W., & Panagiotopoulos, A. Z. (2020). Shear-induced ordering in systems with competing interactions: A machine learning study. The Journal of Chemical Physics. AIP Publishing. https://doi.org/10.1063/5.0005194' chicago: 'Pȩkalski, J., Wojciech Rzadkowski, and A. Z. Panagiotopoulos. “Shear-Induced Ordering in Systems with Competing Interactions: A Machine Learning Study.” The Journal of Chemical Physics. AIP Publishing, 2020. https://doi.org/10.1063/5.0005194.' ieee: 'J. Pȩkalski, W. Rzadkowski, and A. Z. Panagiotopoulos, “Shear-induced ordering in systems with competing interactions: A machine learning study,” The Journal of chemical physics, vol. 152, no. 20. AIP Publishing, 2020.' ista: 'Pȩkalski J, Rzadkowski W, Panagiotopoulos AZ. 2020. Shear-induced ordering in systems with competing interactions: A machine learning study. The Journal of chemical physics. 152(20), 204905.' mla: 'Pȩkalski, J., et al. “Shear-Induced Ordering in Systems with Competing Interactions: A Machine Learning Study.” The Journal of Chemical Physics, vol. 152, no. 20, 204905, AIP Publishing, 2020, doi:10.1063/5.0005194.' short: J. Pȩkalski, W. Rzadkowski, A.Z. Panagiotopoulos, The Journal of Chemical Physics 152 (2020). date_created: 2020-06-14T22:00:49Z date_published: 2020-05-29T00:00:00Z date_updated: 2024-02-28T13:00:28Z day: '29' department: - _id: MiLe doi: 10.1063/5.0005194 ec_funded: 1 external_id: arxiv: - '2002.07294' isi: - '000537900300001' intvolume: ' 152' isi: 1 issue: '20' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1063/5.0005194 month: '05' oa: 1 oa_version: Published Version project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: The Journal of chemical physics publication_identifier: eissn: - '10897690' publication_status: published publisher: AIP Publishing quality_controlled: '1' related_material: record: - id: '10759' relation: dissertation_contains status: public scopus_import: '1' status: public title: 'Shear-induced ordering in systems with competing interactions: A machine learning study' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 152 year: '2020' ...