--- _id: '8726' abstract: - lang: eng text: Several realistic spin-orbital models for transition metal oxides go beyond the classical expectations and could be understood only by employing the quantum entanglement. Experiments on these materials confirm that spin-orbital entanglement has measurable consequences. Here, we capture the essential features of spin-orbital entanglement in complex quantum matter utilizing 1D spin-orbital model which accommodates SU(2)⊗SU(2) symmetric Kugel-Khomskii superexchange as well as the Ising on-site spin-orbit coupling. Building on the results obtained for full and effective models in the regime of strong spin-orbit coupling, we address the question whether the entanglement found on superexchange bonds always increases when the Ising spin-orbit coupling is added. We show that (i) quantum entanglement is amplified by strong spin-orbit coupling and, surprisingly, (ii) almost classical disentangled states are possible. We complete the latter case by analyzing how the entanglement existing for intermediate values of spin-orbit coupling can disappear for higher values of this coupling. article_number: '53' article_processing_charge: No article_type: original author: - first_name: Dorota full_name: Gotfryd, Dorota last_name: Gotfryd - first_name: Ekaterina full_name: Paerschke, Ekaterina id: 8275014E-6063-11E9-9B7F-6338E6697425 last_name: Paerschke orcid: 0000-0003-0853-8182 - first_name: Krzysztof full_name: Wohlfeld, Krzysztof last_name: Wohlfeld - first_name: Andrzej M. full_name: Oleś, Andrzej M. last_name: Oleś citation: ama: Gotfryd D, Paerschke E, Wohlfeld K, Oleś AM. Evolution of spin-orbital entanglement with increasing ising spin-orbit coupling. Condensed Matter. 2020;5(3). doi:10.3390/condmat5030053 apa: Gotfryd, D., Paerschke, E., Wohlfeld, K., & Oleś, A. M. (2020). Evolution of spin-orbital entanglement with increasing ising spin-orbit coupling. Condensed Matter. MDPI. https://doi.org/10.3390/condmat5030053 chicago: Gotfryd, Dorota, Ekaterina Paerschke, Krzysztof Wohlfeld, and Andrzej M. Oleś. “Evolution of Spin-Orbital Entanglement with Increasing Ising Spin-Orbit Coupling.” Condensed Matter. MDPI, 2020. https://doi.org/10.3390/condmat5030053. ieee: D. Gotfryd, E. Paerschke, K. Wohlfeld, and A. M. Oleś, “Evolution of spin-orbital entanglement with increasing ising spin-orbit coupling,” Condensed Matter, vol. 5, no. 3. MDPI, 2020. ista: Gotfryd D, Paerschke E, Wohlfeld K, Oleś AM. 2020. Evolution of spin-orbital entanglement with increasing ising spin-orbit coupling. Condensed Matter. 5(3), 53. mla: Gotfryd, Dorota, et al. “Evolution of Spin-Orbital Entanglement with Increasing Ising Spin-Orbit Coupling.” Condensed Matter, vol. 5, no. 3, 53, MDPI, 2020, doi:10.3390/condmat5030053. short: D. Gotfryd, E. Paerschke, K. Wohlfeld, A.M. Oleś, Condensed Matter 5 (2020). date_created: 2020-11-06T07:21:00Z date_published: 2020-08-26T00:00:00Z date_updated: 2021-01-12T08:20:46Z day: '26' ddc: - '530' department: - _id: MiLe doi: 10.3390/condmat5030053 ec_funded: 1 external_id: arxiv: - '2009.11773' file: - access_level: open_access checksum: a57a698ff99a11b6665bafd1bac7afbc content_type: application/pdf creator: dernst date_created: 2020-11-06T07:24:40Z date_updated: 2020-11-06T07:24:40Z file_id: '8727' file_name: 2020_CondensedMatter_Gotfryd.pdf file_size: 768336 relation: main_file success: 1 file_date_updated: 2020-11-06T07:24:40Z has_accepted_license: '1' intvolume: ' 5' issue: '3' language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '08' oa: 1 oa_version: Published Version project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Condensed Matter publication_identifier: issn: - 2410-3896 publication_status: published publisher: MDPI quality_controlled: '1' scopus_import: '1' status: public title: Evolution of spin-orbital entanglement with increasing ising spin-orbit coupling tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 5 year: '2020' ... --- _id: '7882' abstract: - lang: eng text: A few-body cluster is a building block of a many-body system in a gas phase provided the temperature at most is of the order of the binding energy of this cluster. Here we illustrate this statement by considering a system of tubes filled with dipolar distinguishable particles. We calculate the partition function, which determines the probability to find a few-body cluster at a given temperature. The input for our calculations—the energies of few-body clusters—is estimated using the harmonic approximation. We first describe and demonstrate the validity of our numerical procedure. Then we discuss the results featuring melting of the zero-temperature many-body state into a gas of free particles and few-body clusters. For temperature higher than its binding energy threshold, the dimers overwhelmingly dominate the ensemble, where the remaining probability is in free particles. At very high temperatures free (harmonic oscillator trap-bound) particle dominance is eventually reached. This structure evolution appears both for one and two particles in each layer providing crucial information about the behavior of ultracold dipolar gases. The investigation addresses the transition region between few- and many-body physics as a function of temperature using a system of ten dipoles in five tubes. article_number: '484' article_processing_charge: No article_type: original author: - first_name: Jeremy R. full_name: Armstrong, Jeremy R. last_name: Armstrong - first_name: Aksel S. full_name: Jensen, Aksel S. last_name: Jensen - first_name: Artem full_name: Volosniev, Artem id: 37D278BC-F248-11E8-B48F-1D18A9856A87 last_name: Volosniev orcid: 0000-0003-0393-5525 - first_name: Nikolaj T. full_name: Zinner, Nikolaj T. last_name: Zinner citation: ama: Armstrong JR, Jensen AS, Volosniev A, Zinner NT. Clusters in separated tubes of tilted dipoles. Mathematics. 2020;8(4). doi:10.3390/math8040484 apa: Armstrong, J. R., Jensen, A. S., Volosniev, A., & Zinner, N. T. (2020). Clusters in separated tubes of tilted dipoles. Mathematics. MDPI. https://doi.org/10.3390/math8040484 chicago: Armstrong, Jeremy R., Aksel S. Jensen, Artem Volosniev, and Nikolaj T. Zinner. “Clusters in Separated Tubes of Tilted Dipoles.” Mathematics. MDPI, 2020. https://doi.org/10.3390/math8040484. ieee: J. R. Armstrong, A. S. Jensen, A. Volosniev, and N. T. Zinner, “Clusters in separated tubes of tilted dipoles,” Mathematics, vol. 8, no. 4. MDPI, 2020. ista: Armstrong JR, Jensen AS, Volosniev A, Zinner NT. 2020. Clusters in separated tubes of tilted dipoles. Mathematics. 8(4), 484. mla: Armstrong, Jeremy R., et al. “Clusters in Separated Tubes of Tilted Dipoles.” Mathematics, vol. 8, no. 4, 484, MDPI, 2020, doi:10.3390/math8040484. short: J.R. Armstrong, A.S. Jensen, A. Volosniev, N.T. Zinner, Mathematics 8 (2020). date_created: 2020-05-24T22:01:00Z date_published: 2020-04-01T00:00:00Z date_updated: 2023-08-21T06:23:36Z day: '01' ddc: - '510' department: - _id: MiLe doi: 10.3390/math8040484 ec_funded: 1 external_id: isi: - '000531824100024' file: - access_level: open_access checksum: a05a7df724522203d079673a0d4de4bc content_type: application/pdf creator: dernst date_created: 2020-05-25T14:42:22Z date_updated: 2020-07-14T12:48:04Z file_id: '7887' file_name: 2020_Mathematics_Armstrong.pdf file_size: 990540 relation: main_file file_date_updated: 2020-07-14T12:48:04Z has_accepted_license: '1' intvolume: ' 8' isi: 1 issue: '4' language: - iso: eng month: '04' oa: 1 oa_version: Published Version project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Mathematics publication_identifier: eissn: - '22277390' publication_status: published publisher: MDPI quality_controlled: '1' scopus_import: '1' status: public title: Clusters in separated tubes of tilted dipoles tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 8 year: '2020' ... --- _id: '7933' abstract: - lang: eng text: We study a mobile quantum impurity, possessing internal rotational degrees of freedom, confined to a ring in the presence of a many-particle bosonic bath. By considering the recently introduced rotating polaron problem, we define the Hamiltonian and examine the energy spectrum. The weak-coupling regime is studied by means of a variational ansatz in the truncated Fock space. The corresponding spectrum indicates that there emerges a coupling between the internal and orbital angular momenta of the impurity as a consequence of the phonon exchange. We interpret the coupling as a phonon-mediated spin-orbit coupling and quantify it by using a correlation function between the internal and the orbital angular momentum operators. The strong-coupling regime is investigated within the Pekar approach, and it is shown that the correlation function of the ground state shows a kink at a critical coupling, that is explained by a sharp transition from the noninteracting state to the states that exhibit strong interaction with the surroundings. The results might find applications in such fields as spintronics or topological insulators where spin-orbit coupling is of crucial importance. article_number: '184104 ' article_processing_charge: No article_type: original author: - first_name: Mikhail full_name: Maslov, Mikhail id: 2E65BB0E-F248-11E8-B48F-1D18A9856A87 last_name: Maslov orcid: 0000-0003-4074-2570 - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 - first_name: Enderalp full_name: Yakaboylu, Enderalp id: 38CB71F6-F248-11E8-B48F-1D18A9856A87 last_name: Yakaboylu orcid: 0000-0001-5973-0874 citation: ama: Maslov M, Lemeshko M, Yakaboylu E. Synthetic spin-orbit coupling mediated by a bosonic environment. Physical Review B. 2020;101(18). doi:10.1103/PhysRevB.101.184104 apa: Maslov, M., Lemeshko, M., & Yakaboylu, E. (2020). Synthetic spin-orbit coupling mediated by a bosonic environment. Physical Review B. American Physical Society. https://doi.org/10.1103/PhysRevB.101.184104 chicago: Maslov, Mikhail, Mikhail Lemeshko, and Enderalp Yakaboylu. “Synthetic Spin-Orbit Coupling Mediated by a Bosonic Environment.” Physical Review B. American Physical Society, 2020. https://doi.org/10.1103/PhysRevB.101.184104. ieee: M. Maslov, M. Lemeshko, and E. Yakaboylu, “Synthetic spin-orbit coupling mediated by a bosonic environment,” Physical Review B, vol. 101, no. 18. American Physical Society, 2020. ista: Maslov M, Lemeshko M, Yakaboylu E. 2020. Synthetic spin-orbit coupling mediated by a bosonic environment. Physical Review B. 101(18), 184104. mla: Maslov, Mikhail, et al. “Synthetic Spin-Orbit Coupling Mediated by a Bosonic Environment.” Physical Review B, vol. 101, no. 18, 184104, American Physical Society, 2020, doi:10.1103/PhysRevB.101.184104. short: M. Maslov, M. Lemeshko, E. Yakaboylu, Physical Review B 101 (2020). date_created: 2020-06-07T22:00:52Z date_published: 2020-05-01T00:00:00Z date_updated: 2023-08-21T07:05:15Z day: '01' department: - _id: MiLe doi: 10.1103/PhysRevB.101.184104 ec_funded: 1 external_id: arxiv: - '1912.03092' isi: - '000530754700003' intvolume: ' 101' isi: 1 issue: '18' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1912.03092 month: '05' oa: 1 oa_version: Preprint project: - _id: 26031614-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29902 name: Quantum rotations in the presence of a many-body environment - _id: 2688CF98-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '801770' name: 'Angulon: physics and applications of a new quasiparticle' publication: Physical Review B publication_identifier: eissn: - '24699969' issn: - '24699950' publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Synthetic spin-orbit coupling mediated by a bosonic environment type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 101 year: '2020' ... --- _id: '8170' abstract: - lang: eng text: "Alignment of OCS, CS2, and I2 molecules embedded in helium nanodroplets is measured as a function\r\nof time following rotational excitation by a nonresonant, comparatively weak ps laser pulse. The distinct\r\npeaks in the power spectra, obtained by Fourier analysis, are used to determine the rotational, B, and\r\ncentrifugal distortion, D, constants. For OCS, B and D match the values known from IR spectroscopy. For\r\nCS2 and I2, they are the first experimental results reported. The alignment dynamics calculated from the\r\ngas-phase rotational Schrödinger equation, using the experimental in-droplet B and D values, agree in\r\ndetail with the measurement for all three molecules. The rotational spectroscopy technique for molecules in\r\nhelium droplets introduced here should apply to a range of molecules and complexes." acknowledgement: "H. S. acknowledges support from the European Research Council-AdG (Project No. 320459, DropletControl)\r\nand from The Villum Foundation through a Villum Investigator Grant No. 25886. M. L. acknowledges support\r\nby the Austrian Science Fund (FWF), under Project No. P29902-N27, and by the European Research Council\r\n(ERC) Starting Grant No. 801770 (ANGULON). G. B. acknowledges support from the Austrian Science Fund\r\n(FWF), under Project No. M2641-N27. I. C. acknowledges support by the European Union’s Horizon 2020 research and\r\ninnovation programme under the Marie Skłodowska-Curie Grant Agreement No. 665385. Computational resources for\r\nthe PIMC simulations were provided by the division for scientific computing at the Johannes Kepler University." article_number: '013001' article_processing_charge: No article_type: original author: - first_name: Adam S. full_name: Chatterley, Adam S. last_name: Chatterley - first_name: Lars full_name: Christiansen, Lars last_name: Christiansen - first_name: Constant A. full_name: Schouder, Constant A. last_name: Schouder - first_name: Anders V. full_name: Jørgensen, Anders V. last_name: Jørgensen - first_name: Benjamin full_name: Shepperson, Benjamin last_name: Shepperson - first_name: Igor full_name: Cherepanov, Igor id: 339C7E5A-F248-11E8-B48F-1D18A9856A87 last_name: Cherepanov - first_name: Giacomo full_name: Bighin, Giacomo id: 4CA96FD4-F248-11E8-B48F-1D18A9856A87 last_name: Bighin orcid: 0000-0001-8823-9777 - first_name: Robert E. full_name: Zillich, Robert E. last_name: Zillich - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 - first_name: Henrik full_name: Stapelfeldt, Henrik last_name: Stapelfeldt citation: ama: 'Chatterley AS, Christiansen L, Schouder CA, et al. Rotational coherence spectroscopy of molecules in Helium nanodroplets: Reconciling the time and the frequency domains. Physical Review Letters. 2020;125(1). doi:10.1103/PhysRevLett.125.013001' apa: 'Chatterley, A. S., Christiansen, L., Schouder, C. A., Jørgensen, A. V., Shepperson, B., Cherepanov, I., … Stapelfeldt, H. (2020). Rotational coherence spectroscopy of molecules in Helium nanodroplets: Reconciling the time and the frequency domains. Physical Review Letters. American Physical Society. https://doi.org/10.1103/PhysRevLett.125.013001' chicago: 'Chatterley, Adam S., Lars Christiansen, Constant A. Schouder, Anders V. Jørgensen, Benjamin Shepperson, Igor Cherepanov, Giacomo Bighin, Robert E. Zillich, Mikhail Lemeshko, and Henrik Stapelfeldt. “Rotational Coherence Spectroscopy of Molecules in Helium Nanodroplets: Reconciling the Time and the Frequency Domains.” Physical Review Letters. American Physical Society, 2020. https://doi.org/10.1103/PhysRevLett.125.013001.' ieee: 'A. S. Chatterley et al., “Rotational coherence spectroscopy of molecules in Helium nanodroplets: Reconciling the time and the frequency domains,” Physical Review Letters, vol. 125, no. 1. American Physical Society, 2020.' ista: 'Chatterley AS, Christiansen L, Schouder CA, Jørgensen AV, Shepperson B, Cherepanov I, Bighin G, Zillich RE, Lemeshko M, Stapelfeldt H. 2020. Rotational coherence spectroscopy of molecules in Helium nanodroplets: Reconciling the time and the frequency domains. Physical Review Letters. 125(1), 013001.' mla: 'Chatterley, Adam S., et al. “Rotational Coherence Spectroscopy of Molecules in Helium Nanodroplets: Reconciling the Time and the Frequency Domains.” Physical Review Letters, vol. 125, no. 1, 013001, American Physical Society, 2020, doi:10.1103/PhysRevLett.125.013001.' short: A.S. Chatterley, L. Christiansen, C.A. Schouder, A.V. Jørgensen, B. Shepperson, I. Cherepanov, G. Bighin, R.E. Zillich, M. Lemeshko, H. Stapelfeldt, Physical Review Letters 125 (2020). date_created: 2020-07-26T22:01:02Z date_published: 2020-07-03T00:00:00Z date_updated: 2023-08-22T08:22:43Z day: '03' department: - _id: MiLe doi: 10.1103/PhysRevLett.125.013001 ec_funded: 1 external_id: arxiv: - '2006.02694' isi: - '000544526900006' intvolume: ' 125' isi: 1 issue: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2006.02694 month: '07' oa: 1 oa_version: Preprint project: - _id: 26031614-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29902 name: Quantum rotations in the presence of a many-body environment - _id: 2688CF98-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '801770' name: 'Angulon: physics and applications of a new quasiparticle' - _id: 26986C82-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M02641 name: A path-integral approach to composite impurities - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: Physical Review Letters publication_identifier: eissn: - '10797114' issn: - '00319007' publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: 'Rotational coherence spectroscopy of molecules in Helium nanodroplets: Reconciling the time and the frequency domains' type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 125 year: '2020' ... --- _id: '8652' abstract: - lang: eng text: Nature creates electrons with two values of the spin projection quantum number. In certain applications, it is important to filter electrons with one spin projection from the rest. Such filtering is not trivial, since spin-dependent interactions are often weak, and cannot lead to any substantial effect. Here we propose an efficient spin filter based upon scattering from a two-dimensional crystal, which is made of aligned point magnets. The polarization of the outgoing electron flux is controlled by the crystal, and reaches maximum at specific values of the parameters. In our scheme, polarization increase is accompanied by higher reflectivity of the crystal. High transmission is feasible in scattering from a quantum cavity made of two crystals. Our findings can be used for studies of low-energy spin-dependent scattering from two-dimensional ordered structures made of magnetic atoms or aligned chiral molecules. acknowledgement: "This work has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant Agreement No. 754411 (A.G.V. and A.G.). M.L. acknowledges support by the Austrian Science Fund (FWF), under project No. P29902-N27, and by the European Research Council (ERC) Starting\r\nGrant No. 801770 (ANGULON)." article_number: '178' article_processing_charge: Yes article_type: original author: - first_name: Areg full_name: Ghazaryan, Areg id: 4AF46FD6-F248-11E8-B48F-1D18A9856A87 last_name: Ghazaryan orcid: 0000-0001-9666-3543 - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 - first_name: Artem full_name: Volosniev, Artem id: 37D278BC-F248-11E8-B48F-1D18A9856A87 last_name: Volosniev orcid: 0000-0003-0393-5525 citation: ama: Ghazaryan A, Lemeshko M, Volosniev A. Filtering spins by scattering from a lattice of point magnets. Communications Physics. 2020;3. doi:10.1038/s42005-020-00445-8 apa: Ghazaryan, A., Lemeshko, M., & Volosniev, A. (2020). Filtering spins by scattering from a lattice of point magnets. Communications Physics. Springer Nature. https://doi.org/10.1038/s42005-020-00445-8 chicago: Ghazaryan, Areg, Mikhail Lemeshko, and Artem Volosniev. “Filtering Spins by Scattering from a Lattice of Point Magnets.” Communications Physics. Springer Nature, 2020. https://doi.org/10.1038/s42005-020-00445-8. ieee: A. Ghazaryan, M. Lemeshko, and A. Volosniev, “Filtering spins by scattering from a lattice of point magnets,” Communications Physics, vol. 3. Springer Nature, 2020. ista: Ghazaryan A, Lemeshko M, Volosniev A. 2020. Filtering spins by scattering from a lattice of point magnets. Communications Physics. 3, 178. mla: Ghazaryan, Areg, et al. “Filtering Spins by Scattering from a Lattice of Point Magnets.” Communications Physics, vol. 3, 178, Springer Nature, 2020, doi:10.1038/s42005-020-00445-8. short: A. Ghazaryan, M. Lemeshko, A. Volosniev, Communications Physics 3 (2020). date_created: 2020-10-13T09:48:59Z date_published: 2020-10-09T00:00:00Z date_updated: 2023-08-22T09:58:46Z day: '09' ddc: - '530' department: - _id: MiLe doi: 10.1038/s42005-020-00445-8 ec_funded: 1 external_id: isi: - '000581681000001' file: - access_level: open_access checksum: 60cd35b99f0780acffc7b6060e49ec8b content_type: application/pdf creator: dernst date_created: 2020-10-14T15:16:28Z date_updated: 2020-10-14T15:16:28Z file_id: '8662' file_name: 2020_CommPhysics_Ghazaryan.pdf file_size: 1462934 relation: main_file success: 1 file_date_updated: 2020-10-14T15:16:28Z has_accepted_license: '1' intvolume: ' 3' isi: 1 language: - iso: eng month: '10' oa: 1 oa_version: Published Version project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: 26031614-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29902 name: Quantum rotations in the presence of a many-body environment - _id: 2688CF98-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '801770' name: 'Angulon: physics and applications of a new quasiparticle' publication: Communications Physics publication_identifier: issn: - 2399-3650 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Filtering spins by scattering from a lattice of point magnets tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 3 year: '2020' ... --- _id: '8699' abstract: - lang: eng text: In the high spin–orbit-coupled Sr2IrO4, the high sensitivity of the ground state to the details of the local lattice structure shows a large potential for the manipulation of the functional properties by inducing local lattice distortions. We use epitaxial strain to modify the Ir–O bond geometry in Sr2IrO4 and perform momentum-dependent resonant inelastic X-ray scattering (RIXS) at the metal and at the ligand sites to unveil the response of the low-energy elementary excitations. We observe that the pseudospin-wave dispersion for tensile-strained Sr2IrO4 films displays large softening along the [h,0] direction, while along the [h,h] direction it shows hardening. This evolution reveals a renormalization of the magnetic interactions caused by a strain-driven cross-over from anisotropic to isotropic interactions between the magnetic moments. Moreover, we detect dispersive electron–hole pair excitations which shift to lower (higher) energies upon compressive (tensile) strain, manifesting a reduction (increase) in the size of the charge gap. This behavior shows an intimate coupling between charge excitations and lattice distortions in Sr2IrO4, originating from the modified hopping elements between the t2g orbitals. Our work highlights the central role played by the lattice degrees of freedom in determining both the pseudospin and charge excitations of Sr2IrO4 and provides valuable information toward the control of the ground state of complex oxides in the presence of high spin–orbit coupling. acknowledgement: 'We gratefully acknowledge C. Sahle for experimental support at the ID20 beamline of the ESRF. The soft X-ray experiments were carried out at the ADRESS beamline of the Swiss Light Source, Paul Scherrer Institut (PSI). E. Paris and T.S. thank X. Lu and C. Monney for valuable discussions. The work at PSI is supported by the Swiss National Science Foundation (SNSF) through Project 200021_178867, the NCCR (National Centre of Competence in Research) MARVEL (Materials’ Revolution: Computational Design and Discovery of Novel Materials) and the Sinergia network Mott Physics Beyond the Heisenberg Model (MPBH) (SNSF Research Grants CRSII2_160765/1 and CRSII2_141962). K.W. acknowledges support by the Narodowe Centrum Nauki Projects 2016/22/E/ST3/00560 and 2016/23/B/ST3/00839. E.M.P. and M.N. acknowledge funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreements 754411 and 701647, respectively. M.R. was supported by the Swiss National Science Foundation under Project 200021 – 182695. This research used resources of the APS, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract DE-AC02-06CH11357.' article_processing_charge: No article_type: original author: - first_name: Eugenio full_name: Paris, Eugenio last_name: Paris - first_name: Yi full_name: Tseng, Yi last_name: Tseng - first_name: Ekaterina full_name: Paerschke, Ekaterina id: 8275014E-6063-11E9-9B7F-6338E6697425 last_name: Paerschke orcid: 0000-0003-0853-8182 - first_name: Wenliang full_name: Zhang, Wenliang last_name: Zhang - first_name: Mary H full_name: Upton, Mary H last_name: Upton - first_name: Anna full_name: Efimenko, Anna last_name: Efimenko - first_name: Katharina full_name: Rolfs, Katharina last_name: Rolfs - first_name: Daniel E full_name: McNally, Daniel E last_name: McNally - first_name: Laura full_name: Maurel, Laura last_name: Maurel - first_name: Muntaser full_name: Naamneh, Muntaser last_name: Naamneh - first_name: Marco full_name: Caputo, Marco last_name: Caputo - first_name: Vladimir N full_name: Strocov, Vladimir N last_name: Strocov - first_name: Zhiming full_name: Wang, Zhiming last_name: Wang - first_name: Diego full_name: Casa, Diego last_name: Casa - first_name: Christof W full_name: Schneider, Christof W last_name: Schneider - first_name: Ekaterina full_name: Pomjakushina, Ekaterina last_name: Pomjakushina - first_name: Krzysztof full_name: Wohlfeld, Krzysztof last_name: Wohlfeld - first_name: Milan full_name: Radovic, Milan last_name: Radovic - first_name: Thorsten full_name: Schmitt, Thorsten last_name: Schmitt citation: ama: Paris E, Tseng Y, Paerschke E, et al. Strain engineering of the charge and spin-orbital interactions in Sr2IrO4. Proceedings of the National Academy of Sciences of the United States of America. 2020;117(40):24764-24770. doi:10.1073/pnas.2012043117 apa: Paris, E., Tseng, Y., Paerschke, E., Zhang, W., Upton, M. H., Efimenko, A., … Schmitt, T. (2020). Strain engineering of the charge and spin-orbital interactions in Sr2IrO4. Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences. https://doi.org/10.1073/pnas.2012043117 chicago: Paris, Eugenio, Yi Tseng, Ekaterina Paerschke, Wenliang Zhang, Mary H Upton, Anna Efimenko, Katharina Rolfs, et al. “Strain Engineering of the Charge and Spin-Orbital Interactions in Sr2IrO4.” Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences, 2020. https://doi.org/10.1073/pnas.2012043117. ieee: E. Paris et al., “Strain engineering of the charge and spin-orbital interactions in Sr2IrO4,” Proceedings of the National Academy of Sciences of the United States of America, vol. 117, no. 40. National Academy of Sciences, pp. 24764–24770, 2020. ista: Paris E, Tseng Y, Paerschke E, Zhang W, Upton MH, Efimenko A, Rolfs K, McNally DE, Maurel L, Naamneh M, Caputo M, Strocov VN, Wang Z, Casa D, Schneider CW, Pomjakushina E, Wohlfeld K, Radovic M, Schmitt T. 2020. Strain engineering of the charge and spin-orbital interactions in Sr2IrO4. Proceedings of the National Academy of Sciences of the United States of America. 117(40), 24764–24770. mla: Paris, Eugenio, et al. “Strain Engineering of the Charge and Spin-Orbital Interactions in Sr2IrO4.” Proceedings of the National Academy of Sciences of the United States of America, vol. 117, no. 40, National Academy of Sciences, 2020, pp. 24764–70, doi:10.1073/pnas.2012043117. short: E. Paris, Y. Tseng, E. Paerschke, W. Zhang, M.H. Upton, A. Efimenko, K. Rolfs, D.E. McNally, L. Maurel, M. Naamneh, M. Caputo, V.N. Strocov, Z. Wang, D. Casa, C.W. Schneider, E. Pomjakushina, K. Wohlfeld, M. Radovic, T. Schmitt, Proceedings of the National Academy of Sciences of the United States of America 117 (2020) 24764–24770. date_created: 2020-10-25T23:01:17Z date_published: 2020-10-06T00:00:00Z date_updated: 2023-08-22T12:11:52Z day: '06' ddc: - '530' department: - _id: MiLe doi: 10.1073/pnas.2012043117 ec_funded: 1 external_id: arxiv: - '2009.12262' isi: - '000579059100029' pmid: - '32958669' file: - access_level: open_access checksum: 1638fa36b442e2868576c6dd7d6dc505 content_type: application/pdf creator: cziletti date_created: 2020-10-28T11:53:12Z date_updated: 2020-10-28T11:53:12Z file_id: '8715' file_name: 2020_PNAS_Paris.pdf file_size: 1176522 relation: main_file success: 1 file_date_updated: 2020-10-28T11:53:12Z has_accepted_license: '1' intvolume: ' 117' isi: 1 issue: '40' language: - iso: eng license: https://creativecommons.org/licenses/by-nc-nd/4.0/ month: '10' oa: 1 oa_version: Published Version page: 24764-24770 pmid: 1 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Proceedings of the National Academy of Sciences of the United States of America publication_identifier: eissn: - '10916490' issn: - '00278424' publication_status: published publisher: National Academy of Sciences quality_controlled: '1' scopus_import: '1' status: public title: Strain engineering of the charge and spin-orbital interactions in Sr2IrO4 tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 117 year: '2020' ... --- _id: '7968' abstract: - lang: eng text: Organic materials are known to feature long spin-diffusion times, originating in a generally small spin–orbit coupling observed in these systems. From that perspective, chiral molecules acting as efficient spin selectors pose a puzzle that attracted a lot of attention in recent years. Here, we revisit the physical origins of chiral-induced spin selectivity (CISS) and propose a simple analytic minimal model to describe it. The model treats a chiral molecule as an anisotropic wire with molecular dipole moments aligned arbitrarily with respect to the wire’s axes and is therefore quite general. Importantly, it shows that the helical structure of the molecule is not necessary to observe CISS and other chiral nonhelical molecules can also be considered as potential candidates for the CISS effect. We also show that the suggested simple model captures the main characteristics of CISS observed in the experiment, without the need for additional constraints employed in the previous studies. The results pave the way for understanding other related physical phenomena where the CISS effect plays an essential role. article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Areg full_name: Ghazaryan, Areg id: 4AF46FD6-F248-11E8-B48F-1D18A9856A87 last_name: Ghazaryan orcid: 0000-0001-9666-3543 - first_name: Yossi full_name: Paltiel, Yossi last_name: Paltiel - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 citation: ama: Ghazaryan A, Paltiel Y, Lemeshko M. Analytic model of chiral-induced spin selectivity. The Journal of Physical Chemistry C. 2020;124(21):11716-11721. doi:10.1021/acs.jpcc.0c02584 apa: Ghazaryan, A., Paltiel, Y., & Lemeshko, M. (2020). Analytic model of chiral-induced spin selectivity. The Journal of Physical Chemistry C. American Chemical Society. https://doi.org/10.1021/acs.jpcc.0c02584 chicago: Ghazaryan, Areg, Yossi Paltiel, and Mikhail Lemeshko. “Analytic Model of Chiral-Induced Spin Selectivity.” The Journal of Physical Chemistry C. American Chemical Society, 2020. https://doi.org/10.1021/acs.jpcc.0c02584. ieee: A. Ghazaryan, Y. Paltiel, and M. Lemeshko, “Analytic model of chiral-induced spin selectivity,” The Journal of Physical Chemistry C, vol. 124, no. 21. American Chemical Society, pp. 11716–11721, 2020. ista: Ghazaryan A, Paltiel Y, Lemeshko M. 2020. Analytic model of chiral-induced spin selectivity. The Journal of Physical Chemistry C. 124(21), 11716–11721. mla: Ghazaryan, Areg, et al. “Analytic Model of Chiral-Induced Spin Selectivity.” The Journal of Physical Chemistry C, vol. 124, no. 21, American Chemical Society, 2020, pp. 11716–21, doi:10.1021/acs.jpcc.0c02584. short: A. Ghazaryan, Y. Paltiel, M. Lemeshko, The Journal of Physical Chemistry C 124 (2020) 11716–11721. date_created: 2020-06-16T14:29:59Z date_published: 2020-05-04T00:00:00Z date_updated: 2023-09-05T12:07:15Z day: '04' ddc: - '530' department: - _id: MiLe doi: 10.1021/acs.jpcc.0c02584 ec_funded: 1 external_id: isi: - '000614616200006' file: - access_level: open_access checksum: 25932bb1d0b0a955be0bea4d17facd49 content_type: application/pdf creator: kschuh date_created: 2020-10-20T14:39:47Z date_updated: 2020-10-20T14:39:47Z file_id: '8683' file_name: 2020_PhysChemC_Ghazaryan.pdf file_size: 1543429 relation: main_file success: 1 file_date_updated: 2020-10-20T14:39:47Z has_accepted_license: '1' intvolume: ' 124' isi: 1 issue: '21' language: - iso: eng month: '05' oa: 1 oa_version: Published Version page: 11716-11721 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: 26031614-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29902 name: Quantum rotations in the presence of a many-body environment - _id: 2688CF98-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '801770' name: 'Angulon: physics and applications of a new quasiparticle' publication: The Journal of Physical Chemistry C publication_identifier: eissn: - 1932-7455 issn: - 1932-7447 publication_status: published publisher: American Chemical Society quality_controlled: '1' scopus_import: '1' status: public title: Analytic model of chiral-induced spin selectivity tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 124 year: '2020' ... --- _id: '8588' abstract: - lang: eng text: Dipolar (or spatially indirect) excitons (IXs) in semiconductor double quantum well (DQW) subjected to an electric field are neutral species with a dipole moment oriented perpendicular to the DQW plane. Here, we theoretically study interactions between IXs in stacked DQW bilayers, where the dipolar coupling can be either attractive or repulsive depending on the relative positions of the particles. By using microscopic band structure calculations to determine the electronic states forming the excitons, we show that the attractive dipolar interaction between stacked IXs deforms their electronic wave function, thereby increasing the inter-DQW interaction energy and making the IX even more electrically polarizable. Many-particle interaction effects are addressed by considering the coupling between a single IX in one of the DQWs to a cloud of IXs in the other DQW, which is modeled either as a closed-packed lattice or as a continuum IX fluid. We find that the lattice model yields IX interlayer binding energies decreasing with increasing lattice density. This behavior is due to the dominating role of the intra-DQW dipolar repulsion, which prevents more than one exciton from entering the attractive region of the inter-DQW coupling. Finally, both models shows that the single IX distorts the distribution of IXs in the adjacent DQW, thus inducing the formation of an IX dipolar polaron (dipolaron). While the interlayer binding energy reduces with IX density for lattice dipolarons, the continuous polaron model predicts a nonmonotonous dependence on density in semiquantitative agreement with a recent experimental study [cf. Hubert et al., Phys. Rev. X 9, 021026 (2019)]. acknowledgement: "We thank W. Kaganer for discussions and for comment on the manuscript. We acknowledge the financial support from the German-Israeli Foundation (GIF), grant agreement I-1277-303.10/2014. M.L. acknowledges support by the Austrian Science Fund (FWF), under project No. P29902-N27, and by the European Research Council (ERC) Starting Grant No. 801770 (ANGULON). A.G. acknowledges support by the European Unions Horizon 2020 research and innovation\r\nprogram under the Marie Skodowska-Curie grant agreement No 754411. P.V.S acknowledges financial support\r\nfrom the Deutsche Forschungsgemeinschaft (DFG) under\r\nProject No. SA 598/12-1." article_number: '045307' article_processing_charge: No article_type: original author: - first_name: C. full_name: Hubert, C. last_name: Hubert - first_name: K. full_name: Cohen, K. last_name: Cohen - first_name: Areg full_name: Ghazaryan, Areg id: 4AF46FD6-F248-11E8-B48F-1D18A9856A87 last_name: Ghazaryan orcid: 0000-0001-9666-3543 - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 - first_name: R. full_name: Rapaport, R. last_name: Rapaport - first_name: P. V. full_name: Santos, P. V. last_name: Santos citation: ama: Hubert C, Cohen K, Ghazaryan A, Lemeshko M, Rapaport R, Santos PV. Attractive interactions, molecular complexes, and polarons in coupled dipolar exciton fluids. Physical Review B. 2020;102(4). doi:10.1103/physrevb.102.045307 apa: Hubert, C., Cohen, K., Ghazaryan, A., Lemeshko, M., Rapaport, R., & Santos, P. V. (2020). Attractive interactions, molecular complexes, and polarons in coupled dipolar exciton fluids. Physical Review B. American Physical Society. https://doi.org/10.1103/physrevb.102.045307 chicago: Hubert, C., K. Cohen, Areg Ghazaryan, Mikhail Lemeshko, R. Rapaport, and P. V. Santos. “Attractive Interactions, Molecular Complexes, and Polarons in Coupled Dipolar Exciton Fluids.” Physical Review B. American Physical Society, 2020. https://doi.org/10.1103/physrevb.102.045307. ieee: C. Hubert, K. Cohen, A. Ghazaryan, M. Lemeshko, R. Rapaport, and P. V. Santos, “Attractive interactions, molecular complexes, and polarons in coupled dipolar exciton fluids,” Physical Review B, vol. 102, no. 4. American Physical Society, 2020. ista: Hubert C, Cohen K, Ghazaryan A, Lemeshko M, Rapaport R, Santos PV. 2020. Attractive interactions, molecular complexes, and polarons in coupled dipolar exciton fluids. Physical Review B. 102(4), 045307. mla: Hubert, C., et al. “Attractive Interactions, Molecular Complexes, and Polarons in Coupled Dipolar Exciton Fluids.” Physical Review B, vol. 102, no. 4, 045307, American Physical Society, 2020, doi:10.1103/physrevb.102.045307. short: C. Hubert, K. Cohen, A. Ghazaryan, M. Lemeshko, R. Rapaport, P.V. Santos, Physical Review B 102 (2020). date_created: 2020-09-30T10:33:43Z date_published: 2020-07-21T00:00:00Z date_updated: 2023-09-05T12:12:10Z day: '21' department: - _id: MiLe doi: 10.1103/physrevb.102.045307 ec_funded: 1 external_id: arxiv: - '1910.06015' isi: - '000550579100004' intvolume: ' 102' isi: 1 issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1910.06015 month: '07' oa: 1 oa_version: Preprint project: - _id: 26031614-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29902 name: Quantum rotations in the presence of a many-body environment - _id: 2688CF98-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '801770' name: 'Angulon: physics and applications of a new quasiparticle' - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Physical Review B publication_identifier: eissn: - 2469-9969 issn: - 2469-9950 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Attractive interactions, molecular complexes, and polarons in coupled dipolar exciton fluids type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 102 year: '2020' ... --- _id: '8769' abstract: - lang: eng text: One of the hallmarks of quantum statistics, tightly entwined with the concept of topological phases of matter, is the prediction of anyons. Although anyons are predicted to be realized in certain fractional quantum Hall systems, they have not yet been unambiguously detected in experiment. Here we introduce a simple quantum impurity model, where bosonic or fermionic impurities turn into anyons as a consequence of their interaction with the surrounding many-particle bath. A cloud of phonons dresses each impurity in such a way that it effectively attaches fluxes or vortices to it and thereby converts it into an Abelian anyon. The corresponding quantum impurity model, first, provides a different approach to the numerical solution of the many-anyon problem, along with a concrete perspective of anyons as emergent quasiparticles built from composite bosons or fermions. More importantly, the model paves the way toward realizing anyons using impurities in crystal lattices as well as ultracold gases. In particular, we consider two heavy electrons interacting with a two-dimensional lattice crystal in a magnetic field, and show that when the impurity-bath system is rotated at the cyclotron frequency, impurities behave as anyons as a consequence of the angular momentum exchange between the impurities and the bath. A possible experimental realization is proposed by identifying the statistics parameter in terms of the mean-square distance of the impurities and the magnetization of the impurity-bath system, both of which are accessible to experiment. Another proposed application is impurities immersed in a two-dimensional weakly interacting Bose gas. acknowledgement: "We are grateful to M. Correggi, A. Deuchert, and P. Schmelcher for valuable discussions. We also thank the anonymous referees for helping to clarify a few important points in the experimental realization. A.G. acknowledges support by the European Unions Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement\r\nNo 754411. D.L. acknowledges financial support from the Goran Gustafsson Foundation (grant no. 1804) and LMU Munich. R.S., M.L., and N.R. gratefully acknowledge financial support by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreements No 694227, No 801770, and No 758620, respectively)." article_number: '144109' article_processing_charge: No article_type: original author: - first_name: Enderalp full_name: Yakaboylu, Enderalp id: 38CB71F6-F248-11E8-B48F-1D18A9856A87 last_name: Yakaboylu orcid: 0000-0001-5973-0874 - first_name: Areg full_name: Ghazaryan, Areg id: 4AF46FD6-F248-11E8-B48F-1D18A9856A87 last_name: Ghazaryan orcid: 0000-0001-9666-3543 - first_name: D. full_name: Lundholm, D. last_name: Lundholm - first_name: N. full_name: Rougerie, N. last_name: Rougerie - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 - first_name: Robert full_name: Seiringer, Robert id: 4AFD0470-F248-11E8-B48F-1D18A9856A87 last_name: Seiringer orcid: 0000-0002-6781-0521 citation: ama: Yakaboylu E, Ghazaryan A, Lundholm D, Rougerie N, Lemeshko M, Seiringer R. Quantum impurity model for anyons. Physical Review B. 2020;102(14). doi:10.1103/physrevb.102.144109 apa: Yakaboylu, E., Ghazaryan, A., Lundholm, D., Rougerie, N., Lemeshko, M., & Seiringer, R. (2020). Quantum impurity model for anyons. Physical Review B. American Physical Society. https://doi.org/10.1103/physrevb.102.144109 chicago: Yakaboylu, Enderalp, Areg Ghazaryan, D. Lundholm, N. Rougerie, Mikhail Lemeshko, and Robert Seiringer. “Quantum Impurity Model for Anyons.” Physical Review B. American Physical Society, 2020. https://doi.org/10.1103/physrevb.102.144109. ieee: E. Yakaboylu, A. Ghazaryan, D. Lundholm, N. Rougerie, M. Lemeshko, and R. Seiringer, “Quantum impurity model for anyons,” Physical Review B, vol. 102, no. 14. American Physical Society, 2020. ista: Yakaboylu E, Ghazaryan A, Lundholm D, Rougerie N, Lemeshko M, Seiringer R. 2020. Quantum impurity model for anyons. Physical Review B. 102(14), 144109. mla: Yakaboylu, Enderalp, et al. “Quantum Impurity Model for Anyons.” Physical Review B, vol. 102, no. 14, 144109, American Physical Society, 2020, doi:10.1103/physrevb.102.144109. short: E. Yakaboylu, A. Ghazaryan, D. Lundholm, N. Rougerie, M. Lemeshko, R. Seiringer, Physical Review B 102 (2020). date_created: 2020-11-18T07:34:17Z date_published: 2020-10-01T00:00:00Z date_updated: 2023-09-05T12:12:30Z day: '01' department: - _id: MiLe - _id: RoSe doi: 10.1103/physrevb.102.144109 ec_funded: 1 external_id: arxiv: - '1912.07890' isi: - '000582563300001' intvolume: ' 102' isi: 1 issue: '14' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1912.07890 month: '10' oa: 1 oa_version: Preprint project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: 25C6DC12-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '694227' name: Analysis of quantum many-body systems - _id: 2688CF98-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '801770' name: 'Angulon: physics and applications of a new quasiparticle' publication: Physical Review B publication_identifier: eissn: - 2469-9969 issn: - 2469-9950 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Quantum impurity model for anyons type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 102 year: '2020' ... --- _id: '8587' abstract: - lang: eng text: Inspired by the possibility to experimentally manipulate and enhance chemical reactivity in helium nanodroplets, we investigate the effective interaction and the resulting correlations between two diatomic molecules immersed in a bath of bosons. By analogy with the bipolaron, we introduce the biangulon quasiparticle describing two rotating molecules that align with respect to each other due to the effective attractive interaction mediated by the excitations of the bath. We study this system in different parameter regimes and apply several theoretical approaches to describe its properties. Using a Born–Oppenheimer approximation, we investigate the dependence of the effective intermolecular interaction on the rotational state of the two molecules. In the strong-coupling regime, a product-state ansatz shows that the molecules tend to have a strong alignment in the ground state. To investigate the system in the weak-coupling regime, we apply a one-phonon excitation variational ansatz, which allows us to access the energy spectrum. In comparison to the angulon quasiparticle, the biangulon shows shifted angulon instabilities and an additional spectral instability, where resonant angular momentum transfer between the molecules and the bath takes place. These features are proposed as an experimentally observable signature for the formation of the biangulon quasiparticle. Finally, by using products of single angulon and bare impurity wave functions as basis states, we introduce a diagonalization scheme that allows us to describe the transition from two separated angulons to a biangulon as a function of the distance between the two molecules. acknowledgement: We are grateful to Areg Ghazaryan for valuable discussions. M.L. acknowledges support from the Austrian Science Fund (FWF) under Project No. P29902-N27 and from the European Research Council (ERC) Starting Grant No. 801770 (ANGULON). G.B. acknowledges support from the Austrian Science Fund (FWF) under Project No. M2461-N27. A.D. acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under the European Research Council (ERC) Grant Agreement No. 694227 and under the Marie Sklodowska-Curie Grant Agreement No. 836146. R.S. was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC-2111 – 390814868. article_number: '164302' article_processing_charge: No article_type: original author: - first_name: Xiang full_name: Li, Xiang id: 4B7E523C-F248-11E8-B48F-1D18A9856A87 last_name: Li - first_name: Enderalp full_name: Yakaboylu, Enderalp id: 38CB71F6-F248-11E8-B48F-1D18A9856A87 last_name: Yakaboylu orcid: 0000-0001-5973-0874 - first_name: Giacomo full_name: Bighin, Giacomo id: 4CA96FD4-F248-11E8-B48F-1D18A9856A87 last_name: Bighin orcid: 0000-0001-8823-9777 - first_name: Richard full_name: Schmidt, Richard last_name: Schmidt - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 - first_name: Andreas full_name: Deuchert, Andreas id: 4DA65CD0-F248-11E8-B48F-1D18A9856A87 last_name: Deuchert orcid: 0000-0003-3146-6746 citation: ama: Li X, Yakaboylu E, Bighin G, Schmidt R, Lemeshko M, Deuchert A. Intermolecular forces and correlations mediated by a phonon bath. The Journal of Chemical Physics. 2020;152(16). doi:10.1063/1.5144759 apa: Li, X., Yakaboylu, E., Bighin, G., Schmidt, R., Lemeshko, M., & Deuchert, A. (2020). Intermolecular forces and correlations mediated by a phonon bath. The Journal of Chemical Physics. AIP Publishing. https://doi.org/10.1063/1.5144759 chicago: Li, Xiang, Enderalp Yakaboylu, Giacomo Bighin, Richard Schmidt, Mikhail Lemeshko, and Andreas Deuchert. “Intermolecular Forces and Correlations Mediated by a Phonon Bath.” The Journal of Chemical Physics. AIP Publishing, 2020. https://doi.org/10.1063/1.5144759. ieee: X. Li, E. Yakaboylu, G. Bighin, R. Schmidt, M. Lemeshko, and A. Deuchert, “Intermolecular forces and correlations mediated by a phonon bath,” The Journal of Chemical Physics, vol. 152, no. 16. AIP Publishing, 2020. ista: Li X, Yakaboylu E, Bighin G, Schmidt R, Lemeshko M, Deuchert A. 2020. Intermolecular forces and correlations mediated by a phonon bath. The Journal of Chemical Physics. 152(16), 164302. mla: Li, Xiang, et al. “Intermolecular Forces and Correlations Mediated by a Phonon Bath.” The Journal of Chemical Physics, vol. 152, no. 16, 164302, AIP Publishing, 2020, doi:10.1063/1.5144759. short: X. Li, E. Yakaboylu, G. Bighin, R. Schmidt, M. Lemeshko, A. Deuchert, The Journal of Chemical Physics 152 (2020). date_created: 2020-09-30T10:33:17Z date_published: 2020-04-27T00:00:00Z date_updated: 2023-09-07T13:16:42Z day: '27' department: - _id: MiLe - _id: RoSe doi: 10.1063/1.5144759 ec_funded: 1 external_id: arxiv: - '1912.02658' isi: - '000530448300001' intvolume: ' 152' isi: 1 issue: '16' keyword: - Physical and Theoretical Chemistry - General Physics and Astronomy language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1912.02658 month: '04' oa: 1 oa_version: Preprint project: - _id: 26031614-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29902 name: Quantum rotations in the presence of a many-body environment - _id: 2688CF98-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '801770' name: 'Angulon: physics and applications of a new quasiparticle' - _id: 26986C82-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M02641 name: A path-integral approach to composite impurities - _id: 25C6DC12-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '694227' name: Analysis of quantum many-body systems publication: The Journal of Chemical Physics publication_identifier: eissn: - 1089-7690 issn: - 0021-9606 publication_status: published publisher: AIP Publishing quality_controlled: '1' related_material: record: - id: '8958' relation: dissertation_contains status: public status: public title: Intermolecular forces and correlations mediated by a phonon bath type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 152 year: '2020' ... --- _id: '8644' abstract: - lang: eng text: Determining the phase diagram of systems consisting of smaller subsystems 'connected' via a tunable coupling is a challenging task relevant for a variety of physical settings. A general question is whether new phases, not present in the uncoupled limit, may arise. We use machine learning and a suitable quasidistance between different points of the phase diagram to study layered spin models, in which the spin variables constituting each of the uncoupled systems (to which we refer as layers) are coupled to each other via an interlayer coupling. In such systems, in general, composite order parameters involving spins of different layers may emerge as a consequence of the interlayer coupling. We focus on the layered Ising and Ashkin–Teller models as a paradigmatic case study, determining their phase diagram via the application of a machine learning algorithm to the Monte Carlo data. Remarkably our technique is able to correctly characterize all the system phases also in the case of hidden order parameters, i.e. order parameters whose expression in terms of the microscopic configurations would require additional preprocessing of the data fed to the algorithm. We correctly retrieve the three known phases of the Ashkin–Teller model with ferromagnetic couplings, including the phase described by a composite order parameter. For the bilayer and trilayer Ising models the phases we find are only the ferromagnetic and the paramagnetic ones. Within the approach we introduce, owing to the construction of convolutional neural networks, naturally suitable for layered image-like data with arbitrary number of layers, no preprocessing of the Monte Carlo data is needed, also with regard to its spatial structure. The physical meaning of our results is discussed and compared with analytical data, where available. Yet, the method can be used without any a priori knowledge of the phases one seeks to find and can be applied to other models and structures. acknowledgement: We thank Gesualdo Delfino, Michele Fabrizio, Piero Ferrarese, Robert Konik, Christoph Lampert and Mikhail Lemeshko for stimulating discussions at various stages of this work. WR has received funding from the EU Horizon 2020 program under the Marie Skłodowska-Curie Grant Agreement No. 665385 and is a recipient of a DOC Fellowship of the Austrian Academy of Sciences. GB acknowledges support from the Austrian Science Fund (FWF), under project No. M2641-N27. ND acknowledges support by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) via Collaborative Research Center SFB 1225 (ISOQUANT)--project-id 273811115--and under Germany's Excellence Strategy 'EXC-2181/1-390900948' (the Heidelberg STRUCTURES Excellence Cluster). article_number: '093026' article_processing_charge: No article_type: original author: - first_name: Wojciech full_name: Rzadkowski, Wojciech id: 48C55298-F248-11E8-B48F-1D18A9856A87 last_name: Rzadkowski orcid: 0000-0002-1106-4419 - first_name: N full_name: Defenu, N last_name: Defenu - first_name: S full_name: Chiacchiera, S last_name: Chiacchiera - first_name: A full_name: Trombettoni, A last_name: Trombettoni - first_name: Giacomo full_name: Bighin, Giacomo id: 4CA96FD4-F248-11E8-B48F-1D18A9856A87 last_name: Bighin orcid: 0000-0001-8823-9777 citation: ama: Rzadkowski W, Defenu N, Chiacchiera S, Trombettoni A, Bighin G. Detecting composite orders in layered models via machine learning. New Journal of Physics. 2020;22(9). doi:10.1088/1367-2630/abae44 apa: Rzadkowski, W., Defenu, N., Chiacchiera, S., Trombettoni, A., & Bighin, G. (2020). Detecting composite orders in layered models via machine learning. New Journal of Physics. IOP Publishing. https://doi.org/10.1088/1367-2630/abae44 chicago: Rzadkowski, Wojciech, N Defenu, S Chiacchiera, A Trombettoni, and Giacomo Bighin. “Detecting Composite Orders in Layered Models via Machine Learning.” New Journal of Physics. IOP Publishing, 2020. https://doi.org/10.1088/1367-2630/abae44. ieee: W. Rzadkowski, N. Defenu, S. Chiacchiera, A. Trombettoni, and G. Bighin, “Detecting composite orders in layered models via machine learning,” New Journal of Physics, vol. 22, no. 9. IOP Publishing, 2020. ista: Rzadkowski W, Defenu N, Chiacchiera S, Trombettoni A, Bighin G. 2020. Detecting composite orders in layered models via machine learning. New Journal of Physics. 22(9), 093026. mla: Rzadkowski, Wojciech, et al. “Detecting Composite Orders in Layered Models via Machine Learning.” New Journal of Physics, vol. 22, no. 9, 093026, IOP Publishing, 2020, doi:10.1088/1367-2630/abae44. short: W. Rzadkowski, N. Defenu, S. Chiacchiera, A. Trombettoni, G. Bighin, New Journal of Physics 22 (2020). date_created: 2020-10-11T22:01:14Z date_published: 2020-09-01T00:00:00Z date_updated: 2023-09-07T13:44:16Z day: '01' ddc: - '530' department: - _id: MiLe doi: 10.1088/1367-2630/abae44 ec_funded: 1 external_id: isi: - '000573298000001' file: - access_level: open_access checksum: c9238fff422e7a957c3a0d559f756b3a content_type: application/pdf creator: dernst date_created: 2020-10-12T12:18:47Z date_updated: 2020-10-12T12:18:47Z file_id: '8650' file_name: 2020_NewJournalPhysics_Rzdkowski.pdf file_size: 2725143 relation: main_file success: 1 file_date_updated: 2020-10-12T12:18:47Z has_accepted_license: '1' intvolume: ' 22' isi: 1 issue: '9' language: - iso: eng month: '09' oa: 1 oa_version: Published Version project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program - _id: 05A235A0-7A3F-11EA-A408-12923DDC885E grant_number: '25681' name: Analytic and machine learning approaches to composite quantum impurities - _id: 26986C82-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M02641 name: A path-integral approach to composite impurities publication: New Journal of Physics publication_identifier: issn: - '13672630' publication_status: published publisher: IOP Publishing quality_controlled: '1' related_material: record: - id: '10759' relation: dissertation_contains status: public scopus_import: '1' status: public title: Detecting composite orders in layered models via machine learning tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 22 year: '2020' ... --- _id: '8958' abstract: - lang: eng text: "The oft-quoted dictum by Arthur Schawlow: ``A diatomic molecule has one atom too many'' has been disavowed. Inspired by the possibility to experimentally manipulate and enhance chemical reactivity in helium nanodroplets, we investigate the rotation of coupled cold molecules in the presence of a many-body environment.\r\nIn this thesis, we introduce new variational approaches to quantum impurities and apply them to the Fröhlich polaron - a quasiparticle formed out of an electron (or other point-like impurity) in a polar medium, and to the angulon - a quasiparticle formed out of a rotating molecule in a bosonic bath.\r\nWith this theoretical toolbox, we reveal the self-localization transition for the angulon quasiparticle. We show that, unlike for polarons, self-localization of angulons occurs at finite impurity-bath coupling already at the mean-field level. The transition is accompanied by the spherical-symmetry breaking of the angulon ground state and a discontinuity in the first derivative of the ground-state energy. Moreover, the type of symmetry breaking is dictated by the symmetry of the microscopic impurity-bath interaction, which leads to a number of distinct self-localized states. \r\nFor the system containing multiple impurities, by analogy with the bipolaron, we introduce the biangulon quasiparticle describing two rotating molecules that align with respect to each other due to the effective attractive interaction mediated by the excitations of the bath. We study this system from the strong-coupling regime to the weak molecule-bath interaction regime. We show that the molecules tend to have a strong alignment in the ground state, the biangulon shows shifted angulon instabilities and an additional spectral instability, where resonant angular momentum transfer between the molecules and the bath takes place. Finally, we introduce a diagonalization scheme that allows us to describe the transition from two separated angulons to a biangulon as a function of the distance between the two molecules." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Xiang full_name: Li, Xiang id: 4B7E523C-F248-11E8-B48F-1D18A9856A87 last_name: Li citation: ama: Li X. Rotation of coupled cold molecules in the presence of a many-body environment. 2020. doi:10.15479/AT:ISTA:8958 apa: Li, X. (2020). Rotation of coupled cold molecules in the presence of a many-body environment. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8958 chicago: Li, Xiang. “Rotation of Coupled Cold Molecules in the Presence of a Many-Body Environment.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8958. ieee: X. Li, “Rotation of coupled cold molecules in the presence of a many-body environment,” Institute of Science and Technology Austria, 2020. ista: Li X. 2020. Rotation of coupled cold molecules in the presence of a many-body environment. Institute of Science and Technology Austria. mla: Li, Xiang. Rotation of Coupled Cold Molecules in the Presence of a Many-Body Environment. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8958. short: X. Li, Rotation of Coupled Cold Molecules in the Presence of a Many-Body Environment, Institute of Science and Technology Austria, 2020. date_created: 2020-12-21T09:44:30Z date_published: 2020-12-21T00:00:00Z date_updated: 2023-09-20T11:30:58Z day: '21' ddc: - '539' degree_awarded: PhD department: - _id: MiLe doi: 10.15479/AT:ISTA:8958 ec_funded: 1 file: - access_level: open_access checksum: 3994c54a1241451d561db1d4f43bad30 content_type: application/pdf creator: xli date_created: 2020-12-22T10:55:56Z date_updated: 2020-12-22T10:55:56Z file_id: '8967' file_name: THESIS_Xiang_Li.pdf file_size: 3622305 relation: main_file success: 1 - access_level: closed checksum: 0954ecfc5554c05615c14de803341f00 content_type: application/x-zip-compressed creator: xli date_created: 2020-12-22T10:56:03Z date_updated: 2020-12-30T07:18:03Z file_id: '8968' file_name: THESIS_Xiang_Li.zip file_size: 4018859 relation: source_file file_date_updated: 2020-12-30T07:18:03Z has_accepted_license: '1' language: - iso: eng month: '12' oa: 1 oa_version: Published Version page: '125' project: - _id: 26031614-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29902 name: Quantum rotations in the presence of a many-body environment - _id: 2688CF98-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '801770' name: 'Angulon: physics and applications of a new quasiparticle' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '5886' relation: part_of_dissertation status: public - id: '8587' relation: part_of_dissertation status: public - id: '1120' relation: part_of_dissertation status: public status: public supervisor: - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 title: Rotation of coupled cold molecules in the presence of a many-body environment type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '7956' abstract: - lang: eng text: When short-range attractions are combined with long-range repulsions in colloidal particle systems, complex microphases can emerge. Here, we study a system of isotropic particles, which can form lamellar structures or a disordered fluid phase when temperature is varied. We show that, at equilibrium, the lamellar structure crystallizes, while out of equilibrium, the system forms a variety of structures at different shear rates and temperatures above melting. The shear-induced ordering is analyzed by means of principal component analysis and artificial neural networks, which are applied to data of reduced dimensionality. Our results reveal the possibility of inducing ordering by shear, potentially providing a feasible route to the fabrication of ordered lamellar structures from isotropic particles. article_number: '204905' article_processing_charge: No article_type: original author: - first_name: J. full_name: Pȩkalski, J. last_name: Pȩkalski - first_name: Wojciech full_name: Rzadkowski, Wojciech id: 48C55298-F248-11E8-B48F-1D18A9856A87 last_name: Rzadkowski orcid: 0000-0002-1106-4419 - first_name: A. Z. full_name: Panagiotopoulos, A. Z. last_name: Panagiotopoulos citation: ama: 'Pȩkalski J, Rzadkowski W, Panagiotopoulos AZ. Shear-induced ordering in systems with competing interactions: A machine learning study. The Journal of chemical physics. 2020;152(20). doi:10.1063/5.0005194' apa: 'Pȩkalski, J., Rzadkowski, W., & Panagiotopoulos, A. Z. (2020). Shear-induced ordering in systems with competing interactions: A machine learning study. The Journal of Chemical Physics. AIP Publishing. https://doi.org/10.1063/5.0005194' chicago: 'Pȩkalski, J., Wojciech Rzadkowski, and A. Z. Panagiotopoulos. “Shear-Induced Ordering in Systems with Competing Interactions: A Machine Learning Study.” The Journal of Chemical Physics. AIP Publishing, 2020. https://doi.org/10.1063/5.0005194.' ieee: 'J. Pȩkalski, W. Rzadkowski, and A. Z. Panagiotopoulos, “Shear-induced ordering in systems with competing interactions: A machine learning study,” The Journal of chemical physics, vol. 152, no. 20. AIP Publishing, 2020.' ista: 'Pȩkalski J, Rzadkowski W, Panagiotopoulos AZ. 2020. Shear-induced ordering in systems with competing interactions: A machine learning study. The Journal of chemical physics. 152(20), 204905.' mla: 'Pȩkalski, J., et al. “Shear-Induced Ordering in Systems with Competing Interactions: A Machine Learning Study.” The Journal of Chemical Physics, vol. 152, no. 20, 204905, AIP Publishing, 2020, doi:10.1063/5.0005194.' short: J. Pȩkalski, W. Rzadkowski, A.Z. Panagiotopoulos, The Journal of Chemical Physics 152 (2020). date_created: 2020-06-14T22:00:49Z date_published: 2020-05-29T00:00:00Z date_updated: 2024-02-28T13:00:28Z day: '29' department: - _id: MiLe doi: 10.1063/5.0005194 ec_funded: 1 external_id: arxiv: - '2002.07294' isi: - '000537900300001' intvolume: ' 152' isi: 1 issue: '20' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1063/5.0005194 month: '05' oa: 1 oa_version: Published Version project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: The Journal of chemical physics publication_identifier: eissn: - '10897690' publication_status: published publisher: AIP Publishing quality_controlled: '1' related_material: record: - id: '10759' relation: dissertation_contains status: public scopus_import: '1' status: public title: 'Shear-induced ordering in systems with competing interactions: A machine learning study' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 152 year: '2020' ... --- _id: '7428' abstract: - lang: eng text: In the superconducting regime of FeTe(1−x)Sex, there exist two types of vortices which are distinguished by the presence or absence of zero-energy states in their core. To understand their origin, we examine the interplay of Zeeman coupling and superconducting pairings in three-dimensional metals with band inversion. Weak Zeeman fields are found to suppress intraorbital spin-singlet pairing, known to localize the states at the ends of the vortices on the surface. On the other hand, an orbital-triplet pairing is shown to be stable against Zeeman interactions, but leads to delocalized zero-energy Majorana modes which extend through the vortex. In contrast, the finite-energy vortex modes remain localized at the vortex ends even when the pairing is of orbital-triplet form. Phenomenologically, this manifests as an observed disappearance of zero-bias peaks within the cores of topological vortices upon an increase of the applied magnetic field. The presence of magnetic impurities in FeTe(1−x)Sex, which are attracted to the vortices, would lead to such Zeeman-induced delocalization of Majorana modes in a fraction of vortices that capture a large enough number of magnetic impurities. Our results provide an explanation for the dichotomy between topological and nontopological vortices recently observed in FeTe(1−x)Sex. article_number: '020504' article_processing_charge: No article_type: original author: - first_name: Areg full_name: Ghazaryan, Areg id: 4AF46FD6-F248-11E8-B48F-1D18A9856A87 last_name: Ghazaryan orcid: 0000-0001-9666-3543 - first_name: P. L.S. full_name: Lopes, P. L.S. last_name: Lopes - first_name: Pavan full_name: Hosur, Pavan last_name: Hosur - first_name: Matthew J. full_name: Gilbert, Matthew J. last_name: Gilbert - first_name: Pouyan full_name: Ghaemi, Pouyan last_name: Ghaemi citation: ama: Ghazaryan A, Lopes PLS, Hosur P, Gilbert MJ, Ghaemi P. Effect of Zeeman coupling on the Majorana vortex modes in iron-based topological superconductors. Physical Review B. 2020;101(2). doi:10.1103/PhysRevB.101.020504 apa: Ghazaryan, A., Lopes, P. L. S., Hosur, P., Gilbert, M. J., & Ghaemi, P. (2020). Effect of Zeeman coupling on the Majorana vortex modes in iron-based topological superconductors. Physical Review B. American Physical Society. https://doi.org/10.1103/PhysRevB.101.020504 chicago: Ghazaryan, Areg, P. L.S. Lopes, Pavan Hosur, Matthew J. Gilbert, and Pouyan Ghaemi. “Effect of Zeeman Coupling on the Majorana Vortex Modes in Iron-Based Topological Superconductors.” Physical Review B. American Physical Society, 2020. https://doi.org/10.1103/PhysRevB.101.020504. ieee: A. Ghazaryan, P. L. S. Lopes, P. Hosur, M. J. Gilbert, and P. Ghaemi, “Effect of Zeeman coupling on the Majorana vortex modes in iron-based topological superconductors,” Physical Review B, vol. 101, no. 2. American Physical Society, 2020. ista: Ghazaryan A, Lopes PLS, Hosur P, Gilbert MJ, Ghaemi P. 2020. Effect of Zeeman coupling on the Majorana vortex modes in iron-based topological superconductors. Physical Review B. 101(2), 020504. mla: Ghazaryan, Areg, et al. “Effect of Zeeman Coupling on the Majorana Vortex Modes in Iron-Based Topological Superconductors.” Physical Review B, vol. 101, no. 2, 020504, American Physical Society, 2020, doi:10.1103/PhysRevB.101.020504. short: A. Ghazaryan, P.L.S. Lopes, P. Hosur, M.J. Gilbert, P. Ghaemi, Physical Review B 101 (2020). date_created: 2020-02-02T23:01:01Z date_published: 2020-01-13T00:00:00Z date_updated: 2024-02-28T13:11:13Z day: '13' department: - _id: MiLe doi: 10.1103/PhysRevB.101.020504 external_id: arxiv: - '1907.02077' isi: - '000506843500001' intvolume: ' 101' isi: 1 issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1907.02077 month: '01' oa: 1 oa_version: Preprint publication: Physical Review B publication_identifier: eissn: - '24699969' issn: - '24699950' publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Effect of Zeeman coupling on the Majorana vortex modes in iron-based topological superconductors type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 101 year: '2020' ... --- _id: '8741' abstract: - lang: eng text: "In ecology, climate and other fields, (sub)systems have been identified that can transition into a qualitatively different state when a critical threshold or tipping point in a driving process is crossed. An understanding of those tipping elements is of great interest given the increasing influence of humans on the biophysical Earth system. Complex interactions exist between tipping elements, e.g. physical mechanisms connect subsystems of the climate system. Based on earlier work on such coupled nonlinear systems, we systematically assessed the qualitative long-term behaviour of interacting tipping elements. We developed an understanding of the consequences of interactions\r\non the tipping behaviour allowing for tipping cascades to emerge under certain conditions. The (narrative) application of\r\nthese qualitative results to real-world examples of interacting tipping elements indicates that tipping cascades with profound consequences may occur: the interacting Greenland ice sheet and thermohaline ocean circulation might tip before the tipping points of the isolated subsystems are crossed. The eutrophication of the first lake in a lake chain might propagate through the following lakes without a crossing of their individual critical nutrient input levels. The possibility of emerging cascading tipping dynamics calls for the development of a unified theory of interacting tipping elements and the quantitative analysis of interacting real-world tipping elements." acknowledgement: "V.K. thanks the German National Academic Foundation (Studienstiftung des deutschen Volkes) for financial\r\nsupport. J.F.D. is grateful for financial support by the Stordalen Foundation via the Planetary Boundary Research\r\nNetwork (PB.net), the Earth League’s EarthDoc program and the European Research Council Advanced Grant\r\nproject ERA (Earth Resilience in the Anthropocene). We are thankful for support by the Leibniz Association\r\n(project DominoES).\r\nAcknowledgements. This work has been performed in the context of the copan collaboration and the FutureLab on Earth\r\nResilience in the Anthropocene at the Potsdam Institute for Climate Impact Research. Furthermore, we acknowledge\r\ndiscussions with and helpful comments by N. Wunderling, J. Heitzig and M. Wiedermann." article_number: '200599' article_processing_charge: No article_type: original author: - first_name: Ann Kristin full_name: Klose, Ann Kristin last_name: Klose - first_name: Volker full_name: Karle, Volker id: D7C012AE-D7ED-11E9-95E8-1EC5E5697425 last_name: Karle orcid: 0000-0002-6963-0129 - first_name: Ricarda full_name: Winkelmann, Ricarda last_name: Winkelmann - first_name: Jonathan F. full_name: Donges, Jonathan F. last_name: Donges citation: ama: 'Klose AK, Karle V, Winkelmann R, Donges JF. Emergence of cascading dynamics in interacting tipping elements of ecology and climate: Cascading dynamics in tipping elements. Royal Society Open Science. 2020;7(6). doi:10.1098/rsos.200599' apa: 'Klose, A. K., Karle, V., Winkelmann, R., & Donges, J. F. (2020). Emergence of cascading dynamics in interacting tipping elements of ecology and climate: Cascading dynamics in tipping elements. Royal Society Open Science. The Royal Society. https://doi.org/10.1098/rsos.200599' chicago: 'Klose, Ann Kristin, Volker Karle, Ricarda Winkelmann, and Jonathan F. Donges. “Emergence of Cascading Dynamics in Interacting Tipping Elements of Ecology and Climate: Cascading Dynamics in Tipping Elements.” Royal Society Open Science. The Royal Society, 2020. https://doi.org/10.1098/rsos.200599.' ieee: 'A. K. Klose, V. Karle, R. Winkelmann, and J. F. Donges, “Emergence of cascading dynamics in interacting tipping elements of ecology and climate: Cascading dynamics in tipping elements,” Royal Society Open Science, vol. 7, no. 6. The Royal Society, 2020.' ista: 'Klose AK, Karle V, Winkelmann R, Donges JF. 2020. Emergence of cascading dynamics in interacting tipping elements of ecology and climate: Cascading dynamics in tipping elements. Royal Society Open Science. 7(6), 200599.' mla: 'Klose, Ann Kristin, et al. “Emergence of Cascading Dynamics in Interacting Tipping Elements of Ecology and Climate: Cascading Dynamics in Tipping Elements.” Royal Society Open Science, vol. 7, no. 6, 200599, The Royal Society, 2020, doi:10.1098/rsos.200599.' short: A.K. Klose, V. Karle, R. Winkelmann, J.F. Donges, Royal Society Open Science 7 (2020). date_created: 2020-11-08T23:01:25Z date_published: 2020-06-01T00:00:00Z date_updated: 2024-03-12T12:31:30Z day: '01' ddc: - '530' - '550' department: - _id: MiLe doi: 10.1098/rsos.200599 external_id: arxiv: - '1910.12042' isi: - '000545625200001' file: - access_level: open_access checksum: 5505c445de373bfd836eb4d3b48b1f37 content_type: application/pdf creator: dernst date_created: 2020-11-09T09:07:11Z date_updated: 2020-11-09T09:07:11Z file_id: '8748' file_name: 2020_RoyalSocOpenScience_Klose.pdf file_size: 1611485 relation: main_file success: 1 file_date_updated: 2020-11-09T09:07:11Z has_accepted_license: '1' intvolume: ' 7' isi: 1 issue: '6' language: - iso: eng month: '06' oa: 1 oa_version: Published Version publication: Royal Society Open Science publication_identifier: eissn: - '20545703' publication_status: published publisher: The Royal Society quality_controlled: '1' scopus_import: '1' status: public title: 'Emergence of cascading dynamics in interacting tipping elements of ecology and climate: Cascading dynamics in tipping elements' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 7 year: '2020' ... --- _id: '6940' abstract: - lang: eng text: "We study the effect of a linear tunneling coupling between two-dimensional systems, each separately\r\nexhibiting the topological Berezinskii-Kosterlitz-Thouless (BKT) transition. In the uncoupled limit, there\r\nare two phases: one where the one-body correlation functions are algebraically decaying and the other with\r\nexponential decay. When the linear coupling is turned on, a third BKT-paired phase emerges, in which one-body correlations are exponentially decaying, while two-body correlation functions exhibit power-law\r\ndecay. We perform numerical simulations in the paradigmatic case of two coupled XY models at finite\r\ntemperature, finding evidences that for any finite value of the interlayer coupling, the BKT-paired phase is\r\npresent. We provide a picture of the phase diagram using a renormalization group approach." acknowledgement: "We thank S. Chiacchiera, G. Delfino, N. Dupuis, T. Enss, M. Fabrizio and G. Gori for many stimulating discussions.\r\nG.B. acknowledges support from the Austrian Science Fund (FWF), under project No. M2461-N27. N.D. acknowledges\r\nsupport from Deutsche Forschungsgemeinschaft (DFG) under Germany’s Excellence Strategy EXC-2181/1 - 390900948 (the Heidelberg STRUCTURES Excellence Cluster) and from the DFG Collaborative Research Centre “SFB 1225 ISOQUANT”. Support from the CNR/MTA Italy-Hungary 2019-2021 Joint Project “Strongly interacting systems in confined geometries” is gratefully acknowledged." article_number: '100601' article_processing_charge: No article_type: original author: - first_name: Giacomo full_name: Bighin, Giacomo id: 4CA96FD4-F248-11E8-B48F-1D18A9856A87 last_name: Bighin orcid: 0000-0001-8823-9777 - first_name: Nicolò full_name: Defenu, Nicolò last_name: Defenu - first_name: István full_name: Nándori, István last_name: Nándori - first_name: Luca full_name: Salasnich, Luca last_name: Salasnich - first_name: Andrea full_name: Trombettoni, Andrea last_name: Trombettoni citation: ama: Bighin G, Defenu N, Nándori I, Salasnich L, Trombettoni A. Berezinskii-Kosterlitz-Thouless paired phase in coupled XY models. Physical Review Letters. 2019;123(10). doi:10.1103/physrevlett.123.100601 apa: Bighin, G., Defenu, N., Nándori, I., Salasnich, L., & Trombettoni, A. (2019). Berezinskii-Kosterlitz-Thouless paired phase in coupled XY models. Physical Review Letters. American Physical Society. https://doi.org/10.1103/physrevlett.123.100601 chicago: Bighin, Giacomo, Nicolò Defenu, István Nándori, Luca Salasnich, and Andrea Trombettoni. “Berezinskii-Kosterlitz-Thouless Paired Phase in Coupled XY Models.” Physical Review Letters. American Physical Society, 2019. https://doi.org/10.1103/physrevlett.123.100601. ieee: G. Bighin, N. Defenu, I. Nándori, L. Salasnich, and A. Trombettoni, “Berezinskii-Kosterlitz-Thouless paired phase in coupled XY models,” Physical Review Letters, vol. 123, no. 10. American Physical Society, 2019. ista: Bighin G, Defenu N, Nándori I, Salasnich L, Trombettoni A. 2019. Berezinskii-Kosterlitz-Thouless paired phase in coupled XY models. Physical Review Letters. 123(10), 100601. mla: Bighin, Giacomo, et al. “Berezinskii-Kosterlitz-Thouless Paired Phase in Coupled XY Models.” Physical Review Letters, vol. 123, no. 10, 100601, American Physical Society, 2019, doi:10.1103/physrevlett.123.100601. short: G. Bighin, N. Defenu, I. Nándori, L. Salasnich, A. Trombettoni, Physical Review Letters 123 (2019). date_created: 2019-10-14T06:31:13Z date_published: 2019-09-06T00:00:00Z date_updated: 2023-08-30T06:57:53Z day: '06' department: - _id: MiLe doi: 10.1103/physrevlett.123.100601 external_id: arxiv: - '1907.06253' isi: - '000483587200004' intvolume: ' 123' isi: 1 issue: '10' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1907.06253 month: '09' oa: 1 oa_version: Preprint project: - _id: 26986C82-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M02641 name: A path-integral approach to composite impurities publication: Physical Review Letters publication_identifier: eissn: - 1079-7114 issn: - 0031-9007 publication_status: published publisher: American Physical Society quality_controlled: '1' related_material: link: - description: News auf IST Website relation: press_release url: https://ist.ac.at/en/news/new-form-of-magnetism-found/ scopus_import: '1' status: public title: Berezinskii-Kosterlitz-Thouless paired phase in coupled XY models type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 123 year: '2019' ... --- _id: '6955' abstract: - lang: eng text: We study few-body bound states of charged particles subject to attractive zero-range/short-range plus repulsive Coulomb interparticle forces. The characteristic length scales of the system at zero energy are set by the Coulomb length scale D and the Coulomb-modified effective range r eff. We study shallow bound states of charged particles with D >> r eff and show that these systems obey universal scaling laws different from neutral particles. An accurate description of these states requires both the Coulomb-modified scattering length and the effective range unless the Coulomb interaction is very weak (D -> ). Our findings are relevant for bound states whose spatial extent is significantly larger than the range of the attractive potential. These states enjoy universality – their character is independent of the shape of the short-range potential. article_number: '135016' article_processing_charge: No article_type: original author: - first_name: C.H. full_name: Schmickler, C.H. last_name: Schmickler - first_name: H.-W. full_name: Hammer, H.-W. last_name: Hammer - first_name: Artem full_name: Volosniev, Artem id: 37D278BC-F248-11E8-B48F-1D18A9856A87 last_name: Volosniev orcid: 0000-0003-0393-5525 citation: ama: Schmickler CH, Hammer H-W, Volosniev A. Universal physics of bound states of a few charged particles. Physics Letters B. 2019;798. doi:10.1016/j.physletb.2019.135016 apa: Schmickler, C. H., Hammer, H.-W., & Volosniev, A. (2019). Universal physics of bound states of a few charged particles. Physics Letters B. Elsevier. https://doi.org/10.1016/j.physletb.2019.135016 chicago: Schmickler, C.H., H.-W. Hammer, and Artem Volosniev. “Universal Physics of Bound States of a Few Charged Particles.” Physics Letters B. Elsevier, 2019. https://doi.org/10.1016/j.physletb.2019.135016. ieee: C. H. Schmickler, H.-W. Hammer, and A. Volosniev, “Universal physics of bound states of a few charged particles,” Physics Letters B, vol. 798. Elsevier, 2019. ista: Schmickler CH, Hammer H-W, Volosniev A. 2019. Universal physics of bound states of a few charged particles. Physics Letters B. 798, 135016. mla: Schmickler, C. H., et al. “Universal Physics of Bound States of a Few Charged Particles.” Physics Letters B, vol. 798, 135016, Elsevier, 2019, doi:10.1016/j.physletb.2019.135016. short: C.H. Schmickler, H.-W. Hammer, A. Volosniev, Physics Letters B 798 (2019). date_created: 2019-10-18T18:33:32Z date_published: 2019-11-10T00:00:00Z date_updated: 2023-08-30T07:06:42Z day: '10' ddc: - '530' department: - _id: MiLe doi: 10.1016/j.physletb.2019.135016 external_id: arxiv: - '1904.00913' isi: - '000494939000086' file: - access_level: open_access checksum: d27f983b34ea7dafdf356afbf9472fbf content_type: application/pdf creator: dernst date_created: 2019-10-25T12:47:04Z date_updated: 2020-07-14T12:47:46Z file_id: '6974' file_name: 2019_PhysicsLettersB_Schmickler.pdf file_size: 528362 relation: main_file file_date_updated: 2020-07-14T12:47:46Z has_accepted_license: '1' intvolume: ' 798' isi: 1 language: - iso: eng month: '11' oa: 1 oa_version: Published Version publication: Physics Letters B publication_identifier: issn: - 0370-2693 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Universal physics of bound states of a few charged particles tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 798 year: '2019' ... --- _id: '5886' abstract: - lang: eng text: Problems involving quantum impurities, in which one or a few particles are interacting with a macroscopic environment, represent a pervasive paradigm, spanning across atomic, molecular, and condensed-matter physics. In this paper we introduce new variational approaches to quantum impurities and apply them to the Fröhlich polaron–a quasiparticle formed out of an electron (or other point-like impurity) in a polar medium, and to the angulon–a quasiparticle formed out of a rotating molecule in a bosonic bath. We benchmark these approaches against established theories, evaluating their accuracy as a function of the impurity-bath coupling. article_processing_charge: No author: - first_name: Xiang full_name: Li, Xiang id: 4B7E523C-F248-11E8-B48F-1D18A9856A87 last_name: Li - first_name: Giacomo full_name: Bighin, Giacomo id: 4CA96FD4-F248-11E8-B48F-1D18A9856A87 last_name: Bighin orcid: 0000-0001-8823-9777 - first_name: Enderalp full_name: Yakaboylu, Enderalp id: 38CB71F6-F248-11E8-B48F-1D18A9856A87 last_name: Yakaboylu orcid: 0000-0001-5973-0874 - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 citation: ama: 'Li X, Bighin G, Yakaboylu E, Lemeshko M. Variational approaches to quantum impurities: from the Fröhlich polaron to the angulon. Molecular Physics. 2019. doi:10.1080/00268976.2019.1567852' apa: 'Li, X., Bighin, G., Yakaboylu, E., & Lemeshko, M. (2019). Variational approaches to quantum impurities: from the Fröhlich polaron to the angulon. Molecular Physics. Taylor and Francis. https://doi.org/10.1080/00268976.2019.1567852' chicago: 'Li, Xiang, Giacomo Bighin, Enderalp Yakaboylu, and Mikhail Lemeshko. “Variational Approaches to Quantum Impurities: From the Fröhlich Polaron to the Angulon.” Molecular Physics. Taylor and Francis, 2019. https://doi.org/10.1080/00268976.2019.1567852.' ieee: 'X. Li, G. Bighin, E. Yakaboylu, and M. Lemeshko, “Variational approaches to quantum impurities: from the Fröhlich polaron to the angulon,” Molecular Physics. Taylor and Francis, 2019.' ista: 'Li X, Bighin G, Yakaboylu E, Lemeshko M. 2019. Variational approaches to quantum impurities: from the Fröhlich polaron to the angulon. Molecular Physics.' mla: 'Li, Xiang, et al. “Variational Approaches to Quantum Impurities: From the Fröhlich Polaron to the Angulon.” Molecular Physics, Taylor and Francis, 2019, doi:10.1080/00268976.2019.1567852.' short: X. Li, G. Bighin, E. Yakaboylu, M. Lemeshko, Molecular Physics (2019). date_created: 2019-01-27T22:59:10Z date_published: 2019-01-18T00:00:00Z date_updated: 2023-09-07T13:16:42Z day: '18' ddc: - '530' department: - _id: MiLe doi: 10.1080/00268976.2019.1567852 ec_funded: 1 external_id: isi: - '000474641400008' file: - access_level: open_access checksum: 178964744b636a6f036372f4f090a657 content_type: application/pdf creator: dernst date_created: 2019-01-29T08:32:57Z date_updated: 2020-07-14T12:47:13Z file_id: '5896' file_name: 2019_MolecularPhysics_Li.pdf file_size: 1309966 relation: main_file file_date_updated: 2020-07-14T12:47:13Z has_accepted_license: '1' isi: 1 language: - iso: eng month: '01' oa: 1 oa_version: Published Version project: - _id: 26031614-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29902 name: Quantum rotations in the presence of a many-body environment - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Molecular Physics publication_identifier: issn: - '00268976' publication_status: published publisher: Taylor and Francis quality_controlled: '1' related_material: record: - id: '8958' relation: dissertation_contains status: public scopus_import: '1' status: public title: 'Variational approaches to quantum impurities: from the Fröhlich polaron to the angulon' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 year: '2019' ... --- _id: '6646' abstract: - lang: eng text: We demonstrate robust retention of valley coherence and its control via polariton pseudospin precession through the optical TE-TM splitting in bilayer WS2 microcavity exciton polaritons at room temperature. article_number: paper JTu2A.52 article_processing_charge: No author: - first_name: Mandeep full_name: Khatoniar, Mandeep last_name: Khatoniar - first_name: Nicholas full_name: Yama, Nicholas last_name: Yama - first_name: Areg full_name: Ghazaryan, Areg id: 4AF46FD6-F248-11E8-B48F-1D18A9856A87 last_name: Ghazaryan orcid: 0000-0001-9666-3543 - first_name: Sriram full_name: Guddala, Sriram last_name: Guddala - first_name: Pouyan full_name: Ghaemi, Pouyan last_name: Ghaemi - first_name: Vinod full_name: Menon, Vinod last_name: Menon citation: ama: 'Khatoniar M, Yama N, Ghazaryan A, Guddala S, Ghaemi P, Menon V. Room temperature control of valley coherence in bilayer WS2 exciton polaritons. In: CLEO: Applications and Technology. Optica  Publishing Group; 2019. doi:10.1364/cleo_at.2019.jtu2a.52' apa: 'Khatoniar, M., Yama, N., Ghazaryan, A., Guddala, S., Ghaemi, P., & Menon, V. (2019). Room temperature control of valley coherence in bilayer WS2 exciton polaritons. In CLEO: Applications and Technology. San Jose, CA, United States: Optica  Publishing Group. https://doi.org/10.1364/cleo_at.2019.jtu2a.52' chicago: 'Khatoniar, Mandeep, Nicholas Yama, Areg Ghazaryan, Sriram Guddala, Pouyan Ghaemi, and Vinod Menon. “Room Temperature Control of Valley Coherence in Bilayer WS2 Exciton Polaritons.” In CLEO: Applications and Technology. Optica  Publishing Group, 2019. https://doi.org/10.1364/cleo_at.2019.jtu2a.52.' ieee: 'M. Khatoniar, N. Yama, A. Ghazaryan, S. Guddala, P. Ghaemi, and V. Menon, “Room temperature control of valley coherence in bilayer WS2 exciton polaritons,” in CLEO: Applications and Technology, San Jose, CA, United States, 2019.' ista: 'Khatoniar M, Yama N, Ghazaryan A, Guddala S, Ghaemi P, Menon V. 2019. Room temperature control of valley coherence in bilayer WS2 exciton polaritons. CLEO: Applications and Technology. CLEO: Conference on Lasers and Electro-Optics, paper JTu2A.52.' mla: 'Khatoniar, Mandeep, et al. “Room Temperature Control of Valley Coherence in Bilayer WS2 Exciton Polaritons.” CLEO: Applications and Technology, paper JTu2A.52, Optica  Publishing Group, 2019, doi:10.1364/cleo_at.2019.jtu2a.52.' short: 'M. Khatoniar, N. Yama, A. Ghazaryan, S. Guddala, P. Ghaemi, V. Menon, in:, CLEO: Applications and Technology, Optica  Publishing Group, 2019.' conference: end_date: 2019-05-10 location: San Jose, CA, United States name: 'CLEO: Conference on Lasers and Electro-Optics' start_date: 2019-05-05 date_created: 2019-07-17T09:40:44Z date_published: 2019-05-01T00:00:00Z date_updated: 2023-10-17T12:14:29Z day: '01' department: - _id: MiLe doi: 10.1364/cleo_at.2019.jtu2a.52 language: - iso: eng month: '05' oa_version: None publication: 'CLEO: Applications and Technology' publication_identifier: isbn: - '9781943580576' publication_status: published publisher: Optica Publishing Group quality_controlled: '1' scopus_import: '1' status: public title: Room temperature control of valley coherence in bilayer WS2 exciton polaritons type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2019' ... --- _id: '7190' abstract: - lang: eng text: We investigate the ground-state energy of a one-dimensional Fermi gas with two bosonic impurities. We consider spinless fermions with no fermion-fermion interactions. The fermion-impurity and impurity-impurity interactions are modeled with Dirac delta functions. First, we study the case where impurity and fermion have equal masses, and the impurity-impurity two-body interaction is identical to the fermion-impurity interaction, such that the system is solvable with the Bethe ansatz. For attractive interactions, we find that the energy of the impurity-impurity subsystem is below the energy of the bound state that exists without the Fermi gas. We interpret this as a manifestation of attractive boson-boson interactions induced by the fermionic medium, and refer to the impurity-impurity subsystem as an in-medium bound state. For repulsive interactions, we find no in-medium bound states. Second, we construct an effective model to describe these interactions, and compare its predictions to the exact solution. We use this effective model to study nonintegrable systems with unequal masses and/or potentials. We discuss parameter regimes for which impurity-impurity attraction induced by the Fermi gas can lead to the formation of in-medium bound states made of bosons that repel each other in the absence of the Fermi gas. article_number: '033177' article_processing_charge: No article_type: original author: - first_name: D. full_name: Huber, D. last_name: Huber - first_name: H.-W. full_name: Hammer, H.-W. last_name: Hammer - first_name: Artem full_name: Volosniev, Artem id: 37D278BC-F248-11E8-B48F-1D18A9856A87 last_name: Volosniev orcid: 0000-0003-0393-5525 citation: ama: Huber D, Hammer H-W, Volosniev A. In-medium bound states of two bosonic impurities in a one-dimensional Fermi gas. Physical Review Research. 2019;1(3). doi:10.1103/physrevresearch.1.033177 apa: Huber, D., Hammer, H.-W., & Volosniev, A. (2019). In-medium bound states of two bosonic impurities in a one-dimensional Fermi gas. Physical Review Research. American Physical Society. https://doi.org/10.1103/physrevresearch.1.033177 chicago: Huber, D., H.-W. Hammer, and Artem Volosniev. “In-Medium Bound States of Two Bosonic Impurities in a One-Dimensional Fermi Gas.” Physical Review Research. American Physical Society, 2019. https://doi.org/10.1103/physrevresearch.1.033177. ieee: D. Huber, H.-W. Hammer, and A. Volosniev, “In-medium bound states of two bosonic impurities in a one-dimensional Fermi gas,” Physical Review Research, vol. 1, no. 3. American Physical Society, 2019. ista: Huber D, Hammer H-W, Volosniev A. 2019. In-medium bound states of two bosonic impurities in a one-dimensional Fermi gas. Physical Review Research. 1(3), 033177. mla: Huber, D., et al. “In-Medium Bound States of Two Bosonic Impurities in a One-Dimensional Fermi Gas.” Physical Review Research, vol. 1, no. 3, 033177, American Physical Society, 2019, doi:10.1103/physrevresearch.1.033177. short: D. Huber, H.-W. Hammer, A. Volosniev, Physical Review Research 1 (2019). date_created: 2019-12-17T13:03:41Z date_published: 2019-12-16T00:00:00Z date_updated: 2024-02-28T13:11:40Z day: '16' ddc: - '530' department: - _id: MiLe doi: 10.1103/physrevresearch.1.033177 ec_funded: 1 external_id: arxiv: - '1908.02483' file: - access_level: open_access checksum: 382eb67e62a77052a23887332d363f96 content_type: application/pdf creator: dernst date_created: 2019-12-18T07:13:14Z date_updated: 2020-07-14T12:47:52Z file_id: '7193' file_name: 2019_PhysRevResearch_Huber.pdf file_size: 1370022 relation: main_file file_date_updated: 2020-07-14T12:47:52Z has_accepted_license: '1' intvolume: ' 1' issue: '3' language: - iso: eng month: '12' oa: 1 oa_version: Published Version project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Physical Review Research publication_identifier: issn: - 2643-1564 publication_status: published publisher: American Physical Society quality_controlled: '1' status: public title: In-medium bound states of two bosonic impurities in a one-dimensional Fermi gas tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 1 year: '2019' ...