--- _id: '8170' abstract: - lang: eng text: "Alignment of OCS, CS2, and I2 molecules embedded in helium nanodroplets is measured as a function\r\nof time following rotational excitation by a nonresonant, comparatively weak ps laser pulse. The distinct\r\npeaks in the power spectra, obtained by Fourier analysis, are used to determine the rotational, B, and\r\ncentrifugal distortion, D, constants. For OCS, B and D match the values known from IR spectroscopy. For\r\nCS2 and I2, they are the first experimental results reported. The alignment dynamics calculated from the\r\ngas-phase rotational Schrödinger equation, using the experimental in-droplet B and D values, agree in\r\ndetail with the measurement for all three molecules. The rotational spectroscopy technique for molecules in\r\nhelium droplets introduced here should apply to a range of molecules and complexes." acknowledgement: "H. S. acknowledges support from the European Research Council-AdG (Project No. 320459, DropletControl)\r\nand from The Villum Foundation through a Villum Investigator Grant No. 25886. M. L. acknowledges support\r\nby the Austrian Science Fund (FWF), under Project No. P29902-N27, and by the European Research Council\r\n(ERC) Starting Grant No. 801770 (ANGULON). G. B. acknowledges support from the Austrian Science Fund\r\n(FWF), under Project No. M2641-N27. I. C. acknowledges support by the European Union’s Horizon 2020 research and\r\ninnovation programme under the Marie Skłodowska-Curie Grant Agreement No. 665385. Computational resources for\r\nthe PIMC simulations were provided by the division for scientific computing at the Johannes Kepler University." article_number: '013001' article_processing_charge: No article_type: original author: - first_name: Adam S. full_name: Chatterley, Adam S. last_name: Chatterley - first_name: Lars full_name: Christiansen, Lars last_name: Christiansen - first_name: Constant A. full_name: Schouder, Constant A. last_name: Schouder - first_name: Anders V. full_name: Jørgensen, Anders V. last_name: Jørgensen - first_name: Benjamin full_name: Shepperson, Benjamin last_name: Shepperson - first_name: Igor full_name: Cherepanov, Igor id: 339C7E5A-F248-11E8-B48F-1D18A9856A87 last_name: Cherepanov - first_name: Giacomo full_name: Bighin, Giacomo id: 4CA96FD4-F248-11E8-B48F-1D18A9856A87 last_name: Bighin orcid: 0000-0001-8823-9777 - first_name: Robert E. full_name: Zillich, Robert E. last_name: Zillich - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 - first_name: Henrik full_name: Stapelfeldt, Henrik last_name: Stapelfeldt citation: ama: 'Chatterley AS, Christiansen L, Schouder CA, et al. Rotational coherence spectroscopy of molecules in Helium nanodroplets: Reconciling the time and the frequency domains. Physical Review Letters. 2020;125(1). doi:10.1103/PhysRevLett.125.013001' apa: 'Chatterley, A. S., Christiansen, L., Schouder, C. A., Jørgensen, A. V., Shepperson, B., Cherepanov, I., … Stapelfeldt, H. (2020). Rotational coherence spectroscopy of molecules in Helium nanodroplets: Reconciling the time and the frequency domains. Physical Review Letters. American Physical Society. https://doi.org/10.1103/PhysRevLett.125.013001' chicago: 'Chatterley, Adam S., Lars Christiansen, Constant A. Schouder, Anders V. Jørgensen, Benjamin Shepperson, Igor Cherepanov, Giacomo Bighin, Robert E. Zillich, Mikhail Lemeshko, and Henrik Stapelfeldt. “Rotational Coherence Spectroscopy of Molecules in Helium Nanodroplets: Reconciling the Time and the Frequency Domains.” Physical Review Letters. American Physical Society, 2020. https://doi.org/10.1103/PhysRevLett.125.013001.' ieee: 'A. S. Chatterley et al., “Rotational coherence spectroscopy of molecules in Helium nanodroplets: Reconciling the time and the frequency domains,” Physical Review Letters, vol. 125, no. 1. American Physical Society, 2020.' ista: 'Chatterley AS, Christiansen L, Schouder CA, Jørgensen AV, Shepperson B, Cherepanov I, Bighin G, Zillich RE, Lemeshko M, Stapelfeldt H. 2020. Rotational coherence spectroscopy of molecules in Helium nanodroplets: Reconciling the time and the frequency domains. Physical Review Letters. 125(1), 013001.' mla: 'Chatterley, Adam S., et al. “Rotational Coherence Spectroscopy of Molecules in Helium Nanodroplets: Reconciling the Time and the Frequency Domains.” Physical Review Letters, vol. 125, no. 1, 013001, American Physical Society, 2020, doi:10.1103/PhysRevLett.125.013001.' short: A.S. Chatterley, L. Christiansen, C.A. Schouder, A.V. Jørgensen, B. Shepperson, I. Cherepanov, G. Bighin, R.E. Zillich, M. Lemeshko, H. Stapelfeldt, Physical Review Letters 125 (2020). date_created: 2020-07-26T22:01:02Z date_published: 2020-07-03T00:00:00Z date_updated: 2023-08-22T08:22:43Z day: '03' department: - _id: MiLe doi: 10.1103/PhysRevLett.125.013001 ec_funded: 1 external_id: arxiv: - '2006.02694' isi: - '000544526900006' intvolume: ' 125' isi: 1 issue: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2006.02694 month: '07' oa: 1 oa_version: Preprint project: - _id: 26031614-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29902 name: Quantum rotations in the presence of a many-body environment - _id: 2688CF98-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '801770' name: 'Angulon: physics and applications of a new quasiparticle' - _id: 26986C82-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M02641 name: A path-integral approach to composite impurities - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: Physical Review Letters publication_identifier: eissn: - '10797114' issn: - '00319007' publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: 'Rotational coherence spectroscopy of molecules in Helium nanodroplets: Reconciling the time and the frequency domains' type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 125 year: '2020' ... --- _id: '8652' abstract: - lang: eng text: Nature creates electrons with two values of the spin projection quantum number. In certain applications, it is important to filter electrons with one spin projection from the rest. Such filtering is not trivial, since spin-dependent interactions are often weak, and cannot lead to any substantial effect. Here we propose an efficient spin filter based upon scattering from a two-dimensional crystal, which is made of aligned point magnets. The polarization of the outgoing electron flux is controlled by the crystal, and reaches maximum at specific values of the parameters. In our scheme, polarization increase is accompanied by higher reflectivity of the crystal. High transmission is feasible in scattering from a quantum cavity made of two crystals. Our findings can be used for studies of low-energy spin-dependent scattering from two-dimensional ordered structures made of magnetic atoms or aligned chiral molecules. acknowledgement: "This work has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant Agreement No. 754411 (A.G.V. and A.G.). M.L. acknowledges support by the Austrian Science Fund (FWF), under project No. P29902-N27, and by the European Research Council (ERC) Starting\r\nGrant No. 801770 (ANGULON)." article_number: '178' article_processing_charge: Yes article_type: original author: - first_name: Areg full_name: Ghazaryan, Areg id: 4AF46FD6-F248-11E8-B48F-1D18A9856A87 last_name: Ghazaryan orcid: 0000-0001-9666-3543 - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 - first_name: Artem full_name: Volosniev, Artem id: 37D278BC-F248-11E8-B48F-1D18A9856A87 last_name: Volosniev orcid: 0000-0003-0393-5525 citation: ama: Ghazaryan A, Lemeshko M, Volosniev A. Filtering spins by scattering from a lattice of point magnets. Communications Physics. 2020;3. doi:10.1038/s42005-020-00445-8 apa: Ghazaryan, A., Lemeshko, M., & Volosniev, A. (2020). Filtering spins by scattering from a lattice of point magnets. Communications Physics. Springer Nature. https://doi.org/10.1038/s42005-020-00445-8 chicago: Ghazaryan, Areg, Mikhail Lemeshko, and Artem Volosniev. “Filtering Spins by Scattering from a Lattice of Point Magnets.” Communications Physics. Springer Nature, 2020. https://doi.org/10.1038/s42005-020-00445-8. ieee: A. Ghazaryan, M. Lemeshko, and A. Volosniev, “Filtering spins by scattering from a lattice of point magnets,” Communications Physics, vol. 3. Springer Nature, 2020. ista: Ghazaryan A, Lemeshko M, Volosniev A. 2020. Filtering spins by scattering from a lattice of point magnets. Communications Physics. 3, 178. mla: Ghazaryan, Areg, et al. “Filtering Spins by Scattering from a Lattice of Point Magnets.” Communications Physics, vol. 3, 178, Springer Nature, 2020, doi:10.1038/s42005-020-00445-8. short: A. Ghazaryan, M. Lemeshko, A. Volosniev, Communications Physics 3 (2020). date_created: 2020-10-13T09:48:59Z date_published: 2020-10-09T00:00:00Z date_updated: 2023-08-22T09:58:46Z day: '09' ddc: - '530' department: - _id: MiLe doi: 10.1038/s42005-020-00445-8 ec_funded: 1 external_id: isi: - '000581681000001' file: - access_level: open_access checksum: 60cd35b99f0780acffc7b6060e49ec8b content_type: application/pdf creator: dernst date_created: 2020-10-14T15:16:28Z date_updated: 2020-10-14T15:16:28Z file_id: '8662' file_name: 2020_CommPhysics_Ghazaryan.pdf file_size: 1462934 relation: main_file success: 1 file_date_updated: 2020-10-14T15:16:28Z has_accepted_license: '1' intvolume: ' 3' isi: 1 language: - iso: eng month: '10' oa: 1 oa_version: Published Version project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: 26031614-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29902 name: Quantum rotations in the presence of a many-body environment - _id: 2688CF98-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '801770' name: 'Angulon: physics and applications of a new quasiparticle' publication: Communications Physics publication_identifier: issn: - 2399-3650 publication_status: published publisher: Springer Nature quality_controlled: '1' scopus_import: '1' status: public title: Filtering spins by scattering from a lattice of point magnets tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 3 year: '2020' ... --- _id: '8699' abstract: - lang: eng text: In the high spin–orbit-coupled Sr2IrO4, the high sensitivity of the ground state to the details of the local lattice structure shows a large potential for the manipulation of the functional properties by inducing local lattice distortions. We use epitaxial strain to modify the Ir–O bond geometry in Sr2IrO4 and perform momentum-dependent resonant inelastic X-ray scattering (RIXS) at the metal and at the ligand sites to unveil the response of the low-energy elementary excitations. We observe that the pseudospin-wave dispersion for tensile-strained Sr2IrO4 films displays large softening along the [h,0] direction, while along the [h,h] direction it shows hardening. This evolution reveals a renormalization of the magnetic interactions caused by a strain-driven cross-over from anisotropic to isotropic interactions between the magnetic moments. Moreover, we detect dispersive electron–hole pair excitations which shift to lower (higher) energies upon compressive (tensile) strain, manifesting a reduction (increase) in the size of the charge gap. This behavior shows an intimate coupling between charge excitations and lattice distortions in Sr2IrO4, originating from the modified hopping elements between the t2g orbitals. Our work highlights the central role played by the lattice degrees of freedom in determining both the pseudospin and charge excitations of Sr2IrO4 and provides valuable information toward the control of the ground state of complex oxides in the presence of high spin–orbit coupling. acknowledgement: 'We gratefully acknowledge C. Sahle for experimental support at the ID20 beamline of the ESRF. The soft X-ray experiments were carried out at the ADRESS beamline of the Swiss Light Source, Paul Scherrer Institut (PSI). E. Paris and T.S. thank X. Lu and C. Monney for valuable discussions. The work at PSI is supported by the Swiss National Science Foundation (SNSF) through Project 200021_178867, the NCCR (National Centre of Competence in Research) MARVEL (Materials’ Revolution: Computational Design and Discovery of Novel Materials) and the Sinergia network Mott Physics Beyond the Heisenberg Model (MPBH) (SNSF Research Grants CRSII2_160765/1 and CRSII2_141962). K.W. acknowledges support by the Narodowe Centrum Nauki Projects 2016/22/E/ST3/00560 and 2016/23/B/ST3/00839. E.M.P. and M.N. acknowledge funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreements 754411 and 701647, respectively. M.R. was supported by the Swiss National Science Foundation under Project 200021 – 182695. This research used resources of the APS, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract DE-AC02-06CH11357.' article_processing_charge: No article_type: original author: - first_name: Eugenio full_name: Paris, Eugenio last_name: Paris - first_name: Yi full_name: Tseng, Yi last_name: Tseng - first_name: Ekaterina full_name: Paerschke, Ekaterina id: 8275014E-6063-11E9-9B7F-6338E6697425 last_name: Paerschke orcid: 0000-0003-0853-8182 - first_name: Wenliang full_name: Zhang, Wenliang last_name: Zhang - first_name: Mary H full_name: Upton, Mary H last_name: Upton - first_name: Anna full_name: Efimenko, Anna last_name: Efimenko - first_name: Katharina full_name: Rolfs, Katharina last_name: Rolfs - first_name: Daniel E full_name: McNally, Daniel E last_name: McNally - first_name: Laura full_name: Maurel, Laura last_name: Maurel - first_name: Muntaser full_name: Naamneh, Muntaser last_name: Naamneh - first_name: Marco full_name: Caputo, Marco last_name: Caputo - first_name: Vladimir N full_name: Strocov, Vladimir N last_name: Strocov - first_name: Zhiming full_name: Wang, Zhiming last_name: Wang - first_name: Diego full_name: Casa, Diego last_name: Casa - first_name: Christof W full_name: Schneider, Christof W last_name: Schneider - first_name: Ekaterina full_name: Pomjakushina, Ekaterina last_name: Pomjakushina - first_name: Krzysztof full_name: Wohlfeld, Krzysztof last_name: Wohlfeld - first_name: Milan full_name: Radovic, Milan last_name: Radovic - first_name: Thorsten full_name: Schmitt, Thorsten last_name: Schmitt citation: ama: Paris E, Tseng Y, Paerschke E, et al. Strain engineering of the charge and spin-orbital interactions in Sr2IrO4. Proceedings of the National Academy of Sciences of the United States of America. 2020;117(40):24764-24770. doi:10.1073/pnas.2012043117 apa: Paris, E., Tseng, Y., Paerschke, E., Zhang, W., Upton, M. H., Efimenko, A., … Schmitt, T. (2020). Strain engineering of the charge and spin-orbital interactions in Sr2IrO4. Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences. https://doi.org/10.1073/pnas.2012043117 chicago: Paris, Eugenio, Yi Tseng, Ekaterina Paerschke, Wenliang Zhang, Mary H Upton, Anna Efimenko, Katharina Rolfs, et al. “Strain Engineering of the Charge and Spin-Orbital Interactions in Sr2IrO4.” Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences, 2020. https://doi.org/10.1073/pnas.2012043117. ieee: E. Paris et al., “Strain engineering of the charge and spin-orbital interactions in Sr2IrO4,” Proceedings of the National Academy of Sciences of the United States of America, vol. 117, no. 40. National Academy of Sciences, pp. 24764–24770, 2020. ista: Paris E, Tseng Y, Paerschke E, Zhang W, Upton MH, Efimenko A, Rolfs K, McNally DE, Maurel L, Naamneh M, Caputo M, Strocov VN, Wang Z, Casa D, Schneider CW, Pomjakushina E, Wohlfeld K, Radovic M, Schmitt T. 2020. Strain engineering of the charge and spin-orbital interactions in Sr2IrO4. Proceedings of the National Academy of Sciences of the United States of America. 117(40), 24764–24770. mla: Paris, Eugenio, et al. “Strain Engineering of the Charge and Spin-Orbital Interactions in Sr2IrO4.” Proceedings of the National Academy of Sciences of the United States of America, vol. 117, no. 40, National Academy of Sciences, 2020, pp. 24764–70, doi:10.1073/pnas.2012043117. short: E. Paris, Y. Tseng, E. Paerschke, W. Zhang, M.H. Upton, A. Efimenko, K. Rolfs, D.E. McNally, L. Maurel, M. Naamneh, M. Caputo, V.N. Strocov, Z. Wang, D. Casa, C.W. Schneider, E. Pomjakushina, K. Wohlfeld, M. Radovic, T. Schmitt, Proceedings of the National Academy of Sciences of the United States of America 117 (2020) 24764–24770. date_created: 2020-10-25T23:01:17Z date_published: 2020-10-06T00:00:00Z date_updated: 2023-08-22T12:11:52Z day: '06' ddc: - '530' department: - _id: MiLe doi: 10.1073/pnas.2012043117 ec_funded: 1 external_id: arxiv: - '2009.12262' isi: - '000579059100029' pmid: - '32958669' file: - access_level: open_access checksum: 1638fa36b442e2868576c6dd7d6dc505 content_type: application/pdf creator: cziletti date_created: 2020-10-28T11:53:12Z date_updated: 2020-10-28T11:53:12Z file_id: '8715' file_name: 2020_PNAS_Paris.pdf file_size: 1176522 relation: main_file success: 1 file_date_updated: 2020-10-28T11:53:12Z has_accepted_license: '1' intvolume: ' 117' isi: 1 issue: '40' language: - iso: eng month: '10' oa: 1 oa_version: Published Version page: 24764-24770 pmid: 1 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Proceedings of the National Academy of Sciences of the United States of America publication_identifier: eissn: - '10916490' issn: - '00278424' publication_status: published publisher: National Academy of Sciences quality_controlled: '1' scopus_import: '1' status: public title: Strain engineering of the charge and spin-orbital interactions in Sr2IrO4 tmp: image: /images/cc_by_nc_nd.png legal_code_url: https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode name: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) short: CC BY-NC-ND (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 117 year: '2020' ... --- _id: '7968' abstract: - lang: eng text: Organic materials are known to feature long spin-diffusion times, originating in a generally small spin–orbit coupling observed in these systems. From that perspective, chiral molecules acting as efficient spin selectors pose a puzzle that attracted a lot of attention in recent years. Here, we revisit the physical origins of chiral-induced spin selectivity (CISS) and propose a simple analytic minimal model to describe it. The model treats a chiral molecule as an anisotropic wire with molecular dipole moments aligned arbitrarily with respect to the wire’s axes and is therefore quite general. Importantly, it shows that the helical structure of the molecule is not necessary to observe CISS and other chiral nonhelical molecules can also be considered as potential candidates for the CISS effect. We also show that the suggested simple model captures the main characteristics of CISS observed in the experiment, without the need for additional constraints employed in the previous studies. The results pave the way for understanding other related physical phenomena where the CISS effect plays an essential role. article_processing_charge: Yes (via OA deal) article_type: original author: - first_name: Areg full_name: Ghazaryan, Areg id: 4AF46FD6-F248-11E8-B48F-1D18A9856A87 last_name: Ghazaryan orcid: 0000-0001-9666-3543 - first_name: Yossi full_name: Paltiel, Yossi last_name: Paltiel - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 citation: ama: Ghazaryan A, Paltiel Y, Lemeshko M. Analytic model of chiral-induced spin selectivity. The Journal of Physical Chemistry C. 2020;124(21):11716-11721. doi:10.1021/acs.jpcc.0c02584 apa: Ghazaryan, A., Paltiel, Y., & Lemeshko, M. (2020). Analytic model of chiral-induced spin selectivity. The Journal of Physical Chemistry C. American Chemical Society. https://doi.org/10.1021/acs.jpcc.0c02584 chicago: Ghazaryan, Areg, Yossi Paltiel, and Mikhail Lemeshko. “Analytic Model of Chiral-Induced Spin Selectivity.” The Journal of Physical Chemistry C. American Chemical Society, 2020. https://doi.org/10.1021/acs.jpcc.0c02584. ieee: A. Ghazaryan, Y. Paltiel, and M. Lemeshko, “Analytic model of chiral-induced spin selectivity,” The Journal of Physical Chemistry C, vol. 124, no. 21. American Chemical Society, pp. 11716–11721, 2020. ista: Ghazaryan A, Paltiel Y, Lemeshko M. 2020. Analytic model of chiral-induced spin selectivity. The Journal of Physical Chemistry C. 124(21), 11716–11721. mla: Ghazaryan, Areg, et al. “Analytic Model of Chiral-Induced Spin Selectivity.” The Journal of Physical Chemistry C, vol. 124, no. 21, American Chemical Society, 2020, pp. 11716–21, doi:10.1021/acs.jpcc.0c02584. short: A. Ghazaryan, Y. Paltiel, M. Lemeshko, The Journal of Physical Chemistry C 124 (2020) 11716–11721. date_created: 2020-06-16T14:29:59Z date_published: 2020-05-04T00:00:00Z date_updated: 2023-09-05T12:07:15Z day: '04' ddc: - '530' department: - _id: MiLe doi: 10.1021/acs.jpcc.0c02584 ec_funded: 1 external_id: isi: - '000614616200006' file: - access_level: open_access checksum: 25932bb1d0b0a955be0bea4d17facd49 content_type: application/pdf creator: kschuh date_created: 2020-10-20T14:39:47Z date_updated: 2020-10-20T14:39:47Z file_id: '8683' file_name: 2020_PhysChemC_Ghazaryan.pdf file_size: 1543429 relation: main_file success: 1 file_date_updated: 2020-10-20T14:39:47Z has_accepted_license: '1' intvolume: ' 124' isi: 1 issue: '21' language: - iso: eng month: '05' oa: 1 oa_version: Published Version page: 11716-11721 project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: 26031614-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29902 name: Quantum rotations in the presence of a many-body environment - _id: 2688CF98-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '801770' name: 'Angulon: physics and applications of a new quasiparticle' publication: The Journal of Physical Chemistry C publication_identifier: eissn: - 1932-7455 issn: - 1932-7447 publication_status: published publisher: American Chemical Society quality_controlled: '1' scopus_import: '1' status: public title: Analytic model of chiral-induced spin selectivity tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 124 year: '2020' ... --- _id: '8588' abstract: - lang: eng text: Dipolar (or spatially indirect) excitons (IXs) in semiconductor double quantum well (DQW) subjected to an electric field are neutral species with a dipole moment oriented perpendicular to the DQW plane. Here, we theoretically study interactions between IXs in stacked DQW bilayers, where the dipolar coupling can be either attractive or repulsive depending on the relative positions of the particles. By using microscopic band structure calculations to determine the electronic states forming the excitons, we show that the attractive dipolar interaction between stacked IXs deforms their electronic wave function, thereby increasing the inter-DQW interaction energy and making the IX even more electrically polarizable. Many-particle interaction effects are addressed by considering the coupling between a single IX in one of the DQWs to a cloud of IXs in the other DQW, which is modeled either as a closed-packed lattice or as a continuum IX fluid. We find that the lattice model yields IX interlayer binding energies decreasing with increasing lattice density. This behavior is due to the dominating role of the intra-DQW dipolar repulsion, which prevents more than one exciton from entering the attractive region of the inter-DQW coupling. Finally, both models shows that the single IX distorts the distribution of IXs in the adjacent DQW, thus inducing the formation of an IX dipolar polaron (dipolaron). While the interlayer binding energy reduces with IX density for lattice dipolarons, the continuous polaron model predicts a nonmonotonous dependence on density in semiquantitative agreement with a recent experimental study [cf. Hubert et al., Phys. Rev. X 9, 021026 (2019)]. acknowledgement: "We thank W. Kaganer for discussions and for comment on the manuscript. We acknowledge the financial support from the German-Israeli Foundation (GIF), grant agreement I-1277-303.10/2014. M.L. acknowledges support by the Austrian Science Fund (FWF), under project No. P29902-N27, and by the European Research Council (ERC) Starting Grant No. 801770 (ANGULON). A.G. acknowledges support by the European Unions Horizon 2020 research and innovation\r\nprogram under the Marie Skodowska-Curie grant agreement No 754411. P.V.S acknowledges financial support\r\nfrom the Deutsche Forschungsgemeinschaft (DFG) under\r\nProject No. SA 598/12-1." article_number: '045307' article_processing_charge: No article_type: original author: - first_name: C. full_name: Hubert, C. last_name: Hubert - first_name: K. full_name: Cohen, K. last_name: Cohen - first_name: Areg full_name: Ghazaryan, Areg id: 4AF46FD6-F248-11E8-B48F-1D18A9856A87 last_name: Ghazaryan orcid: 0000-0001-9666-3543 - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 - first_name: R. full_name: Rapaport, R. last_name: Rapaport - first_name: P. V. full_name: Santos, P. V. last_name: Santos citation: ama: Hubert C, Cohen K, Ghazaryan A, Lemeshko M, Rapaport R, Santos PV. Attractive interactions, molecular complexes, and polarons in coupled dipolar exciton fluids. Physical Review B. 2020;102(4). doi:10.1103/physrevb.102.045307 apa: Hubert, C., Cohen, K., Ghazaryan, A., Lemeshko, M., Rapaport, R., & Santos, P. V. (2020). Attractive interactions, molecular complexes, and polarons in coupled dipolar exciton fluids. Physical Review B. American Physical Society. https://doi.org/10.1103/physrevb.102.045307 chicago: Hubert, C., K. Cohen, Areg Ghazaryan, Mikhail Lemeshko, R. Rapaport, and P. V. Santos. “Attractive Interactions, Molecular Complexes, and Polarons in Coupled Dipolar Exciton Fluids.” Physical Review B. American Physical Society, 2020. https://doi.org/10.1103/physrevb.102.045307. ieee: C. Hubert, K. Cohen, A. Ghazaryan, M. Lemeshko, R. Rapaport, and P. V. Santos, “Attractive interactions, molecular complexes, and polarons in coupled dipolar exciton fluids,” Physical Review B, vol. 102, no. 4. American Physical Society, 2020. ista: Hubert C, Cohen K, Ghazaryan A, Lemeshko M, Rapaport R, Santos PV. 2020. Attractive interactions, molecular complexes, and polarons in coupled dipolar exciton fluids. Physical Review B. 102(4), 045307. mla: Hubert, C., et al. “Attractive Interactions, Molecular Complexes, and Polarons in Coupled Dipolar Exciton Fluids.” Physical Review B, vol. 102, no. 4, 045307, American Physical Society, 2020, doi:10.1103/physrevb.102.045307. short: C. Hubert, K. Cohen, A. Ghazaryan, M. Lemeshko, R. Rapaport, P.V. Santos, Physical Review B 102 (2020). date_created: 2020-09-30T10:33:43Z date_published: 2020-07-21T00:00:00Z date_updated: 2023-09-05T12:12:10Z day: '21' department: - _id: MiLe doi: 10.1103/physrevb.102.045307 ec_funded: 1 external_id: arxiv: - '1910.06015' isi: - '000550579100004' intvolume: ' 102' isi: 1 issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1910.06015 month: '07' oa: 1 oa_version: Preprint project: - _id: 26031614-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29902 name: Quantum rotations in the presence of a many-body environment - _id: 2688CF98-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '801770' name: 'Angulon: physics and applications of a new quasiparticle' - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Physical Review B publication_identifier: eissn: - 2469-9969 issn: - 2469-9950 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Attractive interactions, molecular complexes, and polarons in coupled dipolar exciton fluids type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 102 year: '2020' ... --- _id: '8769' abstract: - lang: eng text: One of the hallmarks of quantum statistics, tightly entwined with the concept of topological phases of matter, is the prediction of anyons. Although anyons are predicted to be realized in certain fractional quantum Hall systems, they have not yet been unambiguously detected in experiment. Here we introduce a simple quantum impurity model, where bosonic or fermionic impurities turn into anyons as a consequence of their interaction with the surrounding many-particle bath. A cloud of phonons dresses each impurity in such a way that it effectively attaches fluxes or vortices to it and thereby converts it into an Abelian anyon. The corresponding quantum impurity model, first, provides a different approach to the numerical solution of the many-anyon problem, along with a concrete perspective of anyons as emergent quasiparticles built from composite bosons or fermions. More importantly, the model paves the way toward realizing anyons using impurities in crystal lattices as well as ultracold gases. In particular, we consider two heavy electrons interacting with a two-dimensional lattice crystal in a magnetic field, and show that when the impurity-bath system is rotated at the cyclotron frequency, impurities behave as anyons as a consequence of the angular momentum exchange between the impurities and the bath. A possible experimental realization is proposed by identifying the statistics parameter in terms of the mean-square distance of the impurities and the magnetization of the impurity-bath system, both of which are accessible to experiment. Another proposed application is impurities immersed in a two-dimensional weakly interacting Bose gas. acknowledgement: "We are grateful to M. Correggi, A. Deuchert, and P. Schmelcher for valuable discussions. We also thank the anonymous referees for helping to clarify a few important points in the experimental realization. A.G. acknowledges support by the European Unions Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement\r\nNo 754411. D.L. acknowledges financial support from the Goran Gustafsson Foundation (grant no. 1804) and LMU Munich. R.S., M.L., and N.R. gratefully acknowledge financial support by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreements No 694227, No 801770, and No 758620, respectively)." article_number: '144109' article_processing_charge: No article_type: original author: - first_name: Enderalp full_name: Yakaboylu, Enderalp id: 38CB71F6-F248-11E8-B48F-1D18A9856A87 last_name: Yakaboylu orcid: 0000-0001-5973-0874 - first_name: Areg full_name: Ghazaryan, Areg id: 4AF46FD6-F248-11E8-B48F-1D18A9856A87 last_name: Ghazaryan orcid: 0000-0001-9666-3543 - first_name: D. full_name: Lundholm, D. last_name: Lundholm - first_name: N. full_name: Rougerie, N. last_name: Rougerie - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 - first_name: Robert full_name: Seiringer, Robert id: 4AFD0470-F248-11E8-B48F-1D18A9856A87 last_name: Seiringer orcid: 0000-0002-6781-0521 citation: ama: Yakaboylu E, Ghazaryan A, Lundholm D, Rougerie N, Lemeshko M, Seiringer R. Quantum impurity model for anyons. Physical Review B. 2020;102(14). doi:10.1103/physrevb.102.144109 apa: Yakaboylu, E., Ghazaryan, A., Lundholm, D., Rougerie, N., Lemeshko, M., & Seiringer, R. (2020). Quantum impurity model for anyons. Physical Review B. American Physical Society. https://doi.org/10.1103/physrevb.102.144109 chicago: Yakaboylu, Enderalp, Areg Ghazaryan, D. Lundholm, N. Rougerie, Mikhail Lemeshko, and Robert Seiringer. “Quantum Impurity Model for Anyons.” Physical Review B. American Physical Society, 2020. https://doi.org/10.1103/physrevb.102.144109. ieee: E. Yakaboylu, A. Ghazaryan, D. Lundholm, N. Rougerie, M. Lemeshko, and R. Seiringer, “Quantum impurity model for anyons,” Physical Review B, vol. 102, no. 14. American Physical Society, 2020. ista: Yakaboylu E, Ghazaryan A, Lundholm D, Rougerie N, Lemeshko M, Seiringer R. 2020. Quantum impurity model for anyons. Physical Review B. 102(14), 144109. mla: Yakaboylu, Enderalp, et al. “Quantum Impurity Model for Anyons.” Physical Review B, vol. 102, no. 14, 144109, American Physical Society, 2020, doi:10.1103/physrevb.102.144109. short: E. Yakaboylu, A. Ghazaryan, D. Lundholm, N. Rougerie, M. Lemeshko, R. Seiringer, Physical Review B 102 (2020). date_created: 2020-11-18T07:34:17Z date_published: 2020-10-01T00:00:00Z date_updated: 2023-09-05T12:12:30Z day: '01' department: - _id: MiLe - _id: RoSe doi: 10.1103/physrevb.102.144109 ec_funded: 1 external_id: arxiv: - '1912.07890' isi: - '000582563300001' intvolume: ' 102' isi: 1 issue: '14' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1912.07890 month: '10' oa: 1 oa_version: Preprint project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: 25C6DC12-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '694227' name: Analysis of quantum many-body systems - _id: 2688CF98-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '801770' name: 'Angulon: physics and applications of a new quasiparticle' publication: Physical Review B publication_identifier: eissn: - 2469-9969 issn: - 2469-9950 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Quantum impurity model for anyons type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 102 year: '2020' ... --- _id: '8587' abstract: - lang: eng text: Inspired by the possibility to experimentally manipulate and enhance chemical reactivity in helium nanodroplets, we investigate the effective interaction and the resulting correlations between two diatomic molecules immersed in a bath of bosons. By analogy with the bipolaron, we introduce the biangulon quasiparticle describing two rotating molecules that align with respect to each other due to the effective attractive interaction mediated by the excitations of the bath. We study this system in different parameter regimes and apply several theoretical approaches to describe its properties. Using a Born–Oppenheimer approximation, we investigate the dependence of the effective intermolecular interaction on the rotational state of the two molecules. In the strong-coupling regime, a product-state ansatz shows that the molecules tend to have a strong alignment in the ground state. To investigate the system in the weak-coupling regime, we apply a one-phonon excitation variational ansatz, which allows us to access the energy spectrum. In comparison to the angulon quasiparticle, the biangulon shows shifted angulon instabilities and an additional spectral instability, where resonant angular momentum transfer between the molecules and the bath takes place. These features are proposed as an experimentally observable signature for the formation of the biangulon quasiparticle. Finally, by using products of single angulon and bare impurity wave functions as basis states, we introduce a diagonalization scheme that allows us to describe the transition from two separated angulons to a biangulon as a function of the distance between the two molecules. acknowledgement: We are grateful to Areg Ghazaryan for valuable discussions. M.L. acknowledges support from the Austrian Science Fund (FWF) under Project No. P29902-N27 and from the European Research Council (ERC) Starting Grant No. 801770 (ANGULON). G.B. acknowledges support from the Austrian Science Fund (FWF) under Project No. M2461-N27. A.D. acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under the European Research Council (ERC) Grant Agreement No. 694227 and under the Marie Sklodowska-Curie Grant Agreement No. 836146. R.S. was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC-2111 – 390814868. article_number: '164302' article_processing_charge: No article_type: original author: - first_name: Xiang full_name: Li, Xiang id: 4B7E523C-F248-11E8-B48F-1D18A9856A87 last_name: Li - first_name: Enderalp full_name: Yakaboylu, Enderalp id: 38CB71F6-F248-11E8-B48F-1D18A9856A87 last_name: Yakaboylu orcid: 0000-0001-5973-0874 - first_name: Giacomo full_name: Bighin, Giacomo id: 4CA96FD4-F248-11E8-B48F-1D18A9856A87 last_name: Bighin orcid: 0000-0001-8823-9777 - first_name: Richard full_name: Schmidt, Richard last_name: Schmidt - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 - first_name: Andreas full_name: Deuchert, Andreas id: 4DA65CD0-F248-11E8-B48F-1D18A9856A87 last_name: Deuchert orcid: 0000-0003-3146-6746 citation: ama: Li X, Yakaboylu E, Bighin G, Schmidt R, Lemeshko M, Deuchert A. Intermolecular forces and correlations mediated by a phonon bath. The Journal of Chemical Physics. 2020;152(16). doi:10.1063/1.5144759 apa: Li, X., Yakaboylu, E., Bighin, G., Schmidt, R., Lemeshko, M., & Deuchert, A. (2020). Intermolecular forces and correlations mediated by a phonon bath. The Journal of Chemical Physics. AIP Publishing. https://doi.org/10.1063/1.5144759 chicago: Li, Xiang, Enderalp Yakaboylu, Giacomo Bighin, Richard Schmidt, Mikhail Lemeshko, and Andreas Deuchert. “Intermolecular Forces and Correlations Mediated by a Phonon Bath.” The Journal of Chemical Physics. AIP Publishing, 2020. https://doi.org/10.1063/1.5144759. ieee: X. Li, E. Yakaboylu, G. Bighin, R. Schmidt, M. Lemeshko, and A. Deuchert, “Intermolecular forces and correlations mediated by a phonon bath,” The Journal of Chemical Physics, vol. 152, no. 16. AIP Publishing, 2020. ista: Li X, Yakaboylu E, Bighin G, Schmidt R, Lemeshko M, Deuchert A. 2020. Intermolecular forces and correlations mediated by a phonon bath. The Journal of Chemical Physics. 152(16), 164302. mla: Li, Xiang, et al. “Intermolecular Forces and Correlations Mediated by a Phonon Bath.” The Journal of Chemical Physics, vol. 152, no. 16, 164302, AIP Publishing, 2020, doi:10.1063/1.5144759. short: X. Li, E. Yakaboylu, G. Bighin, R. Schmidt, M. Lemeshko, A. Deuchert, The Journal of Chemical Physics 152 (2020). date_created: 2020-09-30T10:33:17Z date_published: 2020-04-27T00:00:00Z date_updated: 2023-09-07T13:16:42Z day: '27' department: - _id: MiLe - _id: RoSe doi: 10.1063/1.5144759 ec_funded: 1 external_id: arxiv: - '1912.02658' isi: - '000530448300001' intvolume: ' 152' isi: 1 issue: '16' keyword: - Physical and Theoretical Chemistry - General Physics and Astronomy language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1912.02658 month: '04' oa: 1 oa_version: Preprint project: - _id: 26031614-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29902 name: Quantum rotations in the presence of a many-body environment - _id: 2688CF98-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '801770' name: 'Angulon: physics and applications of a new quasiparticle' - _id: 26986C82-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M02641 name: A path-integral approach to composite impurities - _id: 25C6DC12-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '694227' name: Analysis of quantum many-body systems publication: The Journal of Chemical Physics publication_identifier: eissn: - 1089-7690 issn: - 0021-9606 publication_status: published publisher: AIP Publishing quality_controlled: '1' related_material: record: - id: '8958' relation: dissertation_contains status: public status: public title: Intermolecular forces and correlations mediated by a phonon bath type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 152 year: '2020' ... --- _id: '8644' abstract: - lang: eng text: Determining the phase diagram of systems consisting of smaller subsystems 'connected' via a tunable coupling is a challenging task relevant for a variety of physical settings. A general question is whether new phases, not present in the uncoupled limit, may arise. We use machine learning and a suitable quasidistance between different points of the phase diagram to study layered spin models, in which the spin variables constituting each of the uncoupled systems (to which we refer as layers) are coupled to each other via an interlayer coupling. In such systems, in general, composite order parameters involving spins of different layers may emerge as a consequence of the interlayer coupling. We focus on the layered Ising and Ashkin–Teller models as a paradigmatic case study, determining their phase diagram via the application of a machine learning algorithm to the Monte Carlo data. Remarkably our technique is able to correctly characterize all the system phases also in the case of hidden order parameters, i.e. order parameters whose expression in terms of the microscopic configurations would require additional preprocessing of the data fed to the algorithm. We correctly retrieve the three known phases of the Ashkin–Teller model with ferromagnetic couplings, including the phase described by a composite order parameter. For the bilayer and trilayer Ising models the phases we find are only the ferromagnetic and the paramagnetic ones. Within the approach we introduce, owing to the construction of convolutional neural networks, naturally suitable for layered image-like data with arbitrary number of layers, no preprocessing of the Monte Carlo data is needed, also with regard to its spatial structure. The physical meaning of our results is discussed and compared with analytical data, where available. Yet, the method can be used without any a priori knowledge of the phases one seeks to find and can be applied to other models and structures. acknowledgement: We thank Gesualdo Delfino, Michele Fabrizio, Piero Ferrarese, Robert Konik, Christoph Lampert and Mikhail Lemeshko for stimulating discussions at various stages of this work. WR has received funding from the EU Horizon 2020 program under the Marie Skłodowska-Curie Grant Agreement No. 665385 and is a recipient of a DOC Fellowship of the Austrian Academy of Sciences. GB acknowledges support from the Austrian Science Fund (FWF), under project No. M2641-N27. ND acknowledges support by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) via Collaborative Research Center SFB 1225 (ISOQUANT)--project-id 273811115--and under Germany's Excellence Strategy 'EXC-2181/1-390900948' (the Heidelberg STRUCTURES Excellence Cluster). article_number: '093026' article_processing_charge: No article_type: original author: - first_name: Wojciech full_name: Rzadkowski, Wojciech id: 48C55298-F248-11E8-B48F-1D18A9856A87 last_name: Rzadkowski orcid: 0000-0002-1106-4419 - first_name: N full_name: Defenu, N last_name: Defenu - first_name: S full_name: Chiacchiera, S last_name: Chiacchiera - first_name: A full_name: Trombettoni, A last_name: Trombettoni - first_name: Giacomo full_name: Bighin, Giacomo id: 4CA96FD4-F248-11E8-B48F-1D18A9856A87 last_name: Bighin orcid: 0000-0001-8823-9777 citation: ama: Rzadkowski W, Defenu N, Chiacchiera S, Trombettoni A, Bighin G. Detecting composite orders in layered models via machine learning. New Journal of Physics. 2020;22(9). doi:10.1088/1367-2630/abae44 apa: Rzadkowski, W., Defenu, N., Chiacchiera, S., Trombettoni, A., & Bighin, G. (2020). Detecting composite orders in layered models via machine learning. New Journal of Physics. IOP Publishing. https://doi.org/10.1088/1367-2630/abae44 chicago: Rzadkowski, Wojciech, N Defenu, S Chiacchiera, A Trombettoni, and Giacomo Bighin. “Detecting Composite Orders in Layered Models via Machine Learning.” New Journal of Physics. IOP Publishing, 2020. https://doi.org/10.1088/1367-2630/abae44. ieee: W. Rzadkowski, N. Defenu, S. Chiacchiera, A. Trombettoni, and G. Bighin, “Detecting composite orders in layered models via machine learning,” New Journal of Physics, vol. 22, no. 9. IOP Publishing, 2020. ista: Rzadkowski W, Defenu N, Chiacchiera S, Trombettoni A, Bighin G. 2020. Detecting composite orders in layered models via machine learning. New Journal of Physics. 22(9), 093026. mla: Rzadkowski, Wojciech, et al. “Detecting Composite Orders in Layered Models via Machine Learning.” New Journal of Physics, vol. 22, no. 9, 093026, IOP Publishing, 2020, doi:10.1088/1367-2630/abae44. short: W. Rzadkowski, N. Defenu, S. Chiacchiera, A. Trombettoni, G. Bighin, New Journal of Physics 22 (2020). date_created: 2020-10-11T22:01:14Z date_published: 2020-09-01T00:00:00Z date_updated: 2023-09-07T13:44:16Z day: '01' ddc: - '530' department: - _id: MiLe doi: 10.1088/1367-2630/abae44 ec_funded: 1 external_id: isi: - '000573298000001' file: - access_level: open_access checksum: c9238fff422e7a957c3a0d559f756b3a content_type: application/pdf creator: dernst date_created: 2020-10-12T12:18:47Z date_updated: 2020-10-12T12:18:47Z file_id: '8650' file_name: 2020_NewJournalPhysics_Rzdkowski.pdf file_size: 2725143 relation: main_file success: 1 file_date_updated: 2020-10-12T12:18:47Z has_accepted_license: '1' intvolume: ' 22' isi: 1 issue: '9' language: - iso: eng month: '09' oa: 1 oa_version: Published Version project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program - _id: 05A235A0-7A3F-11EA-A408-12923DDC885E grant_number: '25681' name: Analytic and machine learning approaches to composite quantum impurities - _id: 26986C82-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M02641 name: A path-integral approach to composite impurities publication: New Journal of Physics publication_identifier: issn: - '13672630' publication_status: published publisher: IOP Publishing quality_controlled: '1' related_material: record: - id: '10759' relation: dissertation_contains status: public scopus_import: '1' status: public title: Detecting composite orders in layered models via machine learning tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 22 year: '2020' ... --- _id: '8958' abstract: - lang: eng text: "The oft-quoted dictum by Arthur Schawlow: ``A diatomic molecule has one atom too many'' has been disavowed. Inspired by the possibility to experimentally manipulate and enhance chemical reactivity in helium nanodroplets, we investigate the rotation of coupled cold molecules in the presence of a many-body environment.\r\nIn this thesis, we introduce new variational approaches to quantum impurities and apply them to the Fröhlich polaron - a quasiparticle formed out of an electron (or other point-like impurity) in a polar medium, and to the angulon - a quasiparticle formed out of a rotating molecule in a bosonic bath.\r\nWith this theoretical toolbox, we reveal the self-localization transition for the angulon quasiparticle. We show that, unlike for polarons, self-localization of angulons occurs at finite impurity-bath coupling already at the mean-field level. The transition is accompanied by the spherical-symmetry breaking of the angulon ground state and a discontinuity in the first derivative of the ground-state energy. Moreover, the type of symmetry breaking is dictated by the symmetry of the microscopic impurity-bath interaction, which leads to a number of distinct self-localized states. \r\nFor the system containing multiple impurities, by analogy with the bipolaron, we introduce the biangulon quasiparticle describing two rotating molecules that align with respect to each other due to the effective attractive interaction mediated by the excitations of the bath. We study this system from the strong-coupling regime to the weak molecule-bath interaction regime. We show that the molecules tend to have a strong alignment in the ground state, the biangulon shows shifted angulon instabilities and an additional spectral instability, where resonant angular momentum transfer between the molecules and the bath takes place. Finally, we introduce a diagonalization scheme that allows us to describe the transition from two separated angulons to a biangulon as a function of the distance between the two molecules." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Xiang full_name: Li, Xiang id: 4B7E523C-F248-11E8-B48F-1D18A9856A87 last_name: Li citation: ama: Li X. Rotation of coupled cold molecules in the presence of a many-body environment. 2020. doi:10.15479/AT:ISTA:8958 apa: Li, X. (2020). Rotation of coupled cold molecules in the presence of a many-body environment. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8958 chicago: Li, Xiang. “Rotation of Coupled Cold Molecules in the Presence of a Many-Body Environment.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8958. ieee: X. Li, “Rotation of coupled cold molecules in the presence of a many-body environment,” Institute of Science and Technology Austria, 2020. ista: Li X. 2020. Rotation of coupled cold molecules in the presence of a many-body environment. Institute of Science and Technology Austria. mla: Li, Xiang. Rotation of Coupled Cold Molecules in the Presence of a Many-Body Environment. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8958. short: X. Li, Rotation of Coupled Cold Molecules in the Presence of a Many-Body Environment, Institute of Science and Technology Austria, 2020. date_created: 2020-12-21T09:44:30Z date_published: 2020-12-21T00:00:00Z date_updated: 2023-09-20T11:30:58Z day: '21' ddc: - '539' degree_awarded: PhD department: - _id: MiLe doi: 10.15479/AT:ISTA:8958 ec_funded: 1 file: - access_level: open_access checksum: 3994c54a1241451d561db1d4f43bad30 content_type: application/pdf creator: xli date_created: 2020-12-22T10:55:56Z date_updated: 2020-12-22T10:55:56Z file_id: '8967' file_name: THESIS_Xiang_Li.pdf file_size: 3622305 relation: main_file success: 1 - access_level: closed checksum: 0954ecfc5554c05615c14de803341f00 content_type: application/x-zip-compressed creator: xli date_created: 2020-12-22T10:56:03Z date_updated: 2020-12-30T07:18:03Z file_id: '8968' file_name: THESIS_Xiang_Li.zip file_size: 4018859 relation: source_file file_date_updated: 2020-12-30T07:18:03Z has_accepted_license: '1' language: - iso: eng month: '12' oa: 1 oa_version: Published Version page: '125' project: - _id: 26031614-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29902 name: Quantum rotations in the presence of a many-body environment - _id: 2688CF98-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '801770' name: 'Angulon: physics and applications of a new quasiparticle' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '5886' relation: part_of_dissertation status: public - id: '8587' relation: part_of_dissertation status: public - id: '1120' relation: part_of_dissertation status: public status: public supervisor: - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 title: Rotation of coupled cold molecules in the presence of a many-body environment type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2020' ... --- _id: '7956' abstract: - lang: eng text: When short-range attractions are combined with long-range repulsions in colloidal particle systems, complex microphases can emerge. Here, we study a system of isotropic particles, which can form lamellar structures or a disordered fluid phase when temperature is varied. We show that, at equilibrium, the lamellar structure crystallizes, while out of equilibrium, the system forms a variety of structures at different shear rates and temperatures above melting. The shear-induced ordering is analyzed by means of principal component analysis and artificial neural networks, which are applied to data of reduced dimensionality. Our results reveal the possibility of inducing ordering by shear, potentially providing a feasible route to the fabrication of ordered lamellar structures from isotropic particles. article_number: '204905' article_processing_charge: No article_type: original author: - first_name: J. full_name: Pȩkalski, J. last_name: Pȩkalski - first_name: Wojciech full_name: Rzadkowski, Wojciech id: 48C55298-F248-11E8-B48F-1D18A9856A87 last_name: Rzadkowski orcid: 0000-0002-1106-4419 - first_name: A. Z. full_name: Panagiotopoulos, A. Z. last_name: Panagiotopoulos citation: ama: 'Pȩkalski J, Rzadkowski W, Panagiotopoulos AZ. Shear-induced ordering in systems with competing interactions: A machine learning study. The Journal of chemical physics. 2020;152(20). doi:10.1063/5.0005194' apa: 'Pȩkalski, J., Rzadkowski, W., & Panagiotopoulos, A. Z. (2020). Shear-induced ordering in systems with competing interactions: A machine learning study. The Journal of Chemical Physics. AIP Publishing. https://doi.org/10.1063/5.0005194' chicago: 'Pȩkalski, J., Wojciech Rzadkowski, and A. Z. Panagiotopoulos. “Shear-Induced Ordering in Systems with Competing Interactions: A Machine Learning Study.” The Journal of Chemical Physics. AIP Publishing, 2020. https://doi.org/10.1063/5.0005194.' ieee: 'J. Pȩkalski, W. Rzadkowski, and A. Z. Panagiotopoulos, “Shear-induced ordering in systems with competing interactions: A machine learning study,” The Journal of chemical physics, vol. 152, no. 20. AIP Publishing, 2020.' ista: 'Pȩkalski J, Rzadkowski W, Panagiotopoulos AZ. 2020. Shear-induced ordering in systems with competing interactions: A machine learning study. The Journal of chemical physics. 152(20), 204905.' mla: 'Pȩkalski, J., et al. “Shear-Induced Ordering in Systems with Competing Interactions: A Machine Learning Study.” The Journal of Chemical Physics, vol. 152, no. 20, 204905, AIP Publishing, 2020, doi:10.1063/5.0005194.' short: J. Pȩkalski, W. Rzadkowski, A.Z. Panagiotopoulos, The Journal of Chemical Physics 152 (2020). date_created: 2020-06-14T22:00:49Z date_published: 2020-05-29T00:00:00Z date_updated: 2024-02-28T13:00:28Z day: '29' department: - _id: MiLe doi: 10.1063/5.0005194 ec_funded: 1 external_id: arxiv: - '2002.07294' isi: - '000537900300001' intvolume: ' 152' isi: 1 issue: '20' language: - iso: eng main_file_link: - open_access: '1' url: https://doi.org/10.1063/5.0005194 month: '05' oa: 1 oa_version: Published Version project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: The Journal of chemical physics publication_identifier: eissn: - '10897690' publication_status: published publisher: AIP Publishing quality_controlled: '1' related_material: record: - id: '10759' relation: dissertation_contains status: public scopus_import: '1' status: public title: 'Shear-induced ordering in systems with competing interactions: A machine learning study' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 152 year: '2020' ... --- _id: '7428' abstract: - lang: eng text: In the superconducting regime of FeTe(1−x)Sex, there exist two types of vortices which are distinguished by the presence or absence of zero-energy states in their core. To understand their origin, we examine the interplay of Zeeman coupling and superconducting pairings in three-dimensional metals with band inversion. Weak Zeeman fields are found to suppress intraorbital spin-singlet pairing, known to localize the states at the ends of the vortices on the surface. On the other hand, an orbital-triplet pairing is shown to be stable against Zeeman interactions, but leads to delocalized zero-energy Majorana modes which extend through the vortex. In contrast, the finite-energy vortex modes remain localized at the vortex ends even when the pairing is of orbital-triplet form. Phenomenologically, this manifests as an observed disappearance of zero-bias peaks within the cores of topological vortices upon an increase of the applied magnetic field. The presence of magnetic impurities in FeTe(1−x)Sex, which are attracted to the vortices, would lead to such Zeeman-induced delocalization of Majorana modes in a fraction of vortices that capture a large enough number of magnetic impurities. Our results provide an explanation for the dichotomy between topological and nontopological vortices recently observed in FeTe(1−x)Sex. article_number: '020504' article_processing_charge: No article_type: original author: - first_name: Areg full_name: Ghazaryan, Areg id: 4AF46FD6-F248-11E8-B48F-1D18A9856A87 last_name: Ghazaryan orcid: 0000-0001-9666-3543 - first_name: P. L.S. full_name: Lopes, P. L.S. last_name: Lopes - first_name: Pavan full_name: Hosur, Pavan last_name: Hosur - first_name: Matthew J. full_name: Gilbert, Matthew J. last_name: Gilbert - first_name: Pouyan full_name: Ghaemi, Pouyan last_name: Ghaemi citation: ama: Ghazaryan A, Lopes PLS, Hosur P, Gilbert MJ, Ghaemi P. Effect of Zeeman coupling on the Majorana vortex modes in iron-based topological superconductors. Physical Review B. 2020;101(2). doi:10.1103/PhysRevB.101.020504 apa: Ghazaryan, A., Lopes, P. L. S., Hosur, P., Gilbert, M. J., & Ghaemi, P. (2020). Effect of Zeeman coupling on the Majorana vortex modes in iron-based topological superconductors. Physical Review B. American Physical Society. https://doi.org/10.1103/PhysRevB.101.020504 chicago: Ghazaryan, Areg, P. L.S. Lopes, Pavan Hosur, Matthew J. Gilbert, and Pouyan Ghaemi. “Effect of Zeeman Coupling on the Majorana Vortex Modes in Iron-Based Topological Superconductors.” Physical Review B. American Physical Society, 2020. https://doi.org/10.1103/PhysRevB.101.020504. ieee: A. Ghazaryan, P. L. S. Lopes, P. Hosur, M. J. Gilbert, and P. Ghaemi, “Effect of Zeeman coupling on the Majorana vortex modes in iron-based topological superconductors,” Physical Review B, vol. 101, no. 2. American Physical Society, 2020. ista: Ghazaryan A, Lopes PLS, Hosur P, Gilbert MJ, Ghaemi P. 2020. Effect of Zeeman coupling on the Majorana vortex modes in iron-based topological superconductors. Physical Review B. 101(2), 020504. mla: Ghazaryan, Areg, et al. “Effect of Zeeman Coupling on the Majorana Vortex Modes in Iron-Based Topological Superconductors.” Physical Review B, vol. 101, no. 2, 020504, American Physical Society, 2020, doi:10.1103/PhysRevB.101.020504. short: A. Ghazaryan, P.L.S. Lopes, P. Hosur, M.J. Gilbert, P. Ghaemi, Physical Review B 101 (2020). date_created: 2020-02-02T23:01:01Z date_published: 2020-01-13T00:00:00Z date_updated: 2024-02-28T13:11:13Z day: '13' department: - _id: MiLe doi: 10.1103/PhysRevB.101.020504 external_id: arxiv: - '1907.02077' isi: - '000506843500001' intvolume: ' 101' isi: 1 issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1907.02077 month: '01' oa: 1 oa_version: Preprint publication: Physical Review B publication_identifier: eissn: - '24699969' issn: - '24699950' publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Effect of Zeeman coupling on the Majorana vortex modes in iron-based topological superconductors type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 101 year: '2020' ... --- _id: '8741' abstract: - lang: eng text: "In ecology, climate and other fields, (sub)systems have been identified that can transition into a qualitatively different state when a critical threshold or tipping point in a driving process is crossed. An understanding of those tipping elements is of great interest given the increasing influence of humans on the biophysical Earth system. Complex interactions exist between tipping elements, e.g. physical mechanisms connect subsystems of the climate system. Based on earlier work on such coupled nonlinear systems, we systematically assessed the qualitative long-term behaviour of interacting tipping elements. We developed an understanding of the consequences of interactions\r\non the tipping behaviour allowing for tipping cascades to emerge under certain conditions. The (narrative) application of\r\nthese qualitative results to real-world examples of interacting tipping elements indicates that tipping cascades with profound consequences may occur: the interacting Greenland ice sheet and thermohaline ocean circulation might tip before the tipping points of the isolated subsystems are crossed. The eutrophication of the first lake in a lake chain might propagate through the following lakes without a crossing of their individual critical nutrient input levels. The possibility of emerging cascading tipping dynamics calls for the development of a unified theory of interacting tipping elements and the quantitative analysis of interacting real-world tipping elements." acknowledgement: "V.K. thanks the German National Academic Foundation (Studienstiftung des deutschen Volkes) for financial\r\nsupport. J.F.D. is grateful for financial support by the Stordalen Foundation via the Planetary Boundary Research\r\nNetwork (PB.net), the Earth League’s EarthDoc program and the European Research Council Advanced Grant\r\nproject ERA (Earth Resilience in the Anthropocene). We are thankful for support by the Leibniz Association\r\n(project DominoES).\r\nAcknowledgements. This work has been performed in the context of the copan collaboration and the FutureLab on Earth\r\nResilience in the Anthropocene at the Potsdam Institute for Climate Impact Research. Furthermore, we acknowledge\r\ndiscussions with and helpful comments by N. Wunderling, J. Heitzig and M. Wiedermann." article_number: '200599' article_processing_charge: No article_type: original author: - first_name: Ann Kristin full_name: Klose, Ann Kristin last_name: Klose - first_name: Volker full_name: Karle, Volker id: D7C012AE-D7ED-11E9-95E8-1EC5E5697425 last_name: Karle orcid: 0000-0002-6963-0129 - first_name: Ricarda full_name: Winkelmann, Ricarda last_name: Winkelmann - first_name: Jonathan F. full_name: Donges, Jonathan F. last_name: Donges citation: ama: 'Klose AK, Karle V, Winkelmann R, Donges JF. Emergence of cascading dynamics in interacting tipping elements of ecology and climate: Cascading dynamics in tipping elements. Royal Society Open Science. 2020;7(6). doi:10.1098/rsos.200599' apa: 'Klose, A. K., Karle, V., Winkelmann, R., & Donges, J. F. (2020). Emergence of cascading dynamics in interacting tipping elements of ecology and climate: Cascading dynamics in tipping elements. Royal Society Open Science. The Royal Society. https://doi.org/10.1098/rsos.200599' chicago: 'Klose, Ann Kristin, Volker Karle, Ricarda Winkelmann, and Jonathan F. Donges. “Emergence of Cascading Dynamics in Interacting Tipping Elements of Ecology and Climate: Cascading Dynamics in Tipping Elements.” Royal Society Open Science. The Royal Society, 2020. https://doi.org/10.1098/rsos.200599.' ieee: 'A. K. Klose, V. Karle, R. Winkelmann, and J. F. Donges, “Emergence of cascading dynamics in interacting tipping elements of ecology and climate: Cascading dynamics in tipping elements,” Royal Society Open Science, vol. 7, no. 6. The Royal Society, 2020.' ista: 'Klose AK, Karle V, Winkelmann R, Donges JF. 2020. Emergence of cascading dynamics in interacting tipping elements of ecology and climate: Cascading dynamics in tipping elements. Royal Society Open Science. 7(6), 200599.' mla: 'Klose, Ann Kristin, et al. “Emergence of Cascading Dynamics in Interacting Tipping Elements of Ecology and Climate: Cascading Dynamics in Tipping Elements.” Royal Society Open Science, vol. 7, no. 6, 200599, The Royal Society, 2020, doi:10.1098/rsos.200599.' short: A.K. Klose, V. Karle, R. Winkelmann, J.F. Donges, Royal Society Open Science 7 (2020). date_created: 2020-11-08T23:01:25Z date_published: 2020-06-01T00:00:00Z date_updated: 2024-03-12T12:31:30Z day: '01' ddc: - '530' - '550' department: - _id: MiLe doi: 10.1098/rsos.200599 external_id: arxiv: - '1910.12042' isi: - '000545625200001' file: - access_level: open_access checksum: 5505c445de373bfd836eb4d3b48b1f37 content_type: application/pdf creator: dernst date_created: 2020-11-09T09:07:11Z date_updated: 2020-11-09T09:07:11Z file_id: '8748' file_name: 2020_RoyalSocOpenScience_Klose.pdf file_size: 1611485 relation: main_file success: 1 file_date_updated: 2020-11-09T09:07:11Z has_accepted_license: '1' intvolume: ' 7' isi: 1 issue: '6' language: - iso: eng month: '06' oa: 1 oa_version: Published Version publication: Royal Society Open Science publication_identifier: eissn: - '20545703' publication_status: published publisher: The Royal Society quality_controlled: '1' scopus_import: '1' status: public title: 'Emergence of cascading dynamics in interacting tipping elements of ecology and climate: Cascading dynamics in tipping elements' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 7 year: '2020' ... --- _id: '6940' abstract: - lang: eng text: "We study the effect of a linear tunneling coupling between two-dimensional systems, each separately\r\nexhibiting the topological Berezinskii-Kosterlitz-Thouless (BKT) transition. In the uncoupled limit, there\r\nare two phases: one where the one-body correlation functions are algebraically decaying and the other with\r\nexponential decay. When the linear coupling is turned on, a third BKT-paired phase emerges, in which one-body correlations are exponentially decaying, while two-body correlation functions exhibit power-law\r\ndecay. We perform numerical simulations in the paradigmatic case of two coupled XY models at finite\r\ntemperature, finding evidences that for any finite value of the interlayer coupling, the BKT-paired phase is\r\npresent. We provide a picture of the phase diagram using a renormalization group approach." acknowledgement: "We thank S. Chiacchiera, G. Delfino, N. Dupuis, T. Enss, M. Fabrizio and G. Gori for many stimulating discussions.\r\nG.B. acknowledges support from the Austrian Science Fund (FWF), under project No. M2461-N27. N.D. acknowledges\r\nsupport from Deutsche Forschungsgemeinschaft (DFG) under Germany’s Excellence Strategy EXC-2181/1 - 390900948 (the Heidelberg STRUCTURES Excellence Cluster) and from the DFG Collaborative Research Centre “SFB 1225 ISOQUANT”. Support from the CNR/MTA Italy-Hungary 2019-2021 Joint Project “Strongly interacting systems in confined geometries” is gratefully acknowledged." article_number: '100601' article_processing_charge: No article_type: original author: - first_name: Giacomo full_name: Bighin, Giacomo id: 4CA96FD4-F248-11E8-B48F-1D18A9856A87 last_name: Bighin orcid: 0000-0001-8823-9777 - first_name: Nicolò full_name: Defenu, Nicolò last_name: Defenu - first_name: István full_name: Nándori, István last_name: Nándori - first_name: Luca full_name: Salasnich, Luca last_name: Salasnich - first_name: Andrea full_name: Trombettoni, Andrea last_name: Trombettoni citation: ama: Bighin G, Defenu N, Nándori I, Salasnich L, Trombettoni A. Berezinskii-Kosterlitz-Thouless paired phase in coupled XY models. Physical Review Letters. 2019;123(10). doi:10.1103/physrevlett.123.100601 apa: Bighin, G., Defenu, N., Nándori, I., Salasnich, L., & Trombettoni, A. (2019). Berezinskii-Kosterlitz-Thouless paired phase in coupled XY models. Physical Review Letters. American Physical Society. https://doi.org/10.1103/physrevlett.123.100601 chicago: Bighin, Giacomo, Nicolò Defenu, István Nándori, Luca Salasnich, and Andrea Trombettoni. “Berezinskii-Kosterlitz-Thouless Paired Phase in Coupled XY Models.” Physical Review Letters. American Physical Society, 2019. https://doi.org/10.1103/physrevlett.123.100601. ieee: G. Bighin, N. Defenu, I. Nándori, L. Salasnich, and A. Trombettoni, “Berezinskii-Kosterlitz-Thouless paired phase in coupled XY models,” Physical Review Letters, vol. 123, no. 10. American Physical Society, 2019. ista: Bighin G, Defenu N, Nándori I, Salasnich L, Trombettoni A. 2019. Berezinskii-Kosterlitz-Thouless paired phase in coupled XY models. Physical Review Letters. 123(10), 100601. mla: Bighin, Giacomo, et al. “Berezinskii-Kosterlitz-Thouless Paired Phase in Coupled XY Models.” Physical Review Letters, vol. 123, no. 10, 100601, American Physical Society, 2019, doi:10.1103/physrevlett.123.100601. short: G. Bighin, N. Defenu, I. Nándori, L. Salasnich, A. Trombettoni, Physical Review Letters 123 (2019). date_created: 2019-10-14T06:31:13Z date_published: 2019-09-06T00:00:00Z date_updated: 2023-08-30T06:57:53Z day: '06' department: - _id: MiLe doi: 10.1103/physrevlett.123.100601 external_id: arxiv: - '1907.06253' isi: - '000483587200004' intvolume: ' 123' isi: 1 issue: '10' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1907.06253 month: '09' oa: 1 oa_version: Preprint project: - _id: 26986C82-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M02641 name: A path-integral approach to composite impurities publication: Physical Review Letters publication_identifier: eissn: - 1079-7114 issn: - 0031-9007 publication_status: published publisher: American Physical Society quality_controlled: '1' related_material: link: - description: News auf IST Website relation: press_release url: https://ist.ac.at/en/news/new-form-of-magnetism-found/ scopus_import: '1' status: public title: Berezinskii-Kosterlitz-Thouless paired phase in coupled XY models type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 123 year: '2019' ... --- _id: '6955' abstract: - lang: eng text: We study few-body bound states of charged particles subject to attractive zero-range/short-range plus repulsive Coulomb interparticle forces. The characteristic length scales of the system at zero energy are set by the Coulomb length scale D and the Coulomb-modified effective range r eff. We study shallow bound states of charged particles with D >> r eff and show that these systems obey universal scaling laws different from neutral particles. An accurate description of these states requires both the Coulomb-modified scattering length and the effective range unless the Coulomb interaction is very weak (D -> ). Our findings are relevant for bound states whose spatial extent is significantly larger than the range of the attractive potential. These states enjoy universality – their character is independent of the shape of the short-range potential. article_number: '135016' article_processing_charge: No article_type: original author: - first_name: C.H. full_name: Schmickler, C.H. last_name: Schmickler - first_name: H.-W. full_name: Hammer, H.-W. last_name: Hammer - first_name: Artem full_name: Volosniev, Artem id: 37D278BC-F248-11E8-B48F-1D18A9856A87 last_name: Volosniev orcid: 0000-0003-0393-5525 citation: ama: Schmickler CH, Hammer H-W, Volosniev A. Universal physics of bound states of a few charged particles. Physics Letters B. 2019;798. doi:10.1016/j.physletb.2019.135016 apa: Schmickler, C. H., Hammer, H.-W., & Volosniev, A. (2019). Universal physics of bound states of a few charged particles. Physics Letters B. Elsevier. https://doi.org/10.1016/j.physletb.2019.135016 chicago: Schmickler, C.H., H.-W. Hammer, and Artem Volosniev. “Universal Physics of Bound States of a Few Charged Particles.” Physics Letters B. Elsevier, 2019. https://doi.org/10.1016/j.physletb.2019.135016. ieee: C. H. Schmickler, H.-W. Hammer, and A. Volosniev, “Universal physics of bound states of a few charged particles,” Physics Letters B, vol. 798. Elsevier, 2019. ista: Schmickler CH, Hammer H-W, Volosniev A. 2019. Universal physics of bound states of a few charged particles. Physics Letters B. 798, 135016. mla: Schmickler, C. H., et al. “Universal Physics of Bound States of a Few Charged Particles.” Physics Letters B, vol. 798, 135016, Elsevier, 2019, doi:10.1016/j.physletb.2019.135016. short: C.H. Schmickler, H.-W. Hammer, A. Volosniev, Physics Letters B 798 (2019). date_created: 2019-10-18T18:33:32Z date_published: 2019-11-10T00:00:00Z date_updated: 2023-08-30T07:06:42Z day: '10' ddc: - '530' department: - _id: MiLe doi: 10.1016/j.physletb.2019.135016 external_id: arxiv: - '1904.00913' isi: - '000494939000086' file: - access_level: open_access checksum: d27f983b34ea7dafdf356afbf9472fbf content_type: application/pdf creator: dernst date_created: 2019-10-25T12:47:04Z date_updated: 2020-07-14T12:47:46Z file_id: '6974' file_name: 2019_PhysicsLettersB_Schmickler.pdf file_size: 528362 relation: main_file file_date_updated: 2020-07-14T12:47:46Z has_accepted_license: '1' intvolume: ' 798' isi: 1 language: - iso: eng month: '11' oa: 1 oa_version: Published Version publication: Physics Letters B publication_identifier: issn: - 0370-2693 publication_status: published publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Universal physics of bound states of a few charged particles tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 798 year: '2019' ... --- _id: '5886' abstract: - lang: eng text: Problems involving quantum impurities, in which one or a few particles are interacting with a macroscopic environment, represent a pervasive paradigm, spanning across atomic, molecular, and condensed-matter physics. In this paper we introduce new variational approaches to quantum impurities and apply them to the Fröhlich polaron–a quasiparticle formed out of an electron (or other point-like impurity) in a polar medium, and to the angulon–a quasiparticle formed out of a rotating molecule in a bosonic bath. We benchmark these approaches against established theories, evaluating their accuracy as a function of the impurity-bath coupling. article_processing_charge: No author: - first_name: Xiang full_name: Li, Xiang id: 4B7E523C-F248-11E8-B48F-1D18A9856A87 last_name: Li - first_name: Giacomo full_name: Bighin, Giacomo id: 4CA96FD4-F248-11E8-B48F-1D18A9856A87 last_name: Bighin orcid: 0000-0001-8823-9777 - first_name: Enderalp full_name: Yakaboylu, Enderalp id: 38CB71F6-F248-11E8-B48F-1D18A9856A87 last_name: Yakaboylu orcid: 0000-0001-5973-0874 - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 citation: ama: 'Li X, Bighin G, Yakaboylu E, Lemeshko M. Variational approaches to quantum impurities: from the Fröhlich polaron to the angulon. Molecular Physics. 2019. doi:10.1080/00268976.2019.1567852' apa: 'Li, X., Bighin, G., Yakaboylu, E., & Lemeshko, M. (2019). Variational approaches to quantum impurities: from the Fröhlich polaron to the angulon. Molecular Physics. Taylor and Francis. https://doi.org/10.1080/00268976.2019.1567852' chicago: 'Li, Xiang, Giacomo Bighin, Enderalp Yakaboylu, and Mikhail Lemeshko. “Variational Approaches to Quantum Impurities: From the Fröhlich Polaron to the Angulon.” Molecular Physics. Taylor and Francis, 2019. https://doi.org/10.1080/00268976.2019.1567852.' ieee: 'X. Li, G. Bighin, E. Yakaboylu, and M. Lemeshko, “Variational approaches to quantum impurities: from the Fröhlich polaron to the angulon,” Molecular Physics. Taylor and Francis, 2019.' ista: 'Li X, Bighin G, Yakaboylu E, Lemeshko M. 2019. Variational approaches to quantum impurities: from the Fröhlich polaron to the angulon. Molecular Physics.' mla: 'Li, Xiang, et al. “Variational Approaches to Quantum Impurities: From the Fröhlich Polaron to the Angulon.” Molecular Physics, Taylor and Francis, 2019, doi:10.1080/00268976.2019.1567852.' short: X. Li, G. Bighin, E. Yakaboylu, M. Lemeshko, Molecular Physics (2019). date_created: 2019-01-27T22:59:10Z date_published: 2019-01-18T00:00:00Z date_updated: 2023-09-07T13:16:42Z day: '18' ddc: - '530' department: - _id: MiLe doi: 10.1080/00268976.2019.1567852 ec_funded: 1 external_id: isi: - '000474641400008' file: - access_level: open_access checksum: 178964744b636a6f036372f4f090a657 content_type: application/pdf creator: dernst date_created: 2019-01-29T08:32:57Z date_updated: 2020-07-14T12:47:13Z file_id: '5896' file_name: 2019_MolecularPhysics_Li.pdf file_size: 1309966 relation: main_file file_date_updated: 2020-07-14T12:47:13Z has_accepted_license: '1' isi: 1 language: - iso: eng month: '01' oa: 1 oa_version: Published Version project: - _id: 26031614-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29902 name: Quantum rotations in the presence of a many-body environment - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Molecular Physics publication_identifier: issn: - '00268976' publication_status: published publisher: Taylor and Francis quality_controlled: '1' related_material: record: - id: '8958' relation: dissertation_contains status: public scopus_import: '1' status: public title: 'Variational approaches to quantum impurities: from the Fröhlich polaron to the angulon' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 year: '2019' ... --- _id: '6646' abstract: - lang: eng text: We demonstrate robust retention of valley coherence and its control via polariton pseudospin precession through the optical TE-TM splitting in bilayer WS2 microcavity exciton polaritons at room temperature. article_number: paper JTu2A.52 article_processing_charge: No author: - first_name: Mandeep full_name: Khatoniar, Mandeep last_name: Khatoniar - first_name: Nicholas full_name: Yama, Nicholas last_name: Yama - first_name: Areg full_name: Ghazaryan, Areg id: 4AF46FD6-F248-11E8-B48F-1D18A9856A87 last_name: Ghazaryan orcid: 0000-0001-9666-3543 - first_name: Sriram full_name: Guddala, Sriram last_name: Guddala - first_name: Pouyan full_name: Ghaemi, Pouyan last_name: Ghaemi - first_name: Vinod full_name: Menon, Vinod last_name: Menon citation: ama: 'Khatoniar M, Yama N, Ghazaryan A, Guddala S, Ghaemi P, Menon V. Room temperature control of valley coherence in bilayer WS2 exciton polaritons. In: CLEO: Applications and Technology. Optica  Publishing Group; 2019. doi:10.1364/cleo_at.2019.jtu2a.52' apa: 'Khatoniar, M., Yama, N., Ghazaryan, A., Guddala, S., Ghaemi, P., & Menon, V. (2019). Room temperature control of valley coherence in bilayer WS2 exciton polaritons. In CLEO: Applications and Technology. San Jose, CA, United States: Optica  Publishing Group. https://doi.org/10.1364/cleo_at.2019.jtu2a.52' chicago: 'Khatoniar, Mandeep, Nicholas Yama, Areg Ghazaryan, Sriram Guddala, Pouyan Ghaemi, and Vinod Menon. “Room Temperature Control of Valley Coherence in Bilayer WS2 Exciton Polaritons.” In CLEO: Applications and Technology. Optica  Publishing Group, 2019. https://doi.org/10.1364/cleo_at.2019.jtu2a.52.' ieee: 'M. Khatoniar, N. Yama, A. Ghazaryan, S. Guddala, P. Ghaemi, and V. Menon, “Room temperature control of valley coherence in bilayer WS2 exciton polaritons,” in CLEO: Applications and Technology, San Jose, CA, United States, 2019.' ista: 'Khatoniar M, Yama N, Ghazaryan A, Guddala S, Ghaemi P, Menon V. 2019. Room temperature control of valley coherence in bilayer WS2 exciton polaritons. CLEO: Applications and Technology. CLEO: Conference on Lasers and Electro-Optics, paper JTu2A.52.' mla: 'Khatoniar, Mandeep, et al. “Room Temperature Control of Valley Coherence in Bilayer WS2 Exciton Polaritons.” CLEO: Applications and Technology, paper JTu2A.52, Optica  Publishing Group, 2019, doi:10.1364/cleo_at.2019.jtu2a.52.' short: 'M. Khatoniar, N. Yama, A. Ghazaryan, S. Guddala, P. Ghaemi, V. Menon, in:, CLEO: Applications and Technology, Optica  Publishing Group, 2019.' conference: end_date: 2019-05-10 location: San Jose, CA, United States name: 'CLEO: Conference on Lasers and Electro-Optics' start_date: 2019-05-05 date_created: 2019-07-17T09:40:44Z date_published: 2019-05-01T00:00:00Z date_updated: 2023-10-17T12:14:29Z day: '01' department: - _id: MiLe doi: 10.1364/cleo_at.2019.jtu2a.52 language: - iso: eng month: '05' oa_version: None publication: 'CLEO: Applications and Technology' publication_identifier: isbn: - '9781943580576' publication_status: published publisher: Optica Publishing Group quality_controlled: '1' scopus_import: '1' status: public title: Room temperature control of valley coherence in bilayer WS2 exciton polaritons type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2019' ... --- _id: '7190' abstract: - lang: eng text: We investigate the ground-state energy of a one-dimensional Fermi gas with two bosonic impurities. We consider spinless fermions with no fermion-fermion interactions. The fermion-impurity and impurity-impurity interactions are modeled with Dirac delta functions. First, we study the case where impurity and fermion have equal masses, and the impurity-impurity two-body interaction is identical to the fermion-impurity interaction, such that the system is solvable with the Bethe ansatz. For attractive interactions, we find that the energy of the impurity-impurity subsystem is below the energy of the bound state that exists without the Fermi gas. We interpret this as a manifestation of attractive boson-boson interactions induced by the fermionic medium, and refer to the impurity-impurity subsystem as an in-medium bound state. For repulsive interactions, we find no in-medium bound states. Second, we construct an effective model to describe these interactions, and compare its predictions to the exact solution. We use this effective model to study nonintegrable systems with unequal masses and/or potentials. We discuss parameter regimes for which impurity-impurity attraction induced by the Fermi gas can lead to the formation of in-medium bound states made of bosons that repel each other in the absence of the Fermi gas. article_number: '033177' article_processing_charge: No article_type: original author: - first_name: D. full_name: Huber, D. last_name: Huber - first_name: H.-W. full_name: Hammer, H.-W. last_name: Hammer - first_name: Artem full_name: Volosniev, Artem id: 37D278BC-F248-11E8-B48F-1D18A9856A87 last_name: Volosniev orcid: 0000-0003-0393-5525 citation: ama: Huber D, Hammer H-W, Volosniev A. In-medium bound states of two bosonic impurities in a one-dimensional Fermi gas. Physical Review Research. 2019;1(3). doi:10.1103/physrevresearch.1.033177 apa: Huber, D., Hammer, H.-W., & Volosniev, A. (2019). In-medium bound states of two bosonic impurities in a one-dimensional Fermi gas. Physical Review Research. American Physical Society. https://doi.org/10.1103/physrevresearch.1.033177 chicago: Huber, D., H.-W. Hammer, and Artem Volosniev. “In-Medium Bound States of Two Bosonic Impurities in a One-Dimensional Fermi Gas.” Physical Review Research. American Physical Society, 2019. https://doi.org/10.1103/physrevresearch.1.033177. ieee: D. Huber, H.-W. Hammer, and A. Volosniev, “In-medium bound states of two bosonic impurities in a one-dimensional Fermi gas,” Physical Review Research, vol. 1, no. 3. American Physical Society, 2019. ista: Huber D, Hammer H-W, Volosniev A. 2019. In-medium bound states of two bosonic impurities in a one-dimensional Fermi gas. Physical Review Research. 1(3), 033177. mla: Huber, D., et al. “In-Medium Bound States of Two Bosonic Impurities in a One-Dimensional Fermi Gas.” Physical Review Research, vol. 1, no. 3, 033177, American Physical Society, 2019, doi:10.1103/physrevresearch.1.033177. short: D. Huber, H.-W. Hammer, A. Volosniev, Physical Review Research 1 (2019). date_created: 2019-12-17T13:03:41Z date_published: 2019-12-16T00:00:00Z date_updated: 2024-02-28T13:11:40Z day: '16' ddc: - '530' department: - _id: MiLe doi: 10.1103/physrevresearch.1.033177 ec_funded: 1 external_id: arxiv: - '1908.02483' file: - access_level: open_access checksum: 382eb67e62a77052a23887332d363f96 content_type: application/pdf creator: dernst date_created: 2019-12-18T07:13:14Z date_updated: 2020-07-14T12:47:52Z file_id: '7193' file_name: 2019_PhysRevResearch_Huber.pdf file_size: 1370022 relation: main_file file_date_updated: 2020-07-14T12:47:52Z has_accepted_license: '1' intvolume: ' 1' issue: '3' language: - iso: eng month: '12' oa: 1 oa_version: Published Version project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Physical Review Research publication_identifier: issn: - 2643-1564 publication_status: published publisher: American Physical Society quality_controlled: '1' status: public title: In-medium bound states of two bosonic impurities in a one-dimensional Fermi gas tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 1 year: '2019' ... --- _id: '6092' abstract: - lang: eng text: In 1915, Einstein and de Haas and Barnett demonstrated that changing the magnetization of a magnetic material results in mechanical rotation and vice versa. At the microscopic level, this effect governs the transfer between electron spin and orbital angular momentum, and lattice degrees of freedom, understanding which is key for molecular magnets, nano-magneto-mechanics, spintronics, and ultrafast magnetism. Until now, the timescales of electron-to-lattice angular momentum transfer remain unclear, since modeling this process on a microscopic level requires the addition of an infinite amount of quantum angular momenta. We show that this problem can be solved by reformulating it in terms of the recently discovered angulon quasiparticles, which results in a rotationally invariant quantum many-body theory. In particular, we demonstrate that nonperturbative effects take place even if the electron-phonon coupling is weak and give rise to angular momentum transfer on femtosecond timescales. article_number: '064428' article_processing_charge: No author: - first_name: Johann H full_name: Mentink, Johann H last_name: Mentink - first_name: Mikhail full_name: Katsnelson, Mikhail last_name: Katsnelson - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 citation: ama: Mentink JH, Katsnelson M, Lemeshko M. Quantum many-body dynamics of the Einstein-de Haas effect. Physical Review B. 2019;99(6). doi:10.1103/PhysRevB.99.064428 apa: Mentink, J. H., Katsnelson, M., & Lemeshko, M. (2019). Quantum many-body dynamics of the Einstein-de Haas effect. Physical Review B. American Physical Society. https://doi.org/10.1103/PhysRevB.99.064428 chicago: Mentink, Johann H, Mikhail Katsnelson, and Mikhail Lemeshko. “Quantum Many-Body Dynamics of the Einstein-de Haas Effect.” Physical Review B. American Physical Society, 2019. https://doi.org/10.1103/PhysRevB.99.064428. ieee: J. H. Mentink, M. Katsnelson, and M. Lemeshko, “Quantum many-body dynamics of the Einstein-de Haas effect,” Physical Review B, vol. 99, no. 6. American Physical Society, 2019. ista: Mentink JH, Katsnelson M, Lemeshko M. 2019. Quantum many-body dynamics of the Einstein-de Haas effect. Physical Review B. 99(6), 064428. mla: Mentink, Johann H., et al. “Quantum Many-Body Dynamics of the Einstein-de Haas Effect.” Physical Review B, vol. 99, no. 6, 064428, American Physical Society, 2019, doi:10.1103/PhysRevB.99.064428. short: J.H. Mentink, M. Katsnelson, M. Lemeshko, Physical Review B 99 (2019). date_created: 2019-03-10T22:59:20Z date_published: 2019-02-01T00:00:00Z date_updated: 2024-02-28T13:11:54Z day: '01' department: - _id: MiLe doi: 10.1103/PhysRevB.99.064428 external_id: arxiv: - '1802.01638' isi: - '000459223400004' intvolume: ' 99' isi: 1 issue: '6' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1802.01638 month: '02' oa: 1 oa_version: Preprint project: - _id: 26031614-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29902 name: Quantum rotations in the presence of a many-body environment publication: Physical Review B publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Quantum many-body dynamics of the Einstein-de Haas effect type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 99 year: '2019' ... --- _id: '6786' abstract: - lang: eng text: Dipolar coupling plays a fundamental role in the interaction between electrically or magnetically polarized species such as magnetic atoms and dipolar molecules in a gas or dipolar excitons in the solid state. Unlike Coulomb or contactlike interactions found in many atomic, molecular, and condensed-matter systems, this interaction is long-ranged and highly anisotropic, as it changes from repulsive to attractive depending on the relative positions and orientation of the dipoles. Because of this unique property, many exotic, symmetry-breaking collective states have been recently predicted for cold dipolar gases, but only a few have been experimentally detected and only in dilute atomic dipolar Bose-Einstein condensates. Here, we report on the first observation of attractive dipolar coupling between excitonic dipoles using a new design of stacked semiconductor bilayers. We show that the presence of a dipolar exciton fluid in one bilayer modifies the spatial distribution and increases the binding energy of excitonic dipoles in a vertically remote layer. The binding energy changes are explained using a many-body polaron model describing the deformation of the exciton cloud due to its interaction with a remote dipolar exciton. The surprising nonmonotonic dependence on the cloud density indicates the important role of dipolar correlations, which is unique to dense, strongly interacting dipolar solid-state systems. Our concept provides a route for the realization of dipolar lattices with strong anisotropic interactions in semiconductor systems, which open the way for the observation of theoretically predicted new and exotic collective phases, as well as for engineering and sensing their collective excitations. article_number: '021026' article_processing_charge: No article_type: original author: - first_name: Colin full_name: Hubert, Colin last_name: Hubert - first_name: Yifat full_name: Baruchi, Yifat last_name: Baruchi - first_name: Yotam full_name: Mazuz-Harpaz, Yotam last_name: Mazuz-Harpaz - first_name: Kobi full_name: Cohen, Kobi last_name: Cohen - first_name: Klaus full_name: Biermann, Klaus last_name: Biermann - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 - first_name: Ken full_name: West, Ken last_name: West - first_name: Loren full_name: Pfeiffer, Loren last_name: Pfeiffer - first_name: Ronen full_name: Rapaport, Ronen last_name: Rapaport - first_name: Paulo full_name: Santos, Paulo last_name: Santos citation: ama: Hubert C, Baruchi Y, Mazuz-Harpaz Y, et al. Attractive dipolar coupling between stacked exciton fluids. Physical Review X. 2019;9(2). doi:10.1103/PhysRevX.9.021026 apa: Hubert, C., Baruchi, Y., Mazuz-Harpaz, Y., Cohen, K., Biermann, K., Lemeshko, M., … Santos, P. (2019). Attractive dipolar coupling between stacked exciton fluids. Physical Review X. American Physical Society. https://doi.org/10.1103/PhysRevX.9.021026 chicago: Hubert, Colin, Yifat Baruchi, Yotam Mazuz-Harpaz, Kobi Cohen, Klaus Biermann, Mikhail Lemeshko, Ken West, Loren Pfeiffer, Ronen Rapaport, and Paulo Santos. “Attractive Dipolar Coupling between Stacked Exciton Fluids.” Physical Review X. American Physical Society, 2019. https://doi.org/10.1103/PhysRevX.9.021026. ieee: C. Hubert et al., “Attractive dipolar coupling between stacked exciton fluids,” Physical Review X, vol. 9, no. 2. American Physical Society, 2019. ista: Hubert C, Baruchi Y, Mazuz-Harpaz Y, Cohen K, Biermann K, Lemeshko M, West K, Pfeiffer L, Rapaport R, Santos P. 2019. Attractive dipolar coupling between stacked exciton fluids. Physical Review X. 9(2), 021026. mla: Hubert, Colin, et al. “Attractive Dipolar Coupling between Stacked Exciton Fluids.” Physical Review X, vol. 9, no. 2, 021026, American Physical Society, 2019, doi:10.1103/PhysRevX.9.021026. short: C. Hubert, Y. Baruchi, Y. Mazuz-Harpaz, K. Cohen, K. Biermann, M. Lemeshko, K. West, L. Pfeiffer, R. Rapaport, P. Santos, Physical Review X 9 (2019). date_created: 2019-08-11T21:59:20Z date_published: 2019-05-08T00:00:00Z date_updated: 2024-02-28T13:12:48Z day: '08' ddc: - '530' department: - _id: MiLe doi: 10.1103/PhysRevX.9.021026 external_id: arxiv: - '1807.11238' isi: - '000467402900001' file: - access_level: open_access checksum: 065ff82ee4a1d2c3773ce4b76ff4213c content_type: application/pdf creator: dernst date_created: 2019-08-12T12:14:18Z date_updated: 2020-07-14T12:47:40Z file_id: '6802' file_name: 2019_PhysReviewX_Hubert.pdf file_size: 1193550 relation: main_file file_date_updated: 2020-07-14T12:47:40Z has_accepted_license: '1' intvolume: ' 9' isi: 1 issue: '2' language: - iso: eng month: '05' oa: 1 oa_version: Published Version project: - _id: 26031614-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29902 name: Quantum rotations in the presence of a many-body environment publication: Physical Review X publication_identifier: eissn: - 2160-3308 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Attractive dipolar coupling between stacked exciton fluids tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 9 year: '2019' ... --- _id: '6632' abstract: - lang: eng text: We consider a two-component Bose gas in two dimensions at a low temperature with short-range repulsive interaction. In the coexistence phase where both components are superfluid, interspecies interactions induce a nondissipative drag between the two superfluid flows (Andreev-Bashkin effect). We show that this behavior leads to a modification of the usual Berezinskii-Kosterlitz-Thouless (BKT) transition in two dimensions. We extend the renormalization of the superfluid densities at finite temperature using the renormalization-group approach and find that the vortices of one component have a large influence on the superfluid properties of the other, mediated by the nondissipative drag. The extended BKT flow equations indicate that the occurrence of the vortex unbinding transition in one of the components can induce the breakdown of superfluidity also in the other, leading to a locking phenomenon for the critical temperatures of the two gases. article_number: '063627' article_processing_charge: No author: - first_name: Volker full_name: Karle, Volker last_name: Karle - first_name: Nicolò full_name: Defenu, Nicolò last_name: Defenu - first_name: Tilman full_name: Enss, Tilman last_name: Enss citation: ama: Karle V, Defenu N, Enss T. Coupled superfluidity of binary Bose mixtures in two dimensions. Physical Review A. 2019;99(6). doi:10.1103/PhysRevA.99.063627 apa: Karle, V., Defenu, N., & Enss, T. (2019). Coupled superfluidity of binary Bose mixtures in two dimensions. Physical Review A. American Physical Society. https://doi.org/10.1103/PhysRevA.99.063627 chicago: Karle, Volker, Nicolò Defenu, and Tilman Enss. “Coupled Superfluidity of Binary Bose Mixtures in Two Dimensions.” Physical Review A. American Physical Society, 2019. https://doi.org/10.1103/PhysRevA.99.063627. ieee: V. Karle, N. Defenu, and T. Enss, “Coupled superfluidity of binary Bose mixtures in two dimensions,” Physical Review A, vol. 99, no. 6. American Physical Society, 2019. ista: Karle V, Defenu N, Enss T. 2019. Coupled superfluidity of binary Bose mixtures in two dimensions. Physical Review A. 99(6), 063627. mla: Karle, Volker, et al. “Coupled Superfluidity of Binary Bose Mixtures in Two Dimensions.” Physical Review A, vol. 99, no. 6, 063627, American Physical Society, 2019, doi:10.1103/PhysRevA.99.063627. short: V. Karle, N. Defenu, T. Enss, Physical Review A 99 (2019). date_created: 2019-07-14T21:59:17Z date_published: 2019-06-28T00:00:00Z date_updated: 2024-02-28T13:12:34Z day: '28' department: - _id: MiLe doi: 10.1103/PhysRevA.99.063627 external_id: arxiv: - '1903.06759' isi: - '000473133600007' intvolume: ' 99' isi: 1 issue: '6' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1903.06759 month: '06' oa: 1 oa_version: Preprint publication: Physical Review A publication_identifier: eissn: - '24699934' issn: - '24699926' publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Coupled superfluidity of binary Bose mixtures in two dimensions type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 99 year: '2019' ... --- _id: '7396' abstract: - lang: eng text: The angular momentum of molecules, or, equivalently, their rotation in three-dimensional space, is ideally suited for quantum control. Molecular angular momentum is naturally quantized, time evolution is governed by a well-known Hamiltonian with only a few accurately known parameters, and transitions between rotational levels can be driven by external fields from various parts of the electromagnetic spectrum. Control over the rotational motion can be exerted in one-, two-, and many-body scenarios, thereby allowing one to probe Anderson localization, target stereoselectivity of bimolecular reactions, or encode quantum information to name just a few examples. The corresponding approaches to quantum control are pursued within separate, and typically disjoint, subfields of physics, including ultrafast science, cold collisions, ultracold gases, quantum information science, and condensed-matter physics. It is the purpose of this review to present the various control phenomena, which all rely on the same underlying physics, within a unified framework. To this end, recall the Hamiltonian for free rotations, assuming the rigid rotor approximation to be valid, and summarize the different ways for a rotor to interact with external electromagnetic fields. These interactions can be exploited for control—from achieving alignment, orientation, or laser cooling in a one-body framework, steering bimolecular collisions, or realizing a quantum computer or quantum simulator in the many-body setting. article_number: '035005 ' article_processing_charge: No article_type: original author: - first_name: Christiane P. full_name: Koch, Christiane P. last_name: Koch - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 - first_name: Dominique full_name: Sugny, Dominique last_name: Sugny citation: ama: Koch CP, Lemeshko M, Sugny D. Quantum control of molecular rotation. Reviews of Modern Physics. 2019;91(3). doi:10.1103/revmodphys.91.035005 apa: Koch, C. P., Lemeshko, M., & Sugny, D. (2019). Quantum control of molecular rotation. Reviews of Modern Physics. American Physical Society. https://doi.org/10.1103/revmodphys.91.035005 chicago: Koch, Christiane P., Mikhail Lemeshko, and Dominique Sugny. “Quantum Control of Molecular Rotation.” Reviews of Modern Physics. American Physical Society, 2019. https://doi.org/10.1103/revmodphys.91.035005. ieee: C. P. Koch, M. Lemeshko, and D. Sugny, “Quantum control of molecular rotation,” Reviews of Modern Physics, vol. 91, no. 3. American Physical Society, 2019. ista: Koch CP, Lemeshko M, Sugny D. 2019. Quantum control of molecular rotation. Reviews of Modern Physics. 91(3), 035005. mla: Koch, Christiane P., et al. “Quantum Control of Molecular Rotation.” Reviews of Modern Physics, vol. 91, no. 3, 035005, American Physical Society, 2019, doi:10.1103/revmodphys.91.035005. short: C.P. Koch, M. Lemeshko, D. Sugny, Reviews of Modern Physics 91 (2019). date_created: 2020-01-29T16:04:19Z date_published: 2019-09-18T00:00:00Z date_updated: 2024-02-28T13:15:33Z day: '18' department: - _id: MiLe doi: 10.1103/revmodphys.91.035005 external_id: arxiv: - '1810.11338' isi: - '000486661700001' intvolume: ' 91' isi: 1 issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1810.11338 month: '09' oa: 1 oa_version: Preprint project: - _id: 26031614-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29902 name: Quantum rotations in the presence of a many-body environment publication: Reviews of Modern Physics publication_identifier: eissn: - 1539-0756 issn: - 0034-6861 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Quantum control of molecular rotation type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 91 year: '2019' ... --- _id: '195' abstract: - lang: eng text: We demonstrate that identical impurities immersed in a two-dimensional many-particle bath can be viewed as flux-tube-charged-particle composites described by fractional statistics. In particular, we find that the bath manifests itself as an external magnetic flux tube with respect to the impurities, and hence the time-reversal symmetry is broken for the effective Hamiltonian describing the impurities. The emerging flux tube acts as a statistical gauge field after a certain critical coupling. This critical coupling corresponds to the intersection point between the quasiparticle state and the phonon wing, where the angular momentum is transferred from the impurity to the bath. This amounts to a novel configuration with emerging anyons. The proposed setup paves the way to realizing anyons using electrons interacting with superfluid helium or lattice phonons, as well as using atomic impurities in ultracold gases. article_number: '045402' article_processing_charge: No author: - first_name: Enderalp full_name: Yakaboylu, Enderalp id: 38CB71F6-F248-11E8-B48F-1D18A9856A87 last_name: Yakaboylu orcid: 0000-0001-5973-0874 - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 citation: ama: Yakaboylu E, Lemeshko M. Anyonic statistics of quantum impurities in two dimensions. Physical Review B - Condensed Matter and Materials Physics. 2018;98(4). doi:10.1103/PhysRevB.98.045402 apa: Yakaboylu, E., & Lemeshko, M. (2018). Anyonic statistics of quantum impurities in two dimensions. Physical Review B - Condensed Matter and Materials Physics. American Physical Society. https://doi.org/10.1103/PhysRevB.98.045402 chicago: Yakaboylu, Enderalp, and Mikhail Lemeshko. “Anyonic Statistics of Quantum Impurities in Two Dimensions.” Physical Review B - Condensed Matter and Materials Physics. American Physical Society, 2018. https://doi.org/10.1103/PhysRevB.98.045402. ieee: E. Yakaboylu and M. Lemeshko, “Anyonic statistics of quantum impurities in two dimensions,” Physical Review B - Condensed Matter and Materials Physics, vol. 98, no. 4. American Physical Society, 2018. ista: Yakaboylu E, Lemeshko M. 2018. Anyonic statistics of quantum impurities in two dimensions. Physical Review B - Condensed Matter and Materials Physics. 98(4), 045402. mla: Yakaboylu, Enderalp, and Mikhail Lemeshko. “Anyonic Statistics of Quantum Impurities in Two Dimensions.” Physical Review B - Condensed Matter and Materials Physics, vol. 98, no. 4, 045402, American Physical Society, 2018, doi:10.1103/PhysRevB.98.045402. short: E. Yakaboylu, M. Lemeshko, Physical Review B - Condensed Matter and Materials Physics 98 (2018). date_created: 2018-12-11T11:45:08Z date_published: 2018-07-15T00:00:00Z date_updated: 2023-09-08T13:22:57Z day: '15' department: - _id: MiLe doi: 10.1103/PhysRevB.98.045402 ec_funded: 1 external_id: arxiv: - '1712.00308' isi: - '000436939100007' intvolume: ' 98' isi: 1 issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1712.00308 month: '07' oa: 1 oa_version: Submitted Version project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme - _id: 26031614-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29902 name: Quantum rotations in the presence of a many-body environment publication: Physical Review B - Condensed Matter and Materials Physics publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Anyonic statistics of quantum impurities in two dimensions type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 98 year: '2018' ... --- _id: '427' abstract: - lang: eng text: We investigate the quantum interference induced shifts between energetically close states in highly charged ions, with the energy structure being observed by laser spectroscopy. In this work, we focus on hyperfine states of lithiumlike heavy-Z isotopes and quantify how much quantum interference changes the observed transition frequencies. The process of photon excitation and subsequent photon decay for the transition 2s→2p→2s is implemented with fully relativistic and full-multipole frameworks, which are relevant for such relativistic atomic systems. We consider the isotopes Pb79+207 and Bi80+209 due to experimental interest, as well as other examples of isotopes with lower Z, namely Pr56+141 and Ho64+165. We conclude that quantum interference can induce shifts up to 11% of the linewidth in the measurable resonances of the considered isotopes, if interference between resonances is neglected. The inclusion of relativity decreases the cross section by 35%, mainly due to the complete retardation form of the electric dipole multipole. However, the contribution of the next higher multipoles (e.g., magnetic quadrupole) to the cross section is negligible. This makes the contribution of relativity and higher-order multipoles to the quantum interference induced shifts a minor effect, even for heavy-Z elements. acknowledgement: "This work was funded by the Portuguese Fundação para a Ciência e a Tecnologia (FCT/MCTES/PIDDAC) under Grant No. UID/FIS/04559/2013 (LIBPhys). P.A. acknowledges the support of the FCT, under Contract No. SFRH/BPD/92329/2013. L.S. acknowledges financial support from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA Grant Agreement No. (291734). Laboratoire Kastler Brossel (LKB) is “Unité Mixte de Recherche de Sorbonne Université, de ENS-PSL Research University, du Collège de France et du CNRS No. 8552.” APPENDIX:\r\n" article_number: '022510' article_processing_charge: No article_type: original author: - first_name: Pedro full_name: Amaro, Pedro last_name: Amaro - first_name: Ulisses full_name: Loureiro, Ulisses last_name: Loureiro - first_name: Laleh full_name: Safari, Laleh id: 3C325E5E-F248-11E8-B48F-1D18A9856A87 last_name: Safari - first_name: Filippo full_name: Fratini, Filippo last_name: Fratini - first_name: Paul full_name: Indelicato, Paul last_name: Indelicato - first_name: Thomas full_name: Stöhlker, Thomas last_name: Stöhlker - first_name: José full_name: Santos, José last_name: Santos citation: ama: Amaro P, Loureiro U, Safari L, et al. Quantum interference in laser spectroscopy of highly charged lithiumlike ions. Physical Review A - Atomic, Molecular, and Optical Physics. 2018;97(2). doi:10.1103/PhysRevA.97.022510 apa: Amaro, P., Loureiro, U., Safari, L., Fratini, F., Indelicato, P., Stöhlker, T., & Santos, J. (2018). Quantum interference in laser spectroscopy of highly charged lithiumlike ions. Physical Review A - Atomic, Molecular, and Optical Physics. American Physical Society. https://doi.org/10.1103/PhysRevA.97.022510 chicago: Amaro, Pedro, Ulisses Loureiro, Laleh Safari, Filippo Fratini, Paul Indelicato, Thomas Stöhlker, and José Santos. “Quantum Interference in Laser Spectroscopy of Highly Charged Lithiumlike Ions.” Physical Review A - Atomic, Molecular, and Optical Physics. American Physical Society, 2018. https://doi.org/10.1103/PhysRevA.97.022510. ieee: P. Amaro et al., “Quantum interference in laser spectroscopy of highly charged lithiumlike ions,” Physical Review A - Atomic, Molecular, and Optical Physics, vol. 97, no. 2. American Physical Society, 2018. ista: Amaro P, Loureiro U, Safari L, Fratini F, Indelicato P, Stöhlker T, Santos J. 2018. Quantum interference in laser spectroscopy of highly charged lithiumlike ions. Physical Review A - Atomic, Molecular, and Optical Physics. 97(2), 022510. mla: Amaro, Pedro, et al. “Quantum Interference in Laser Spectroscopy of Highly Charged Lithiumlike Ions.” Physical Review A - Atomic, Molecular, and Optical Physics, vol. 97, no. 2, 022510, American Physical Society, 2018, doi:10.1103/PhysRevA.97.022510. short: P. Amaro, U. Loureiro, L. Safari, F. Fratini, P. Indelicato, T. Stöhlker, J. Santos, Physical Review A - Atomic, Molecular, and Optical Physics 97 (2018). date_created: 2018-12-11T11:46:25Z date_published: 2018-02-21T00:00:00Z date_updated: 2023-09-15T12:09:35Z day: '21' department: - _id: MiLe doi: 10.1103/PhysRevA.97.022510 ec_funded: 1 external_id: arxiv: - '1802.07920' isi: - '000425601000004' intvolume: ' 97' isi: 1 issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1802.07920 month: '02' oa: 1 oa_version: Preprint project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: ' Physical Review A - Atomic, Molecular, and Optical Physics' publication_status: published publisher: American Physical Society publist_id: '7396' quality_controlled: '1' scopus_import: '1' status: public title: Quantum interference in laser spectroscopy of highly charged lithiumlike ions type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 97 year: '2018' ... --- _id: '5794' abstract: - lang: eng text: We present an approach to interacting quantum many-body systems based on the notion of quantum groups, also known as q-deformed Lie algebras. In particular, we show that, if the symmetry of a free quantum particle corresponds to a Lie group G, in the presence of a many-body environment this particle can be described by a deformed group, Gq. Crucially, the single deformation parameter, q, contains all the information about the many-particle interactions in the system. We exemplify our approach by considering a quantum rotor interacting with a bath of bosons, and demonstrate that extracting the value of q from closed-form solutions in the perturbative regime allows one to predict the behavior of the system for arbitrary values of the impurity-bath coupling strength, in good agreement with nonperturbative calculations. Furthermore, the value of the deformation parameter allows one to predict at which coupling strengths rotor-bath interactions result in a formation of a stable quasiparticle. The approach based on quantum groups does not only allow for a drastic simplification of impurity problems, but also provides valuable insights into hidden symmetries of interacting many-particle systems. article_number: '255302' article_processing_charge: No article_type: original author: - first_name: Enderalp full_name: Yakaboylu, Enderalp id: 38CB71F6-F248-11E8-B48F-1D18A9856A87 last_name: Yakaboylu orcid: 0000-0001-5973-0874 - first_name: Mikhail full_name: Shkolnikov, Mikhail id: 35084A62-F248-11E8-B48F-1D18A9856A87 last_name: Shkolnikov orcid: 0000-0002-4310-178X - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 citation: ama: Yakaboylu E, Shkolnikov M, Lemeshko M. Quantum groups as hidden symmetries of quantum impurities. Physical Review Letters. 2018;121(25). doi:10.1103/PhysRevLett.121.255302 apa: Yakaboylu, E., Shkolnikov, M., & Lemeshko, M. (2018). Quantum groups as hidden symmetries of quantum impurities. Physical Review Letters. American Physical Society. https://doi.org/10.1103/PhysRevLett.121.255302 chicago: Yakaboylu, Enderalp, Mikhail Shkolnikov, and Mikhail Lemeshko. “Quantum Groups as Hidden Symmetries of Quantum Impurities.” Physical Review Letters. American Physical Society, 2018. https://doi.org/10.1103/PhysRevLett.121.255302. ieee: E. Yakaboylu, M. Shkolnikov, and M. Lemeshko, “Quantum groups as hidden symmetries of quantum impurities,” Physical Review Letters, vol. 121, no. 25. American Physical Society, 2018. ista: Yakaboylu E, Shkolnikov M, Lemeshko M. 2018. Quantum groups as hidden symmetries of quantum impurities. Physical Review Letters. 121(25), 255302. mla: Yakaboylu, Enderalp, et al. “Quantum Groups as Hidden Symmetries of Quantum Impurities.” Physical Review Letters, vol. 121, no. 25, 255302, American Physical Society, 2018, doi:10.1103/PhysRevLett.121.255302. short: E. Yakaboylu, M. Shkolnikov, M. Lemeshko, Physical Review Letters 121 (2018). date_created: 2019-01-06T22:59:12Z date_published: 2018-12-17T00:00:00Z date_updated: 2023-09-15T12:09:06Z day: '17' department: - _id: MiLe doi: 10.1103/PhysRevLett.121.255302 ec_funded: 1 external_id: arxiv: - '1809.00222' isi: - '000454178600009' intvolume: ' 121' isi: 1 issue: '25' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1809.00222 month: '12' oa: 1 oa_version: Preprint project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme - _id: 26031614-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29902 name: Quantum rotations in the presence of a many-body environment publication: Physical Review Letters publication_identifier: issn: - '00319007' publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Quantum groups as hidden symmetries of quantum impurities type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 121 year: '2018' ... --- _id: '420' abstract: - lang: eng text: We analyze the theoretical derivation of the beyond-mean-field equation of state for two-dimensional gas of dilute, ultracold alkali-metal atoms in the Bardeen–Cooper–Schrieffer (BCS) to Bose–Einstein condensate (BEC) crossover. We show that at zero temperature our theory — considering Gaussian fluctuations on top of the mean-field equation of state — is in very good agreement with experimental data. Subsequently, we investigate the superfluid density at finite temperature and its renormalization due to the proliferation of vortex–antivortex pairs. By doing so, we determine the Berezinskii–Kosterlitz–Thouless (BKT) critical temperature — at which the renormalized superfluid density jumps to zero — as a function of the inter-atomic potential strength. We find that the Nelson–Kosterlitz criterion overestimates the BKT temperature with respect to the renormalization group equations, this effect being particularly relevant in the intermediate regime of the crossover. article_processing_charge: No author: - first_name: Giacomo full_name: Bighin, Giacomo id: 4CA96FD4-F248-11E8-B48F-1D18A9856A87 last_name: Bighin orcid: 0000-0001-8823-9777 - first_name: Luca full_name: Salasnich, Luca last_name: Salasnich citation: ama: Bighin G, Salasnich L. Renormalization of the superfluid density in the two-dimensional BCS-BEC crossover. International Journal of Modern Physics B. 2018;32(17):1840022. doi:10.1142/S0217979218400222 apa: Bighin, G., & Salasnich, L. (2018). Renormalization of the superfluid density in the two-dimensional BCS-BEC crossover. International Journal of Modern Physics B. World Scientific Publishing. https://doi.org/10.1142/S0217979218400222 chicago: Bighin, Giacomo, and Luca Salasnich. “Renormalization of the Superfluid Density in the Two-Dimensional BCS-BEC Crossover.” International Journal of Modern Physics B. World Scientific Publishing, 2018. https://doi.org/10.1142/S0217979218400222. ieee: G. Bighin and L. Salasnich, “Renormalization of the superfluid density in the two-dimensional BCS-BEC crossover,” International Journal of Modern Physics B, vol. 32, no. 17. World Scientific Publishing, p. 1840022, 2018. ista: Bighin G, Salasnich L. 2018. Renormalization of the superfluid density in the two-dimensional BCS-BEC crossover. International Journal of Modern Physics B. 32(17), 1840022. mla: Bighin, Giacomo, and Luca Salasnich. “Renormalization of the Superfluid Density in the Two-Dimensional BCS-BEC Crossover.” International Journal of Modern Physics B, vol. 32, no. 17, World Scientific Publishing, 2018, p. 1840022, doi:10.1142/S0217979218400222. short: G. Bighin, L. Salasnich, International Journal of Modern Physics B 32 (2018) 1840022. date_created: 2018-12-11T11:46:22Z date_published: 2018-07-10T00:00:00Z date_updated: 2023-09-18T08:09:59Z day: '10' department: - _id: MiLe doi: 10.1142/S0217979218400222 external_id: isi: - '000438217300007' intvolume: ' 32' isi: 1 issue: '17' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1710.11171 month: '07' oa: 1 oa_version: Preprint page: '1840022' publication: International Journal of Modern Physics B publication_status: published publisher: World Scientific Publishing publist_id: '7402' quality_controlled: '1' scopus_import: '1' status: public title: Renormalization of the superfluid density in the two-dimensional BCS-BEC crossover type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 32 year: '2018' ... --- _id: '294' abstract: - lang: eng text: We developed a method to calculate two-photon processes in quantum mechanics that replaces the infinite summation over the intermediate states by a perturbation expansion. This latter consists of a series of commutators that involve position, momentum, and Hamiltonian quantum operators. We analyzed several single- and many-particle cases for which a closed-form solution to the perturbation expansion exists, as well as more complicated cases for which a solution is found by convergence. Throughout the article, Rayleigh and Raman scattering are taken as examples of two-photon processes. The present method provides a clear distinction between the Thomson scattering, regarded as classical scattering, and quantum contributions. Such a distinction lets us derive general results concerning light scattering. Finally, possible extensions to the developed formalism are discussed. article_processing_charge: No author: - first_name: Filippo full_name: Fratini, Filippo last_name: Fratini - first_name: Laleh full_name: Safari, Laleh id: 3C325E5E-F248-11E8-B48F-1D18A9856A87 last_name: Safari - first_name: Pedro full_name: Amaro, Pedro last_name: Amaro - first_name: José full_name: Santos, José last_name: Santos citation: ama: Fratini F, Safari L, Amaro P, Santos J. Two-photon processes based on quantum commutators. Physical Review A - Atomic, Molecular, and Optical Physics. 2018;97(4). doi:10.1103/PhysRevA.97.043842 apa: Fratini, F., Safari, L., Amaro, P., & Santos, J. (2018). Two-photon processes based on quantum commutators. Physical Review A - Atomic, Molecular, and Optical Physics. American Physical Society. https://doi.org/10.1103/PhysRevA.97.043842 chicago: Fratini, Filippo, Laleh Safari, Pedro Amaro, and José Santos. “Two-Photon Processes Based on Quantum Commutators.” Physical Review A - Atomic, Molecular, and Optical Physics. American Physical Society, 2018. https://doi.org/10.1103/PhysRevA.97.043842. ieee: F. Fratini, L. Safari, P. Amaro, and J. Santos, “Two-photon processes based on quantum commutators,” Physical Review A - Atomic, Molecular, and Optical Physics, vol. 97, no. 4. American Physical Society, 2018. ista: Fratini F, Safari L, Amaro P, Santos J. 2018. Two-photon processes based on quantum commutators. Physical Review A - Atomic, Molecular, and Optical Physics. 97(4). mla: Fratini, Filippo, et al. “Two-Photon Processes Based on Quantum Commutators.” Physical Review A - Atomic, Molecular, and Optical Physics, vol. 97, no. 4, American Physical Society, 2018, doi:10.1103/PhysRevA.97.043842. short: F. Fratini, L. Safari, P. Amaro, J. Santos, Physical Review A - Atomic, Molecular, and Optical Physics 97 (2018). date_created: 2018-12-11T11:45:40Z date_published: 2018-04-18T00:00:00Z date_updated: 2023-09-19T10:17:56Z day: '18' department: - _id: MiLe doi: 10.1103/PhysRevA.97.043842 ec_funded: 1 external_id: arxiv: - '1801.06892' isi: - '000430296800008' intvolume: ' 97' isi: 1 issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1801.06892 month: '04' oa: 1 oa_version: Submitted Version project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Physical Review A - Atomic, Molecular, and Optical Physics publication_status: published publisher: American Physical Society publist_id: '7587' quality_controlled: '1' scopus_import: '1' status: public title: Two-photon processes based on quantum commutators type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 97 year: '2018' ... --- _id: '5983' abstract: - lang: eng text: We study a quantum impurity possessing both translational and internal rotational degrees of freedom interacting with a bosonic bath. Such a system corresponds to a “rotating polaron,” which can be used to model, e.g., a rotating molecule immersed in an ultracold Bose gas or superfluid helium. We derive the Hamiltonian of the rotating polaron and study its spectrum in the weak- and strong-coupling regimes using a combination of variational, diagrammatic, and mean-field approaches. We reveal how the coupling between linear and angular momenta affects stable quasiparticle states, and demonstrate that internal rotation leads to an enhanced self-localization in the translational degrees of freedom. article_number: '224506' article_processing_charge: No author: - first_name: Enderalp full_name: Yakaboylu, Enderalp id: 38CB71F6-F248-11E8-B48F-1D18A9856A87 last_name: Yakaboylu orcid: 0000-0001-5973-0874 - first_name: Bikashkali full_name: Midya, Bikashkali id: 456187FC-F248-11E8-B48F-1D18A9856A87 last_name: Midya - first_name: Andreas full_name: Deuchert, Andreas id: 4DA65CD0-F248-11E8-B48F-1D18A9856A87 last_name: Deuchert orcid: 0000-0003-3146-6746 - first_name: Nikolai K full_name: Leopold, Nikolai K id: 4BC40BEC-F248-11E8-B48F-1D18A9856A87 last_name: Leopold orcid: 0000-0002-0495-6822 - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 citation: ama: 'Yakaboylu E, Midya B, Deuchert A, Leopold NK, Lemeshko M. Theory of the rotating polaron: Spectrum and self-localization. Physical Review B. 2018;98(22). doi:10.1103/physrevb.98.224506' apa: 'Yakaboylu, E., Midya, B., Deuchert, A., Leopold, N. K., & Lemeshko, M. (2018). Theory of the rotating polaron: Spectrum and self-localization. Physical Review B. American Physical Society. https://doi.org/10.1103/physrevb.98.224506' chicago: 'Yakaboylu, Enderalp, Bikashkali Midya, Andreas Deuchert, Nikolai K Leopold, and Mikhail Lemeshko. “Theory of the Rotating Polaron: Spectrum and Self-Localization.” Physical Review B. American Physical Society, 2018. https://doi.org/10.1103/physrevb.98.224506.' ieee: 'E. Yakaboylu, B. Midya, A. Deuchert, N. K. Leopold, and M. Lemeshko, “Theory of the rotating polaron: Spectrum and self-localization,” Physical Review B, vol. 98, no. 22. American Physical Society, 2018.' ista: 'Yakaboylu E, Midya B, Deuchert A, Leopold NK, Lemeshko M. 2018. Theory of the rotating polaron: Spectrum and self-localization. Physical Review B. 98(22), 224506.' mla: 'Yakaboylu, Enderalp, et al. “Theory of the Rotating Polaron: Spectrum and Self-Localization.” Physical Review B, vol. 98, no. 22, 224506, American Physical Society, 2018, doi:10.1103/physrevb.98.224506.' short: E. Yakaboylu, B. Midya, A. Deuchert, N.K. Leopold, M. Lemeshko, Physical Review B 98 (2018). date_created: 2019-02-14T10:37:09Z date_published: 2018-12-12T00:00:00Z date_updated: 2023-09-19T14:29:03Z day: '12' department: - _id: MiLe - _id: RoSe doi: 10.1103/physrevb.98.224506 ec_funded: 1 external_id: arxiv: - '1809.01204' isi: - '000452992700008' intvolume: ' 98' isi: 1 issue: '22' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1809.01204 month: '12' oa: 1 oa_version: Preprint project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme - _id: 25C6DC12-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '694227' name: Analysis of quantum many-body systems publication: Physical Review B publication_identifier: eissn: - 2469-9969 issn: - 2469-9950 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: 'Theory of the rotating polaron: Spectrum and self-localization' type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 98 year: '2018' ... --- _id: '435' abstract: - lang: eng text: It is shown that two fundamentally different phenomena, the bound states in continuum and the spectral singularity (or time-reversed spectral singularity), can occur simultaneously. This can be achieved in a rectangular core dielectric waveguide with an embedded active (or absorbing) layer. In such a system a two-dimensional bound state in a continuum is created in the plane of a waveguide cross section, and it is emitted or absorbed along the waveguide core. The idea can be used for experimental implementation of a laser or a coherent-perfect-absorber for a photonic bound state that resides in a continuous spectrum. acknowledgement: 'Seventh Framework Programme (FP7) People: Marie-Curie Actions (PEOPLE) (291734). B. M. acknowledges the financial support by the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/ 2007-2013) under REA.' article_processing_charge: No author: - first_name: Bikashkali full_name: Midya, Bikashkali id: 456187FC-F248-11E8-B48F-1D18A9856A87 last_name: Midya - first_name: Vladimir full_name: Konotop, Vladimir last_name: Konotop citation: ama: Midya B, Konotop V. Coherent-perfect-absorber and laser for bound states in a continuum. Optics Letters. 2018;43(3):607-610. doi:10.1364/OL.43.000607 apa: Midya, B., & Konotop, V. (2018). Coherent-perfect-absorber and laser for bound states in a continuum. Optics Letters. Optica  Publishing Group. https://doi.org/10.1364/OL.43.000607 chicago: Midya, Bikashkali, and Vladimir Konotop. “Coherent-Perfect-Absorber and Laser for Bound States in a Continuum.” Optics Letters. Optica  Publishing Group, 2018. https://doi.org/10.1364/OL.43.000607. ieee: B. Midya and V. Konotop, “Coherent-perfect-absorber and laser for bound states in a continuum,” Optics Letters, vol. 43, no. 3. Optica  Publishing Group, pp. 607–610, 2018. ista: Midya B, Konotop V. 2018. Coherent-perfect-absorber and laser for bound states in a continuum. Optics Letters. 43(3), 607–610. mla: Midya, Bikashkali, and Vladimir Konotop. “Coherent-Perfect-Absorber and Laser for Bound States in a Continuum.” Optics Letters, vol. 43, no. 3, Optica  Publishing Group, 2018, pp. 607–10, doi:10.1364/OL.43.000607. short: B. Midya, V. Konotop, Optics Letters 43 (2018) 607–610. date_created: 2018-12-11T11:46:27Z date_published: 2018-02-01T00:00:00Z date_updated: 2023-10-17T12:15:06Z day: '01' department: - _id: MiLe doi: 10.1364/OL.43.000607 ec_funded: 1 external_id: arxiv: - '1711.01986' isi: - '000423776600066' intvolume: ' 43' isi: 1 issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1711.01986 month: '02' oa: 1 oa_version: Preprint page: 607 - 610 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Optics Letters publication_status: published publisher: Optica Publishing Group publist_id: '7388' quality_controlled: '1' scopus_import: '1' status: public title: Coherent-perfect-absorber and laser for bound states in a continuum type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 43 year: '2018' ... --- _id: '415' abstract: - lang: eng text: Recently it was shown that a molecule rotating in a quantum solvent can be described in terms of the “angulon” quasiparticle [M. Lemeshko, Phys. Rev. Lett. 118, 095301 (2017)]. Here we extend the angulon theory to the case of molecules possessing an additional spin-1/2 degree of freedom and study the behavior of the system in the presence of a static magnetic field. We show that exchange of angular momentum between the molecule and the solvent can be altered by the field, even though the solvent itself is non-magnetic. In particular, we demonstrate a possibility to control resonant emission of phonons with a given angular momentum using a magnetic field. acknowledgement: "We acknowledge insightful discussions with Giacomo Bighin, Igor Cherepanov, Johan Mentink, and Enderalp Yakaboylu. This work was supported by the Austrian Science Fund (FWF), Project No. P29902-N27. W.R. was supported by the Polish Ministry of Science and Higher Education Grant No. MNISW/2016/DIR/285/NN and by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 665385.\r\n" article_number: '104307' article_processing_charge: No article_type: original author: - first_name: Wojciech full_name: Rzadkowski, Wojciech id: 48C55298-F248-11E8-B48F-1D18A9856A87 last_name: Rzadkowski orcid: 0000-0002-1106-4419 - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 citation: ama: Rzadkowski W, Lemeshko M. Effect of a magnetic field on molecule–solvent angular momentum transfer. The Journal of Chemical Physics. 2018;148(10). doi:10.1063/1.5017591 apa: Rzadkowski, W., & Lemeshko, M. (2018). Effect of a magnetic field on molecule–solvent angular momentum transfer. The Journal of Chemical Physics. AIP Publishing. https://doi.org/10.1063/1.5017591 chicago: Rzadkowski, Wojciech, and Mikhail Lemeshko. “Effect of a Magnetic Field on Molecule–Solvent Angular Momentum Transfer.” The Journal of Chemical Physics. AIP Publishing, 2018. https://doi.org/10.1063/1.5017591. ieee: W. Rzadkowski and M. Lemeshko, “Effect of a magnetic field on molecule–solvent angular momentum transfer,” The Journal of Chemical Physics, vol. 148, no. 10. AIP Publishing, 2018. ista: Rzadkowski W, Lemeshko M. 2018. Effect of a magnetic field on molecule–solvent angular momentum transfer. The Journal of Chemical Physics. 148(10), 104307. mla: Rzadkowski, Wojciech, and Mikhail Lemeshko. “Effect of a Magnetic Field on Molecule–Solvent Angular Momentum Transfer.” The Journal of Chemical Physics, vol. 148, no. 10, 104307, AIP Publishing, 2018, doi:10.1063/1.5017591. short: W. Rzadkowski, M. Lemeshko, The Journal of Chemical Physics 148 (2018). date_created: 2018-12-11T11:46:21Z date_published: 2018-03-14T00:00:00Z date_updated: 2024-02-28T13:01:59Z day: '14' department: - _id: MiLe doi: 10.1063/1.5017591 ec_funded: 1 external_id: arxiv: - '1711.09904' isi: - '000427517200065' intvolume: ' 148' isi: 1 issue: '10' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1711.09904 month: '03' oa: 1 oa_version: Preprint project: - _id: 26031614-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29902 name: Quantum rotations in the presence of a many-body environment - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: The Journal of Chemical Physics publication_status: published publisher: AIP Publishing publist_id: '7408' quality_controlled: '1' related_material: record: - id: '10759' relation: dissertation_contains status: public scopus_import: '1' status: public title: Effect of a magnetic field on molecule–solvent angular momentum transfer type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 148 year: '2018' ... --- _id: '6339' abstract: - lang: eng text: We introduce a diagrammatic Monte Carlo approach to angular momentum properties of quantum many-particle systems possessing a macroscopic number of degrees of freedom. The treatment is based on a diagrammatic expansion that merges the usual Feynman diagrams with the angular momentum diagrams known from atomic and nuclear structure theory, thereby incorporating the non-Abelian algebra inherent to quantum rotations. Our approach is applicable at arbitrary coupling, is free of systematic errors and of finite-size effects, and naturally provides access to the impurity Green function. We exemplify the technique by obtaining an all-coupling solution of the angulon model; however, the method is quite general and can be applied to a broad variety of systems in which particles exchange quantum angular momentum with their many-body environment. article_number: '165301' article_processing_charge: No author: - first_name: Giacomo full_name: Bighin, Giacomo id: 4CA96FD4-F248-11E8-B48F-1D18A9856A87 last_name: Bighin orcid: 0000-0001-8823-9777 - first_name: Timur full_name: Tscherbul, Timur last_name: Tscherbul - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 citation: ama: Bighin G, Tscherbul T, Lemeshko M. Diagrammatic Monte Carlo approach to angular momentum in quantum many-particle systems. Physical Review Letters. 2018;121(16). doi:10.1103/physrevlett.121.165301 apa: Bighin, G., Tscherbul, T., & Lemeshko, M. (2018). Diagrammatic Monte Carlo approach to angular momentum in quantum many-particle systems. Physical Review Letters. American Physical Society. https://doi.org/10.1103/physrevlett.121.165301 chicago: Bighin, Giacomo, Timur Tscherbul, and Mikhail Lemeshko. “Diagrammatic Monte Carlo Approach to Angular Momentum in Quantum Many-Particle Systems.” Physical Review Letters. American Physical Society, 2018. https://doi.org/10.1103/physrevlett.121.165301. ieee: G. Bighin, T. Tscherbul, and M. Lemeshko, “Diagrammatic Monte Carlo approach to angular momentum in quantum many-particle systems,” Physical Review Letters, vol. 121, no. 16. American Physical Society, 2018. ista: Bighin G, Tscherbul T, Lemeshko M. 2018. Diagrammatic Monte Carlo approach to angular momentum in quantum many-particle systems. Physical Review Letters. 121(16), 165301. mla: Bighin, Giacomo, et al. “Diagrammatic Monte Carlo Approach to Angular Momentum in Quantum Many-Particle Systems.” Physical Review Letters, vol. 121, no. 16, 165301, American Physical Society, 2018, doi:10.1103/physrevlett.121.165301. short: G. Bighin, T. Tscherbul, M. Lemeshko, Physical Review Letters 121 (2018). date_created: 2019-04-17T10:53:38Z date_published: 2018-10-16T00:00:00Z date_updated: 2024-02-28T13:15:09Z day: '16' department: - _id: MiLe doi: 10.1103/physrevlett.121.165301 external_id: arxiv: - '1803.07990' isi: - '000447468400008' intvolume: ' 121' isi: 1 issue: '16' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1803.07990 month: '10' oa: 1 oa_version: Preprint project: - _id: 26031614-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29902 name: Quantum rotations in the presence of a many-body environment publication: Physical Review Letters publication_status: published publisher: American Physical Society quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/description-of-rotating-molecules-made-easy/ scopus_import: '1' status: public title: Diagrammatic Monte Carlo approach to angular momentum in quantum many-particle systems type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 121 year: '2018' ... --- _id: '417' abstract: - lang: eng text: 'We introduce a Diagrammatic Monte Carlo (DiagMC) approach to complex molecular impurities with rotational degrees of freedom interacting with a many-particle environment. The treatment is based on the diagrammatic expansion that merges the usual Feynman diagrams with the angular momentum diagrams known from atomic and nuclear structure theory, thereby incorporating the non-Abelian algebra inherent to quantum rotations. Our approach works at arbitrary coupling, is free of systematic errors and of finite size effects, and naturally provides access to the impurity Green function. We exemplify the technique by obtaining an all-coupling solution of the angulon model, however, the method is quite general and can be applied to a broad variety of quantum impurities possessing angular momentum degrees of freedom. ' article_number: '165301' article_processing_charge: No author: - first_name: Giacomo full_name: Bighin, Giacomo id: 4CA96FD4-F248-11E8-B48F-1D18A9856A87 last_name: Bighin orcid: 0000-0001-8823-9777 - first_name: Timur full_name: Tscherbul, Timur last_name: Tscherbul - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 citation: ama: Bighin G, Tscherbul T, Lemeshko M. Diagrammatic Monte Carlo approach to rotating molecular impurities. Physical Review Letters. 2018;121(16). doi:10.1103/PhysRevLett.121.165301 apa: Bighin, G., Tscherbul, T., & Lemeshko, M. (2018). Diagrammatic Monte Carlo approach to rotating molecular impurities. Physical Review Letters. American Physical Society. https://doi.org/10.1103/PhysRevLett.121.165301 chicago: Bighin, Giacomo, Timur Tscherbul, and Mikhail Lemeshko. “Diagrammatic Monte Carlo Approach to Rotating Molecular Impurities.” Physical Review Letters. American Physical Society, 2018. https://doi.org/10.1103/PhysRevLett.121.165301. ieee: G. Bighin, T. Tscherbul, and M. Lemeshko, “Diagrammatic Monte Carlo approach to rotating molecular impurities,” Physical Review Letters, vol. 121, no. 16. American Physical Society, 2018. ista: Bighin G, Tscherbul T, Lemeshko M. 2018. Diagrammatic Monte Carlo approach to rotating molecular impurities. Physical Review Letters. 121(16), 165301. mla: Bighin, Giacomo, et al. “Diagrammatic Monte Carlo Approach to Rotating Molecular Impurities.” Physical Review Letters, vol. 121, no. 16, 165301, American Physical Society, 2018, doi:10.1103/PhysRevLett.121.165301. short: G. Bighin, T. Tscherbul, M. Lemeshko, Physical Review Letters 121 (2018). date_created: 2018-12-11T11:46:22Z date_published: 2018-10-16T00:00:00Z date_updated: 2024-02-28T13:14:53Z day: '16' department: - _id: MiLe doi: 10.1103/PhysRevLett.121.165301 external_id: arxiv: - '1803.07990' intvolume: ' 121' issue: '16' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1803.07990 month: '10' oa: 1 oa_version: Preprint project: - _id: 26031614-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29902 name: Quantum rotations in the presence of a many-body environment publication: Physical Review Letters publication_status: published publisher: American Physical Society publist_id: '8025' quality_controlled: '1' scopus_import: '1' status: public title: Diagrammatic Monte Carlo approach to rotating molecular impurities type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 121 year: '2018' ... --- _id: '313' abstract: - lang: eng text: 'Tunneling of a particle through a potential barrier remains one of the most remarkable quantum phenomena. Owing to advances in laser technology, electric fields comparable to those electrons experience in atoms are readily generated and open opportunities to dynamically investigate the process of electron tunneling through the potential barrier formed by the superposition of both laser and atomic fields. Attosecond-time and angstrom-space resolution of the strong laser-field technique allow to address fundamental questions related to tunneling, which are still open and debated: Which time is spent under the barrier and what momentum is picked up by the particle in the meantime? In this combined experimental and theoretical study we demonstrate that for strong-field ionization the leading quantum mechanical Wigner treatment for the time resolved description of tunneling is valid. We achieve a high sensitivity on the tunneling barrier and unambiguously isolate its effects by performing a differential study of two systems with almost identical tunneling geometry. Moreover, working with a low frequency laser, we essentially limit the non-adiabaticity of the process as a major source of uncertainty. The agreement between experiment and theory implies two substantial corrections with respect to the widely employed quasiclassical treatment: In addition to a non-vanishing longitudinal momentum along the laser field-direction we provide clear evidence for a non-zero tunneling time delay. This addresses also the fundamental question how the transition occurs from the tunnel barrier to free space classical evolution of the ejected electron.' alternative_title: - 'Journal of Physics: Conference Series' article_number: '012004' author: - first_name: Nicolas full_name: Camus, Nicolas last_name: Camus - first_name: Enderalp full_name: Yakaboylu, Enderalp id: 38CB71F6-F248-11E8-B48F-1D18A9856A87 last_name: Yakaboylu orcid: 0000-0001-5973-0874 - first_name: Lutz full_name: Fechner, Lutz last_name: Fechner - first_name: Michael full_name: Klaiber, Michael last_name: Klaiber - first_name: Martin full_name: Laux, Martin last_name: Laux - first_name: Yonghao full_name: Mi, Yonghao last_name: Mi - first_name: Karen full_name: Hatsagortsyan, Karen last_name: Hatsagortsyan - first_name: Thomas full_name: Pfeifer, Thomas last_name: Pfeifer - first_name: Cristoph full_name: Keitel, Cristoph last_name: Keitel - first_name: Robert full_name: Moshammer, Robert last_name: Moshammer citation: ama: 'Camus N, Yakaboylu E, Fechner L, et al. Experimental evidence for Wigner’s tunneling time. In: Vol 999. American Physical Society; 2017. doi:10.1088/1742-6596/999/1/012004' apa: 'Camus, N., Yakaboylu, E., Fechner, L., Klaiber, M., Laux, M., Mi, Y., … Moshammer, R. (2017). Experimental evidence for Wigner’s tunneling time (Vol. 999). Presented at the Annual International Laser Physics Workshop LPHYS, Kazan, Russian Federation: American Physical Society. https://doi.org/10.1088/1742-6596/999/1/012004' chicago: Camus, Nicolas, Enderalp Yakaboylu, Lutz Fechner, Michael Klaiber, Martin Laux, Yonghao Mi, Karen Hatsagortsyan, Thomas Pfeifer, Cristoph Keitel, and Robert Moshammer. “Experimental Evidence for Wigner’s Tunneling Time,” Vol. 999. American Physical Society, 2017. https://doi.org/10.1088/1742-6596/999/1/012004. ieee: N. Camus et al., “Experimental evidence for Wigner’s tunneling time,” presented at the Annual International Laser Physics Workshop LPHYS, Kazan, Russian Federation, 2017, vol. 999, no. 1. ista: 'Camus N, Yakaboylu E, Fechner L, Klaiber M, Laux M, Mi Y, Hatsagortsyan K, Pfeifer T, Keitel C, Moshammer R. 2017. Experimental evidence for Wigner’s tunneling time. Annual International Laser Physics Workshop LPHYS, Journal of Physics: Conference Series, vol. 999, 012004.' mla: Camus, Nicolas, et al. Experimental Evidence for Wigner’s Tunneling Time. Vol. 999, no. 1, 012004, American Physical Society, 2017, doi:10.1088/1742-6596/999/1/012004. short: N. Camus, E. Yakaboylu, L. Fechner, M. Klaiber, M. Laux, Y. Mi, K. Hatsagortsyan, T. Pfeifer, C. Keitel, R. Moshammer, in:, American Physical Society, 2017. conference: end_date: 2017-08-21 location: Kazan, Russian Federation name: Annual International Laser Physics Workshop LPHYS start_date: 2017-08-17 date_created: 2018-12-11T11:45:46Z date_published: 2017-07-14T00:00:00Z date_updated: 2023-02-23T12:36:07Z day: '14' ddc: - '530' department: - _id: MiLe doi: 10.1088/1742-6596/999/1/012004 external_id: arxiv: - '1611.03701' file: - access_level: open_access checksum: 6e70b525a84f6d5fb175c48e9f5cb59a content_type: application/pdf creator: dernst date_created: 2019-01-22T08:34:10Z date_updated: 2020-07-14T12:46:00Z file_id: '5871' file_name: 2017_Physics_Camus.pdf file_size: 949321 relation: main_file file_date_updated: 2020-07-14T12:46:00Z has_accepted_license: '1' intvolume: ' 999' issue: '1' language: - iso: eng month: '07' oa: 1 oa_version: Published Version publication_identifier: issn: - '17426588' publication_status: published publisher: American Physical Society publist_id: '7552' quality_controlled: '1' related_material: record: - id: '6013' relation: later_version status: public scopus_import: 1 status: public title: Experimental evidence for Wigner's tunneling time tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 999 year: '2017' ... --- _id: '6013' abstract: - lang: eng text: The first hundred attoseconds of the electron dynamics during strong field tunneling ionization are investigated. We quantify theoretically how the electron’s classical trajectories in the continuum emerge from the tunneling process and test the results with those achieved in parallel from attoclock measurements. An especially high sensitivity on the tunneling barrier is accomplished here by comparing the momentum distributions of two atomic species of slightly deviating atomic potentials (argon and krypton) being ionized under absolutely identical conditions with near-infrared laser pulses (1300 nm). The agreement between experiment and theory provides clear evidence for a nonzero tunneling time delay and a nonvanishing longitudinal momentum of the electron at the “tunnel exit.” article_number: '023201' author: - first_name: Nicolas full_name: Camus, Nicolas last_name: Camus - first_name: Enderalp full_name: Yakaboylu, Enderalp id: 38CB71F6-F248-11E8-B48F-1D18A9856A87 last_name: Yakaboylu orcid: 0000-0001-5973-0874 - first_name: Lutz full_name: Fechner, Lutz last_name: Fechner - first_name: Michael full_name: Klaiber, Michael last_name: Klaiber - first_name: Martin full_name: Laux, Martin last_name: Laux - first_name: Yonghao full_name: Mi, Yonghao last_name: Mi - first_name: Karen Z. full_name: Hatsagortsyan, Karen Z. last_name: Hatsagortsyan - first_name: Thomas full_name: Pfeifer, Thomas last_name: Pfeifer - first_name: Christoph H. full_name: Keitel, Christoph H. last_name: Keitel - first_name: Robert full_name: Moshammer, Robert last_name: Moshammer citation: ama: Camus N, Yakaboylu E, Fechner L, et al. Experimental evidence for quantum tunneling time. Physical Review Letters. 2017;119(2). doi:10.1103/PhysRevLett.119.023201 apa: Camus, N., Yakaboylu, E., Fechner, L., Klaiber, M., Laux, M., Mi, Y., … Moshammer, R. (2017). Experimental evidence for quantum tunneling time. Physical Review Letters. American Physical Society. https://doi.org/10.1103/PhysRevLett.119.023201 chicago: Camus, Nicolas, Enderalp Yakaboylu, Lutz Fechner, Michael Klaiber, Martin Laux, Yonghao Mi, Karen Z. Hatsagortsyan, Thomas Pfeifer, Christoph H. Keitel, and Robert Moshammer. “Experimental Evidence for Quantum Tunneling Time.” Physical Review Letters. American Physical Society, 2017. https://doi.org/10.1103/PhysRevLett.119.023201. ieee: N. Camus et al., “Experimental evidence for quantum tunneling time,” Physical Review Letters, vol. 119, no. 2. American Physical Society, 2017. ista: Camus N, Yakaboylu E, Fechner L, Klaiber M, Laux M, Mi Y, Hatsagortsyan KZ, Pfeifer T, Keitel CH, Moshammer R. 2017. Experimental evidence for quantum tunneling time. Physical Review Letters. 119(2), 023201. mla: Camus, Nicolas, et al. “Experimental Evidence for Quantum Tunneling Time.” Physical Review Letters, vol. 119, no. 2, 023201, American Physical Society, 2017, doi:10.1103/PhysRevLett.119.023201. short: N. Camus, E. Yakaboylu, L. Fechner, M. Klaiber, M. Laux, Y. Mi, K.Z. Hatsagortsyan, T. Pfeifer, C.H. Keitel, R. Moshammer, Physical Review Letters 119 (2017). date_created: 2019-02-14T15:24:13Z date_published: 2017-07-14T00:00:00Z date_updated: 2023-02-23T11:13:36Z day: '14' department: - _id: MiLe doi: 10.1103/PhysRevLett.119.023201 external_id: arxiv: - '1611.03701' intvolume: ' 119' issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1611.03701 month: '07' oa: 1 oa_version: Preprint publication: Physical Review Letters publication_identifier: eissn: - 1079-7114 issn: - 0031-9007 publication_status: published publisher: American Physical Society quality_controlled: '1' related_material: record: - id: '313' relation: earlier_version status: public scopus_import: 1 status: public title: Experimental evidence for quantum tunneling time type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 119 year: '2017' ... --- _id: '604' abstract: - lang: eng text: In several settings of physics and chemistry one has to deal with molecules interacting with some kind of an external environment, be it a gas, a solution, or a crystal surface. Understanding molecular processes in the presence of such a many-particle bath is inherently challenging, and usually requires large-scale numerical computations. Here, we present an alternative approach to the problem, based on the notion of the angulon quasiparticle. We show that molecules rotating inside superfluid helium nanodroplets and Bose–Einstein condensates form angulons, and therefore can be described by straightforward solutions of a simple microscopic Hamiltonian. Casting the problem in the language of angulons allows us not only to greatly simplify it, but also to gain insights into the origins of the observed phenomena and to make predictions for future experimental studies. alternative_title: - Theoretical and Computational Chemistry Series author: - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 - first_name: Richard full_name: Schmidt, Richard last_name: Schmidt citation: ama: 'Lemeshko M, Schmidt R. Molecular impurities interacting with a many-particle environment: From ultracold gases to helium nanodroplets. In: Dulieu O, Osterwalder A, eds. Cold Chemistry: Molecular Scattering and Reactivity Near Absolute Zero . Vol 11. Theoretical and Computational Chemistry Series. The Royal Society of Chemistry; 2017:444-495. doi:10.1039/9781782626800-00444' apa: 'Lemeshko, M., & Schmidt, R. (2017). Molecular impurities interacting with a many-particle environment: From ultracold gases to helium nanodroplets. In O. Dulieu & A. Osterwalder (Eds.), Cold Chemistry: Molecular Scattering and Reactivity Near Absolute Zero (Vol. 11, pp. 444–495). The Royal Society of Chemistry. https://doi.org/10.1039/9781782626800-00444' chicago: 'Lemeshko, Mikhail, and Richard Schmidt. “Molecular Impurities Interacting with a Many-Particle Environment: From Ultracold Gases to Helium Nanodroplets.” In Cold Chemistry: Molecular Scattering and Reactivity Near Absolute Zero , edited by Oliver Dulieu and Andreas Osterwalder, 11:444–95. Theoretical and Computational Chemistry Series. The Royal Society of Chemistry, 2017. https://doi.org/10.1039/9781782626800-00444.' ieee: 'M. Lemeshko and R. Schmidt, “Molecular impurities interacting with a many-particle environment: From ultracold gases to helium nanodroplets,” in Cold Chemistry: Molecular Scattering and Reactivity Near Absolute Zero , vol. 11, O. Dulieu and A. Osterwalder, Eds. The Royal Society of Chemistry, 2017, pp. 444–495.' ista: 'Lemeshko M, Schmidt R. 2017.Molecular impurities interacting with a many-particle environment: From ultracold gases to helium nanodroplets. In: Cold Chemistry: Molecular Scattering and Reactivity Near Absolute Zero . Theoretical and Computational Chemistry Series, vol. 11, 444–495.' mla: 'Lemeshko, Mikhail, and Richard Schmidt. “Molecular Impurities Interacting with a Many-Particle Environment: From Ultracold Gases to Helium Nanodroplets.” Cold Chemistry: Molecular Scattering and Reactivity Near Absolute Zero , edited by Oliver Dulieu and Andreas Osterwalder, vol. 11, The Royal Society of Chemistry, 2017, pp. 444–95, doi:10.1039/9781782626800-00444.' short: 'M. Lemeshko, R. Schmidt, in:, O. Dulieu, A. Osterwalder (Eds.), Cold Chemistry: Molecular Scattering and Reactivity Near Absolute Zero , The Royal Society of Chemistry, 2017, pp. 444–495.' date_created: 2018-12-11T11:47:27Z date_published: 2017-12-14T00:00:00Z date_updated: 2021-01-12T08:05:50Z day: '14' department: - _id: MiLe doi: 10.1039/9781782626800-00444 editor: - first_name: Oliver full_name: Dulieu, Oliver last_name: Dulieu - first_name: Andreas full_name: Osterwalder, Andreas last_name: Osterwalder intvolume: ' 11' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1703.06753 month: '12' oa: 1 oa_version: Submitted Version page: 444 - 495 publication: 'Cold Chemistry: Molecular Scattering and Reactivity Near Absolute Zero ' publication_identifier: issn: - '20413181' publication_status: published publisher: The Royal Society of Chemistry publist_id: '7201' quality_controlled: '1' scopus_import: 1 series_title: Theoretical and Computational Chemistry Series status: public title: 'Molecular impurities interacting with a many-particle environment: From ultracold gases to helium nanodroplets' type: book_chapter user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 11 year: '2017' ... --- _id: '1162' abstract: - lang: eng text: Selected universal experimental properties of high-temperature superconducting (HTS) cuprates have been singled out in the last decade. One of the pivotal challenges in this field is the designation of a consistent interpretation framework within which we can describe quantitatively the universal features of those systems. Here we analyze in a detailed manner the principal experimental data and compare them quantitatively with the approach based on a single-band model of strongly correlated electrons supplemented with strong antiferromagnetic (super)exchange interaction (the so-called t−J−U model). The model rationale is provided by estimating its microscopic parameters on the basis of the three-band approach for the Cu-O plane. We use our original full Gutzwiller wave-function solution by going beyond the renormalized mean-field theory (RMFT) in a systematic manner. Our approach reproduces very well the observed hole doping (δ) dependence of the kinetic-energy gain in the superconducting phase, one of the principal non-Bardeen-Cooper-Schrieffer features of the cuprates. The calculated Fermi velocity in the nodal direction is practically δ-independent and its universal value agrees very well with that determined experimentally. Also, a weak doping dependence of the Fermi wave vector leads to an almost constant value of the effective mass in a pure superconducting phase which is both observed in experiment and reproduced within our approach. An assessment of the currently used models (t−J, Hubbard) is carried out and the results of the canonical RMFT as a zeroth-order solution are provided for comparison to illustrate the necessity of the introduced higher-order contributions. article_number: '024506' article_processing_charge: No author: - first_name: Jozef full_name: Spałek, Jozef last_name: Spałek - first_name: Michał full_name: Zegrodnik, Michał last_name: Zegrodnik - first_name: Jan full_name: Kaczmarczyk, Jan id: 46C405DE-F248-11E8-B48F-1D18A9856A87 last_name: Kaczmarczyk orcid: 0000-0002-1629-3675 citation: ama: Spałek J, Zegrodnik M, Kaczmarczyk J. Universal properties of high temperature superconductors from real space pairing t-J-U model and its quantitative comparison with experiment. Physical Review B - Condensed Matter and Materials Physics. 2017;95(2). doi:10.1103/PhysRevB.95.024506 apa: Spałek, J., Zegrodnik, M., & Kaczmarczyk, J. (2017). Universal properties of high temperature superconductors from real space pairing t-J-U model and its quantitative comparison with experiment. Physical Review B - Condensed Matter and Materials Physics. American Physical Society. https://doi.org/10.1103/PhysRevB.95.024506 chicago: Spałek, Jozef, Michał Zegrodnik, and Jan Kaczmarczyk. “Universal Properties of High Temperature Superconductors from Real Space Pairing T-J-U Model and Its Quantitative Comparison with Experiment.” Physical Review B - Condensed Matter and Materials Physics. American Physical Society, 2017. https://doi.org/10.1103/PhysRevB.95.024506. ieee: J. Spałek, M. Zegrodnik, and J. Kaczmarczyk, “Universal properties of high temperature superconductors from real space pairing t-J-U model and its quantitative comparison with experiment,” Physical Review B - Condensed Matter and Materials Physics, vol. 95, no. 2. American Physical Society, 2017. ista: Spałek J, Zegrodnik M, Kaczmarczyk J. 2017. Universal properties of high temperature superconductors from real space pairing t-J-U model and its quantitative comparison with experiment. Physical Review B - Condensed Matter and Materials Physics. 95(2), 024506. mla: Spałek, Jozef, et al. “Universal Properties of High Temperature Superconductors from Real Space Pairing T-J-U Model and Its Quantitative Comparison with Experiment.” Physical Review B - Condensed Matter and Materials Physics, vol. 95, no. 2, 024506, American Physical Society, 2017, doi:10.1103/PhysRevB.95.024506. short: J. Spałek, M. Zegrodnik, J. Kaczmarczyk, Physical Review B - Condensed Matter and Materials Physics 95 (2017). date_created: 2018-12-11T11:50:29Z date_published: 2017-01-13T00:00:00Z date_updated: 2023-09-20T11:25:56Z day: '13' department: - _id: MiLe doi: 10.1103/PhysRevB.95.024506 ec_funded: 1 external_id: isi: - '000391852800006' intvolume: ' 95' isi: 1 issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1606.03247 month: '01' oa: 1 oa_version: Submitted Version project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Physical Review B - Condensed Matter and Materials Physics publication_identifier: issn: - '24699950' publication_status: published publisher: American Physical Society publist_id: '6195' quality_controlled: '1' scopus_import: '1' status: public title: Universal properties of high temperature superconductors from real space pairing t-J-U model and its quantitative comparison with experiment type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 95 year: '2017' ... --- _id: '1163' abstract: - lang: eng text: 'We investigate the effect of the electron-hole (e-h) symmetry breaking on d-wave superconductivity induced by non-local effects of correlations in the generalized Hubbard model. The symmetry breaking is introduced in a two-fold manner: by the next-to-nearest neighbor hopping of electrons and by the charge-bond interaction - the off-diagonal term of the Coulomb potential. Both terms lead to a pronounced asymmetry of the superconducting order parameter. The next-to-nearest neighbor hopping enhances superconductivity for h-doping, while diminishes it for e-doping. The charge-bond interaction alone leads to the opposite effect and, additionally, to the kinetic-energy gain upon condensation in the underdoped regime. With both terms included, with similar amplitudes, the height of the superconducting dome and the critical doping remain in favor of h-doping. The influence of the charge-bond interaction on deviations from symmetry of the shape of the gap at the Fermi surface in the momentum space is briefly discussed.' article_number: '085604' article_processing_charge: No author: - first_name: Marcin full_name: Wysokiński, Marcin last_name: Wysokiński - first_name: Jan full_name: Kaczmarczyk, Jan id: 46C405DE-F248-11E8-B48F-1D18A9856A87 last_name: Kaczmarczyk orcid: 0000-0002-1629-3675 citation: ama: 'Wysokiński M, Kaczmarczyk J. Unconventional superconductivity in generalized Hubbard model role of electron–hole symmetry breaking terms. Journal of Physics: Condensed Matter. 2017;29(8). doi:10.1088/1361-648X/aa532f' apa: 'Wysokiński, M., & Kaczmarczyk, J. (2017). Unconventional superconductivity in generalized Hubbard model role of electron–hole symmetry breaking terms. Journal of Physics: Condensed Matter. IOP Publishing Ltd. https://doi.org/10.1088/1361-648X/aa532f' chicago: 'Wysokiński, Marcin, and Jan Kaczmarczyk. “Unconventional Superconductivity in Generalized Hubbard Model Role of Electron–Hole Symmetry Breaking Terms.” Journal of Physics: Condensed Matter. IOP Publishing Ltd., 2017. https://doi.org/10.1088/1361-648X/aa532f.' ieee: 'M. Wysokiński and J. Kaczmarczyk, “Unconventional superconductivity in generalized Hubbard model role of electron–hole symmetry breaking terms,” Journal of Physics: Condensed Matter, vol. 29, no. 8. IOP Publishing Ltd., 2017.' ista: 'Wysokiński M, Kaczmarczyk J. 2017. Unconventional superconductivity in generalized Hubbard model role of electron–hole symmetry breaking terms. Journal of Physics: Condensed Matter. 29(8), 085604.' mla: 'Wysokiński, Marcin, and Jan Kaczmarczyk. “Unconventional Superconductivity in Generalized Hubbard Model Role of Electron–Hole Symmetry Breaking Terms.” Journal of Physics: Condensed Matter, vol. 29, no. 8, 085604, IOP Publishing Ltd., 2017, doi:10.1088/1361-648X/aa532f.' short: 'M. Wysokiński, J. Kaczmarczyk, Journal of Physics: Condensed Matter 29 (2017).' date_created: 2018-12-11T11:50:29Z date_published: 2017-01-16T00:00:00Z date_updated: 2023-09-20T11:25:32Z day: '16' department: - _id: MiLe doi: 10.1088/1361-648X/aa532f ec_funded: 1 external_id: isi: - '000393955500001' intvolume: ' 29' isi: 1 issue: '8' language: - iso: eng month: '01' oa_version: None project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: 'Journal of Physics: Condensed Matter' publication_identifier: issn: - '09538984' publication_status: published publisher: IOP Publishing Ltd. publist_id: '6194' quality_controlled: '1' scopus_import: '1' status: public title: Unconventional superconductivity in generalized Hubbard model role of electron–hole symmetry breaking terms type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 29 year: '2017' ... --- _id: '1120' abstract: - lang: eng text: 'The existence of a self-localization transition in the polaron problem has been under an active debate ever since Landau suggested it 83 years ago. Here we reveal the self-localization transition for the rotational analogue of the polaron -- the angulon quasiparticle. We show that, unlike for the polarons, self-localization of angulons occurs at finite impurity-bath coupling already at the mean-field level. The transition is accompanied by the spherical-symmetry breaking of the angulon ground state and a discontinuity in the first derivative of the ground-state energy. Moreover, the type of the symmetry breaking is dictated by the symmetry of the microscopic impurity-bath interaction, which leads to a number of distinct self-localized states. The predicted effects can potentially be addressed in experiments on cold molecules trapped in superfluid helium droplets and ultracold quantum gases, as well as on electronic excitations in solids and Bose-Einstein condensates. ' article_number: '033608' article_processing_charge: No author: - first_name: Xiang full_name: Li, Xiang id: 4B7E523C-F248-11E8-B48F-1D18A9856A87 last_name: Li - first_name: Robert full_name: Seiringer, Robert id: 4AFD0470-F248-11E8-B48F-1D18A9856A87 last_name: Seiringer orcid: 0000-0002-6781-0521 - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 citation: ama: Li X, Seiringer R, Lemeshko M. Angular self-localization of impurities rotating in a bosonic bath. Physical Review A. 2017;95(3). doi:10.1103/PhysRevA.95.033608 apa: Li, X., Seiringer, R., & Lemeshko, M. (2017). Angular self-localization of impurities rotating in a bosonic bath. Physical Review A. American Physical Society. https://doi.org/10.1103/PhysRevA.95.033608 chicago: Li, Xiang, Robert Seiringer, and Mikhail Lemeshko. “Angular Self-Localization of Impurities Rotating in a Bosonic Bath.” Physical Review A. American Physical Society, 2017. https://doi.org/10.1103/PhysRevA.95.033608. ieee: X. Li, R. Seiringer, and M. Lemeshko, “Angular self-localization of impurities rotating in a bosonic bath,” Physical Review A, vol. 95, no. 3. American Physical Society, 2017. ista: Li X, Seiringer R, Lemeshko M. 2017. Angular self-localization of impurities rotating in a bosonic bath. Physical Review A. 95(3), 033608. mla: Li, Xiang, et al. “Angular Self-Localization of Impurities Rotating in a Bosonic Bath.” Physical Review A, vol. 95, no. 3, 033608, American Physical Society, 2017, doi:10.1103/PhysRevA.95.033608. short: X. Li, R. Seiringer, M. Lemeshko, Physical Review A 95 (2017). date_created: 2018-12-11T11:50:15Z date_published: 2017-03-06T00:00:00Z date_updated: 2023-09-20T11:30:58Z day: '06' department: - _id: MiLe - _id: RoSe doi: 10.1103/PhysRevA.95.033608 ec_funded: 1 external_id: isi: - '000395981900009' intvolume: ' 95' isi: 1 issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1610.04908 month: '03' oa: 1 oa_version: Published Version project: - _id: 25C6DC12-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '694227' name: Analysis of quantum many-body systems - _id: 25C878CE-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P27533_N27 name: Structure of the Excitation Spectrum for Many-Body Quantum Systems - _id: 26031614-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29902 name: Quantum rotations in the presence of a many-body environment publication: Physical Review A publication_identifier: issn: - '24699926' publication_status: published publisher: American Physical Society publist_id: '6242' quality_controlled: '1' related_material: record: - id: '8958' relation: dissertation_contains status: public scopus_import: '1' status: public title: Angular self-localization of impurities rotating in a bosonic bath type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 95 year: '2017' ... --- _id: '1133' abstract: - lang: eng text: 'It is a common knowledge that an effective interaction of a quantum impurity with an electromagnetic field can be screened by surrounding charge carriers, whether mobile or static. Here we demonstrate that very strong, "anomalous" screening can take place in the presence of a neutral, weakly polarizable environment, due to an exchange of orbital angular momentum between the impurity and the bath. Furthermore, we show that it is possible to generalize all phenomena related to isolated impurities in an external field to the case when a many-body environment is present, by casting the problem in terms of the angulon quasiparticle. As a result, the relevant observables such as the effective Rabi frequency, geometric phase, and impurity spatial alignment are straightforward to evaluate in terms of a single parameter: the angular-momentum-dependent screening factor.' article_number: '085302' article_processing_charge: No author: - first_name: Enderalp full_name: Yakaboylu, Enderalp id: 38CB71F6-F248-11E8-B48F-1D18A9856A87 last_name: Yakaboylu orcid: 0000-0001-5973-0874 - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 citation: ama: Yakaboylu E, Lemeshko M. Anomalous screening of quantum impurities by a neutral environment. Physical Review Letters. 2017;118(8). doi:10.1103/PhysRevLett.118.085302 apa: Yakaboylu, E., & Lemeshko, M. (2017). Anomalous screening of quantum impurities by a neutral environment. Physical Review Letters. American Physical Society. https://doi.org/10.1103/PhysRevLett.118.085302 chicago: Yakaboylu, Enderalp, and Mikhail Lemeshko. “Anomalous Screening of Quantum Impurities by a Neutral Environment.” Physical Review Letters. American Physical Society, 2017. https://doi.org/10.1103/PhysRevLett.118.085302. ieee: E. Yakaboylu and M. Lemeshko, “Anomalous screening of quantum impurities by a neutral environment,” Physical Review Letters, vol. 118, no. 8. American Physical Society, 2017. ista: Yakaboylu E, Lemeshko M. 2017. Anomalous screening of quantum impurities by a neutral environment. Physical Review Letters. 118(8), 085302. mla: Yakaboylu, Enderalp, and Mikhail Lemeshko. “Anomalous Screening of Quantum Impurities by a Neutral Environment.” Physical Review Letters, vol. 118, no. 8, 085302, American Physical Society, 2017, doi:10.1103/PhysRevLett.118.085302. short: E. Yakaboylu, M. Lemeshko, Physical Review Letters 118 (2017). date_created: 2018-12-11T11:50:19Z date_published: 2017-02-22T00:00:00Z date_updated: 2023-09-20T11:30:08Z day: '22' department: - _id: MiLe doi: 10.1103/PhysRevLett.118.085302 ec_funded: 1 external_id: isi: - '000394667600003' intvolume: ' 118' isi: 1 issue: '8' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1612.02820 month: '02' oa: 1 oa_version: Submitted Version project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme - _id: 26031614-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29902 name: Quantum rotations in the presence of a many-body environment publication: Physical Review Letters publication_identifier: issn: - '00319007' publication_status: published publisher: American Physical Society publist_id: '6225' quality_controlled: '1' scopus_import: '1' status: public title: Anomalous screening of quantum impurities by a neutral environment type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 118 year: '2017' ... --- _id: '1119' abstract: - lang: eng text: Understanding the behavior of molecules interacting with superfluid helium represents a formidable challenge and, in general, requires approaches relying on large-scale numerical simulations. Here we demonstrate that experimental data collected over the last 20 years provide evidence that molecules immersed in superfluid helium form recently-predicted angulon quasiparticles [Phys. Rev. Lett. 114, 203001 (2015)]. Most importantly, casting the many-body problem in terms of angulons amounts to a drastic simplification and yields effective molecular moments of inertia as straightforward analytic solutions of a simple microscopic Hamiltonian. The outcome of the angulon theory is in good agreement with experiment for a broad range of molecular impurities, from heavy to medium-mass to light species. These results pave the way to understanding molecular rotation in liquid and crystalline phases in terms of the angulon quasiparticle. article_number: '095301' article_processing_charge: No author: - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 citation: ama: Lemeshko M. Quasiparticle approach to molecules interacting with quantum solvents. Physical Review Letters. 2017;118(9). doi:10.1103/PhysRevLett.118.095301 apa: Lemeshko, M. (2017). Quasiparticle approach to molecules interacting with quantum solvents. Physical Review Letters. American Physical Society. https://doi.org/10.1103/PhysRevLett.118.095301 chicago: Lemeshko, Mikhail. “Quasiparticle Approach to Molecules Interacting with Quantum Solvents.” Physical Review Letters. American Physical Society, 2017. https://doi.org/10.1103/PhysRevLett.118.095301. ieee: M. Lemeshko, “Quasiparticle approach to molecules interacting with quantum solvents,” Physical Review Letters, vol. 118, no. 9. American Physical Society, 2017. ista: Lemeshko M. 2017. Quasiparticle approach to molecules interacting with quantum solvents. Physical Review Letters. 118(9), 095301. mla: Lemeshko, Mikhail. “Quasiparticle Approach to Molecules Interacting with Quantum Solvents.” Physical Review Letters, vol. 118, no. 9, 095301, American Physical Society, 2017, doi:10.1103/PhysRevLett.118.095301. short: M. Lemeshko, Physical Review Letters 118 (2017). date_created: 2018-12-11T11:50:15Z date_published: 2017-02-27T00:00:00Z date_updated: 2023-09-20T11:31:22Z day: '27' department: - _id: MiLe doi: 10.1103/PhysRevLett.118.095301 external_id: isi: - '000404769200006' intvolume: ' 118' isi: 1 issue: '9' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1610.01604 month: '02' oa: 1 oa_version: Submitted Version project: - _id: 25636330-B435-11E9-9278-68D0E5697425 grant_number: 11-NSF-1070 name: ROOTS Genome-wide Analysis of Root Traits publication: Physical Review Letters publication_identifier: issn: - '00319007' publication_status: published publisher: American Physical Society publist_id: '6243' quality_controlled: '1' status: public title: Quasiparticle approach to molecules interacting with quantum solvents type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 118 year: '2017' ... --- _id: '1109' abstract: - lang: eng text: 'Rotation of molecules embedded in He nanodroplets is explored by a combination of fs laser-induced alignment experiments and angulon quasiparticle theory. We demonstrate that at low fluence of the fs alignment pulse, the molecule and its solvation shell can be set into coherent collective rotation lasting long enough to form revivals. With increasing fluence, however, the revivals disappear -- instead, rotational dynamics as rapid as for an isolated molecule is observed during the first few picoseconds. Classical calculations trace this phenomenon to transient decoupling of the molecule from its He shell. Our results open novel opportunities for studying non-equilibrium solute-solvent dynamics and quantum thermalization. ' article_number: '203203' article_processing_charge: No author: - first_name: Benjamin full_name: Shepperson, Benjamin last_name: Shepperson - first_name: Anders full_name: Søndergaard, Anders last_name: Søndergaard - first_name: Lars full_name: Christiansen, Lars last_name: Christiansen - first_name: Jan full_name: Kaczmarczyk, Jan id: 46C405DE-F248-11E8-B48F-1D18A9856A87 last_name: Kaczmarczyk orcid: 0000-0002-1629-3675 - first_name: Robert full_name: Zillich, Robert last_name: Zillich - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 - first_name: Henrik full_name: Stapelfeldt, Henrik last_name: Stapelfeldt citation: ama: 'Shepperson B, Søndergaard A, Christiansen L, et al. Laser-induced rotation of iodine molecules in helium nanodroplets: Revivals and breaking-free. Physical Review Letters. 2017;118(20). doi:10.1103/PhysRevLett.118.203203' apa: 'Shepperson, B., Søndergaard, A., Christiansen, L., Kaczmarczyk, J., Zillich, R., Lemeshko, M., & Stapelfeldt, H. (2017). Laser-induced rotation of iodine molecules in helium nanodroplets: Revivals and breaking-free. Physical Review Letters. American Physical Society. https://doi.org/10.1103/PhysRevLett.118.203203' chicago: 'Shepperson, Benjamin, Anders Søndergaard, Lars Christiansen, Jan Kaczmarczyk, Robert Zillich, Mikhail Lemeshko, and Henrik Stapelfeldt. “Laser-Induced Rotation of Iodine Molecules in Helium Nanodroplets: Revivals and Breaking-Free.” Physical Review Letters. American Physical Society, 2017. https://doi.org/10.1103/PhysRevLett.118.203203.' ieee: 'B. Shepperson et al., “Laser-induced rotation of iodine molecules in helium nanodroplets: Revivals and breaking-free,” Physical Review Letters, vol. 118, no. 20. American Physical Society, 2017.' ista: 'Shepperson B, Søndergaard A, Christiansen L, Kaczmarczyk J, Zillich R, Lemeshko M, Stapelfeldt H. 2017. Laser-induced rotation of iodine molecules in helium nanodroplets: Revivals and breaking-free. Physical Review Letters. 118(20), 203203.' mla: 'Shepperson, Benjamin, et al. “Laser-Induced Rotation of Iodine Molecules in Helium Nanodroplets: Revivals and Breaking-Free.” Physical Review Letters, vol. 118, no. 20, 203203, American Physical Society, 2017, doi:10.1103/PhysRevLett.118.203203.' short: B. Shepperson, A. Søndergaard, L. Christiansen, J. Kaczmarczyk, R. Zillich, M. Lemeshko, H. Stapelfeldt, Physical Review Letters 118 (2017). date_created: 2018-12-11T11:50:12Z date_published: 2017-05-19T00:00:00Z date_updated: 2023-09-20T11:36:17Z day: '19' department: - _id: MiLe doi: 10.1103/PhysRevLett.118.203203 external_id: isi: - '000401664000005' intvolume: ' 118' isi: 1 issue: '20' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1702.01977 month: '05' oa: 1 oa_version: Preprint project: - _id: 26031614-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29902 name: Quantum rotations in the presence of a many-body environment publication: Physical Review Letters publication_status: published publisher: American Physical Society publist_id: '6260' quality_controlled: '1' scopus_import: '1' status: public title: 'Laser-induced rotation of iodine molecules in helium nanodroplets: Revivals and breaking-free' type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 118 year: '2017' ... --- _id: '1076' abstract: - lang: eng text: Signatures of the Coulomb corrections in the photoelectron momentum distribution during laser-induced ionization of atoms or ions in tunneling and multiphoton regimes are investigated analytically in the case of a one-dimensional problem. A high-order Coulomb-corrected strong-field approximation is applied, where the exact continuum state in the S matrix is approximated by the eikonal Coulomb-Volkov state including the second-order corrections to the eikonal. Although without high-order corrections our theory coincides with the known analytical R-matrix (ARM) theory, we propose a simplified procedure for the matrix element derivation. Rather than matching the eikonal Coulomb-Volkov wave function with the bound state as in the ARM theory to remove the Coulomb singularity, we calculate the matrix element via the saddle-point integration method by time as well as by coordinate, and in this way avoiding the Coulomb singularity. The momentum shift in the photoelectron momentum distribution with respect to the ARM theory due to high-order corrections is analyzed for tunneling and multiphoton regimes. The relation of the quantum corrections to the tunneling delay time is discussed. article_number: '023403' article_processing_charge: No author: - first_name: Michael full_name: Klaiber, Michael last_name: Klaiber - first_name: Jiří full_name: Daněk, Jiří last_name: Daněk - first_name: Enderalp full_name: Yakaboylu, Enderalp id: 38CB71F6-F248-11E8-B48F-1D18A9856A87 last_name: Yakaboylu orcid: 0000-0001-5973-0874 - first_name: Karen full_name: Hatsagortsyan, Karen last_name: Hatsagortsyan - first_name: Christoph full_name: Keitel, Christoph last_name: Keitel citation: ama: Klaiber M, Daněk J, Yakaboylu E, Hatsagortsyan K, Keitel C. Strong-field ionization via a high-order Coulomb-corrected strong-field approximation. Physical Review A - Atomic, Molecular, and Optical Physics. 2017;95(2). doi:10.1103/PhysRevA.95.023403 apa: Klaiber, M., Daněk, J., Yakaboylu, E., Hatsagortsyan, K., & Keitel, C. (2017). Strong-field ionization via a high-order Coulomb-corrected strong-field approximation. Physical Review A - Atomic, Molecular, and Optical Physics. American Physical Society. https://doi.org/10.1103/PhysRevA.95.023403 chicago: Klaiber, Michael, Jiří Daněk, Enderalp Yakaboylu, Karen Hatsagortsyan, and Christoph Keitel. “Strong-Field Ionization via a High-Order Coulomb-Corrected Strong-Field Approximation.” Physical Review A - Atomic, Molecular, and Optical Physics. American Physical Society, 2017. https://doi.org/10.1103/PhysRevA.95.023403. ieee: M. Klaiber, J. Daněk, E. Yakaboylu, K. Hatsagortsyan, and C. Keitel, “Strong-field ionization via a high-order Coulomb-corrected strong-field approximation,” Physical Review A - Atomic, Molecular, and Optical Physics, vol. 95, no. 2. American Physical Society, 2017. ista: Klaiber M, Daněk J, Yakaboylu E, Hatsagortsyan K, Keitel C. 2017. Strong-field ionization via a high-order Coulomb-corrected strong-field approximation. Physical Review A - Atomic, Molecular, and Optical Physics. 95(2), 023403. mla: Klaiber, Michael, et al. “Strong-Field Ionization via a High-Order Coulomb-Corrected Strong-Field Approximation.” Physical Review A - Atomic, Molecular, and Optical Physics, vol. 95, no. 2, 023403, American Physical Society, 2017, doi:10.1103/PhysRevA.95.023403. short: M. Klaiber, J. Daněk, E. Yakaboylu, K. Hatsagortsyan, C. Keitel, Physical Review A - Atomic, Molecular, and Optical Physics 95 (2017). date_created: 2018-12-11T11:50:01Z date_published: 2017-02-01T00:00:00Z date_updated: 2023-09-20T11:57:23Z day: '01' department: - _id: MiLe doi: 10.1103/PhysRevA.95.023403 ec_funded: 1 external_id: isi: - '000400571700011' intvolume: ' 95' isi: 1 issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1609.07018 month: '02' oa: 1 oa_version: Submitted Version project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: ' Physical Review A - Atomic, Molecular, and Optical Physics' publication_identifier: issn: - '24699926' publication_status: published publisher: American Physical Society publist_id: '6305' quality_controlled: '1' scopus_import: '1' status: public title: Strong-field ionization via a high-order Coulomb-corrected strong-field approximation type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 95 year: '2017' ... --- _id: '1015' abstract: - lang: eng text: 'Vortices are commonly observed in the context of classical hydrodynamics: from whirlpools after stirring the coffee in a cup to a violent atmospheric phenomenon such as a tornado, all classical vortices are characterized by an arbitrary circulation value of the local velocity field. On the other hand the appearance of vortices with quantized circulation represents one of the fundamental signatures of macroscopic quantum phenomena. In two-dimensional superfluids quantized vortices play a key role in determining finite-temperature properties, as the superfluid phase and the normal state are separated by a vortex unbinding transition, the Berezinskii-Kosterlitz-Thouless transition. Very recent experiments with two-dimensional superfluid fermions motivate the present work: we present theoretical results based on the renormalization group showing that the universal jump of the superfluid density and the critical temperature crucially depend on the interaction strength, providing a strong benchmark for forthcoming investigations.' article_number: '45702' article_processing_charge: No author: - first_name: Giacomo full_name: Bighin, Giacomo id: 4CA96FD4-F248-11E8-B48F-1D18A9856A87 last_name: Bighin orcid: 0000-0001-8823-9777 - first_name: Luca full_name: Salasnich, Luca last_name: Salasnich citation: ama: Bighin G, Salasnich L. Vortices and antivortices in two-dimensional ultracold Fermi gases. Scientific Reports. 2017;7. doi:10.1038/srep45702 apa: Bighin, G., & Salasnich, L. (2017). Vortices and antivortices in two-dimensional ultracold Fermi gases. Scientific Reports. Nature Publishing Group. https://doi.org/10.1038/srep45702 chicago: Bighin, Giacomo, and Luca Salasnich. “Vortices and Antivortices in Two-Dimensional Ultracold Fermi Gases.” Scientific Reports. Nature Publishing Group, 2017. https://doi.org/10.1038/srep45702. ieee: G. Bighin and L. Salasnich, “Vortices and antivortices in two-dimensional ultracold Fermi gases,” Scientific Reports, vol. 7. Nature Publishing Group, 2017. ista: Bighin G, Salasnich L. 2017. Vortices and antivortices in two-dimensional ultracold Fermi gases. Scientific Reports. 7, 45702. mla: Bighin, Giacomo, and Luca Salasnich. “Vortices and Antivortices in Two-Dimensional Ultracold Fermi Gases.” Scientific Reports, vol. 7, 45702, Nature Publishing Group, 2017, doi:10.1038/srep45702. short: G. Bighin, L. Salasnich, Scientific Reports 7 (2017). date_created: 2018-12-11T11:49:42Z date_published: 2017-04-04T00:00:00Z date_updated: 2023-09-22T09:43:10Z day: '04' ddc: - '539' department: - _id: MiLe doi: 10.1038/srep45702 external_id: isi: - '000398148100001' file: - access_level: open_access content_type: application/pdf creator: system date_created: 2018-12-12T10:12:32Z date_updated: 2018-12-12T10:12:32Z file_id: '4950' file_name: IST-2017-809-v1+1_srep45702.pdf file_size: 478289 relation: main_file file_date_updated: 2018-12-12T10:12:32Z has_accepted_license: '1' intvolume: ' 7' isi: 1 language: - iso: eng month: '04' oa: 1 oa_version: Published Version publication: Scientific Reports publication_identifier: issn: - '20452322' publication_status: published publisher: Nature Publishing Group publist_id: '6380' pubrep_id: '809' quality_controlled: '1' scopus_import: '1' status: public title: Vortices and antivortices in two-dimensional ultracold Fermi gases tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 7 year: '2017' ... --- _id: '995' abstract: - lang: eng text: Recently it was shown that an impurity exchanging orbital angular momentum with a surrounding bath can be described in terms of the angulon quasiparticle [Phys. Rev. Lett. 118, 095301 (2017)]. The angulon consists of a quantum rotor dressed by a many-particle field of boson excitations, and can be formed out of, for example, a molecule or a nonspherical atom in superfluid helium, or out of an electron coupled to lattice phonons or a Bose condensate. Here we develop an approach to the angulon based on the path-integral formalism, which sets the ground for a systematic, perturbative treatment of the angulon problem. The resulting perturbation series can be interpreted in terms of Feynman diagrams, from which, in turn, one can derive a set of diagrammatic rules. These rules extend the machinery of the graphical theory of angular momentum - well known from theoretical atomic spectroscopy - to the case where an environment with an infinite number of degrees of freedom is present. In particular, we show that each diagram can be interpreted as a 'skeleton', which enforces angular momentum conservation, dressed by an additional many-body contribution. This connection between the angulon theory and the graphical theory of angular momentum is particularly important as it allows to systematically and substantially simplify the analytical representation of each diagram. In order to exemplify the technique, we calculate the 1- and 2-loop contributions to the angulon self-energy, the spectral function, and the quasiparticle weight. The diagrammatic theory we develop paves the way to investigate next-to-leading order quantities in a more compact way compared to the variational approaches. article_number: '085410' article_processing_charge: No author: - first_name: Giacomo full_name: Bighin, Giacomo id: 4CA96FD4-F248-11E8-B48F-1D18A9856A87 last_name: Bighin orcid: 0000-0001-8823-9777 - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 citation: ama: Bighin G, Lemeshko M. Diagrammatic approach to orbital quantum impurities interacting with a many-particle environment. Physical Review B - Condensed Matter and Materials Physics. 2017;96(8). doi:10.1103/PhysRevB.96.085410 apa: Bighin, G., & Lemeshko, M. (2017). Diagrammatic approach to orbital quantum impurities interacting with a many-particle environment. Physical Review B - Condensed Matter and Materials Physics. American Physical Society. https://doi.org/10.1103/PhysRevB.96.085410 chicago: Bighin, Giacomo, and Mikhail Lemeshko. “Diagrammatic Approach to Orbital Quantum Impurities Interacting with a Many-Particle Environment.” Physical Review B - Condensed Matter and Materials Physics. American Physical Society, 2017. https://doi.org/10.1103/PhysRevB.96.085410. ieee: G. Bighin and M. Lemeshko, “Diagrammatic approach to orbital quantum impurities interacting with a many-particle environment,” Physical Review B - Condensed Matter and Materials Physics, vol. 96, no. 8. American Physical Society, 2017. ista: Bighin G, Lemeshko M. 2017. Diagrammatic approach to orbital quantum impurities interacting with a many-particle environment. Physical Review B - Condensed Matter and Materials Physics. 96(8), 085410. mla: Bighin, Giacomo, and Mikhail Lemeshko. “Diagrammatic Approach to Orbital Quantum Impurities Interacting with a Many-Particle Environment.” Physical Review B - Condensed Matter and Materials Physics, vol. 96, no. 8, 085410, American Physical Society, 2017, doi:10.1103/PhysRevB.96.085410. short: G. Bighin, M. Lemeshko, Physical Review B - Condensed Matter and Materials Physics 96 (2017). date_created: 2018-12-11T11:49:36Z date_published: 2017-08-07T00:00:00Z date_updated: 2023-09-22T09:53:17Z day: '07' department: - _id: MiLe doi: 10.1103/PhysRevB.96.085410 external_id: isi: - '000407017100009' intvolume: ' 96' isi: 1 issue: '8' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1704.02616 month: '08' oa: 1 oa_version: Submitted Version project: - _id: 26031614-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29902 name: Quantum rotations in the presence of a many-body environment publication: Physical Review B - Condensed Matter and Materials Physics publication_identifier: issn: - '24699950' publication_status: published publisher: American Physical Society publist_id: '6404' quality_controlled: '1' scopus_import: '1' status: public title: Diagrammatic approach to orbital quantum impurities interacting with a many-particle environment type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 96 year: '2017' ... --- _id: '994' abstract: - lang: eng text: The formation of vortices is usually considered to be the main mechanism of angular momentum disposal in superfluids. Recently, it was predicted that a superfluid can acquire angular momentum via an alternative, microscopic route -- namely, through interaction with rotating impurities, forming so-called `angulon quasiparticles' [Phys. Rev. Lett. 114, 203001 (2015)]. The angulon instabilities correspond to transfer of a small number of angular momentum quanta from the impurity to the superfluid, as opposed to vortex instabilities, where angular momentum is quantized in units of ℏ per atom. Furthermore, since conventional impurities (such as molecules) represent three-dimensional (3D) rotors, the angular momentum transferred is intrinsically 3D as well, as opposed to a merely planar rotation which is inherent to vortices. Herein we show that the angulon theory can explain the anomalous broadening of the spectroscopic lines observed for CH 3 and NH 3 molecules in superfluid helium nanodroplets, thereby providing a fingerprint of the emerging angulon instabilities in experiment. article_processing_charge: No author: - first_name: Igor full_name: Cherepanov, Igor id: 339C7E5A-F248-11E8-B48F-1D18A9856A87 last_name: Cherepanov - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 citation: ama: Cherepanov I, Lemeshko M. Fingerprints of angulon instabilities in the spectra of matrix-isolated molecules. Physical Review Materials. 2017;1(3). doi:10.1103/PhysRevMaterials.1.035602 apa: Cherepanov, I., & Lemeshko, M. (2017). Fingerprints of angulon instabilities in the spectra of matrix-isolated molecules. Physical Review Materials. American Physical Society. https://doi.org/10.1103/PhysRevMaterials.1.035602 chicago: Cherepanov, Igor, and Mikhail Lemeshko. “Fingerprints of Angulon Instabilities in the Spectra of Matrix-Isolated Molecules.” Physical Review Materials. American Physical Society, 2017. https://doi.org/10.1103/PhysRevMaterials.1.035602. ieee: I. Cherepanov and M. Lemeshko, “Fingerprints of angulon instabilities in the spectra of matrix-isolated molecules,” Physical Review Materials, vol. 1, no. 3. American Physical Society, 2017. ista: Cherepanov I, Lemeshko M. 2017. Fingerprints of angulon instabilities in the spectra of matrix-isolated molecules. Physical Review Materials. 1(3). mla: Cherepanov, Igor, and Mikhail Lemeshko. “Fingerprints of Angulon Instabilities in the Spectra of Matrix-Isolated Molecules.” Physical Review Materials, vol. 1, no. 3, American Physical Society, 2017, doi:10.1103/PhysRevMaterials.1.035602. short: I. Cherepanov, M. Lemeshko, Physical Review Materials 1 (2017). date_created: 2018-12-11T11:49:35Z date_published: 2017-08-08T00:00:00Z date_updated: 2023-09-22T09:53:42Z day: '08' department: - _id: MiLe doi: 10.1103/PhysRevMaterials.1.035602 ec_funded: 1 external_id: isi: - '000416564000004' intvolume: ' 1' isi: 1 issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1705.09220 month: '08' oa: 1 oa_version: Submitted Version project: - _id: 26031614-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29902 name: Quantum rotations in the presence of a many-body environment - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: Physical Review Materials publication_status: published publisher: American Physical Society publist_id: '6405' quality_controlled: '1' scopus_import: '1' status: public title: Fingerprints of angulon instabilities in the spectra of matrix-isolated molecules type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 1 year: '2017' ... --- _id: '939' abstract: - lang: eng text: We reveal the existence of continuous families of guided single-mode solitons in planar waveguides with weakly nonlinear active core and absorbing boundaries. Stable propagation of TE and TM-polarized solitons is accompanied by attenuation of all other modes, i.e., the waveguide features properties of conservative and dissipative systems. If the linear spectrum of the waveguide possesses exceptional points, which occurs in the case of TM polarization, an originally focusing (defocusing) material nonlinearity may become effectively defocusing (focusing). This occurs due to the geometric phase of the carried eigenmode when the surface impedance encircles the exceptional point. In its turn, the change of the effective nonlinearity ensures the existence of dark (bright) solitons in spite of focusing (defocusing) Kerr nonlinearity of the core. The existence of an exceptional point can also result in anomalous enhancement of the effective nonlinearity. In terms of practical applications, the nonlinearity of the reported waveguide can be manipulated by controlling the properties of the absorbing cladding. article_number: '033905' article_processing_charge: No author: - first_name: Bikashkali full_name: Midya, Bikashkali id: 456187FC-F248-11E8-B48F-1D18A9856A87 last_name: Midya - first_name: Vladimir full_name: Konotop, Vladimir last_name: Konotop citation: ama: 'Midya B, Konotop V. Waveguides with absorbing boundaries: Nonlinearity controlled by an exceptional point and solitons. Physical Review Letters. 2017;119(3). doi:10.1103/PhysRevLett.119.033905' apa: 'Midya, B., & Konotop, V. (2017). Waveguides with absorbing boundaries: Nonlinearity controlled by an exceptional point and solitons. Physical Review Letters. American Physical Society. https://doi.org/10.1103/PhysRevLett.119.033905' chicago: 'Midya, Bikashkali, and Vladimir Konotop. “Waveguides with Absorbing Boundaries: Nonlinearity Controlled by an Exceptional Point and Solitons.” Physical Review Letters. American Physical Society, 2017. https://doi.org/10.1103/PhysRevLett.119.033905.' ieee: 'B. Midya and V. Konotop, “Waveguides with absorbing boundaries: Nonlinearity controlled by an exceptional point and solitons,” Physical Review Letters, vol. 119, no. 3. American Physical Society, 2017.' ista: 'Midya B, Konotop V. 2017. Waveguides with absorbing boundaries: Nonlinearity controlled by an exceptional point and solitons. Physical Review Letters. 119(3), 033905.' mla: 'Midya, Bikashkali, and Vladimir Konotop. “Waveguides with Absorbing Boundaries: Nonlinearity Controlled by an Exceptional Point and Solitons.” Physical Review Letters, vol. 119, no. 3, 033905, American Physical Society, 2017, doi:10.1103/PhysRevLett.119.033905.' short: B. Midya, V. Konotop, Physical Review Letters 119 (2017). date_created: 2018-12-11T11:49:18Z date_published: 2017-07-18T00:00:00Z date_updated: 2023-09-26T15:39:46Z day: '18' department: - _id: MiLe doi: 10.1103/PhysRevLett.119.033905 ec_funded: 1 external_id: isi: - '000405718200012' intvolume: ' 119' isi: 1 issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: 'https://arxiv.org/abs/1706.04085 ' month: '07' oa: 1 oa_version: Submitted Version project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Physical Review Letters publication_identifier: issn: - '00319007' publication_status: published publisher: American Physical Society publist_id: '6481' quality_controlled: '1' scopus_import: '1' status: public title: 'Waveguides with absorbing boundaries: Nonlinearity controlled by an exceptional point and solitons' type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 119 year: '2017' ... --- _id: '997' abstract: - lang: eng text: Recently it was shown that molecules rotating in superfluid helium can be described in terms of the angulon quasiparticles (Phys. Rev. Lett. 118, 095301 (2017)). Here we demonstrate that in the experimentally realized regime the angulon can be seen as a point charge on a 2-sphere interacting with a gauge field of a non-abelian magnetic monopole. Unlike in several other settings, the gauge fields of the angulon problem emerge in the real coordinate space, as opposed to the momentum space or some effective parameter space. Furthermore, we find a topological transition associated with making the monopole abelian, which takes place in the vicinity of the previously reported angulon instabilities. These results pave the way for studying topological phenomena in experiments on molecules trapped in superfluid helium nanodroplets, as well as on other realizations of orbital impurity problems. article_number: '235301' article_processing_charge: No article_type: original author: - first_name: Enderalp full_name: Yakaboylu, Enderalp id: 38CB71F6-F248-11E8-B48F-1D18A9856A87 last_name: Yakaboylu orcid: 0000-0001-5973-0874 - first_name: Andreas full_name: Deuchert, Andreas id: 4DA65CD0-F248-11E8-B48F-1D18A9856A87 last_name: Deuchert orcid: 0000-0003-3146-6746 - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 citation: ama: Yakaboylu E, Deuchert A, Lemeshko M. Emergence of non-abelian magnetic monopoles in a quantum impurity problem. Physical Review Letters. 2017;119(23). doi:10.1103/PhysRevLett.119.235301 apa: Yakaboylu, E., Deuchert, A., & Lemeshko, M. (2017). Emergence of non-abelian magnetic monopoles in a quantum impurity problem. Physical Review Letters. American Physical Society. https://doi.org/10.1103/PhysRevLett.119.235301 chicago: Yakaboylu, Enderalp, Andreas Deuchert, and Mikhail Lemeshko. “Emergence of Non-Abelian Magnetic Monopoles in a Quantum Impurity Problem.” Physical Review Letters. American Physical Society, 2017. https://doi.org/10.1103/PhysRevLett.119.235301. ieee: E. Yakaboylu, A. Deuchert, and M. Lemeshko, “Emergence of non-abelian magnetic monopoles in a quantum impurity problem,” Physical Review Letters, vol. 119, no. 23. American Physical Society, 2017. ista: Yakaboylu E, Deuchert A, Lemeshko M. 2017. Emergence of non-abelian magnetic monopoles in a quantum impurity problem. Physical Review Letters. 119(23), 235301. mla: Yakaboylu, Enderalp, et al. “Emergence of Non-Abelian Magnetic Monopoles in a Quantum Impurity Problem.” Physical Review Letters, vol. 119, no. 23, 235301, American Physical Society, 2017, doi:10.1103/PhysRevLett.119.235301. short: E. Yakaboylu, A. Deuchert, M. Lemeshko, Physical Review Letters 119 (2017). date_created: 2018-12-11T11:49:36Z date_published: 2017-12-06T00:00:00Z date_updated: 2023-10-10T13:31:54Z day: '06' department: - _id: MiLe - _id: RoSe doi: 10.1103/PhysRevLett.119.235301 ec_funded: 1 external_id: arxiv: - '1705.05162' isi: - '000417132100007' intvolume: ' 119' isi: 1 issue: '23' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1705.05162 month: '12' oa: 1 oa_version: Preprint project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme - _id: 25C6DC12-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '694227' name: Analysis of quantum many-body systems - _id: 26031614-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29902 name: Quantum rotations in the presence of a many-body environment publication: Physical Review Letters publication_identifier: issn: - 0031-9007 publication_status: published publisher: American Physical Society publist_id: '6401' quality_controlled: '1' scopus_import: '1' status: public title: Emergence of non-abelian magnetic monopoles in a quantum impurity problem type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 119 year: '2017' ... --- _id: '996' abstract: - lang: eng text: 'Iodine (I 2 ) molecules embedded in He nanodroplets are aligned by a 160 ps long laser pulse. The highest degree of alignment, occurring at the peak of the pulse and quantified by ⟨cos 2 θ 2D ⟩ , is measured as a function of the laser intensity. The results are well described by ⟨cos 2 θ 2D ⟩ calculated for a gas of isolated molecules each with an effective rotational constant of 0.6 times the gas-phase value, and at a temperature of 0.4 K. Theoretical analysis using the angulon quasiparticle to describe rotating molecules in superfluid helium rationalizes why the alignment mechanism is similar to that of isolated molecules with an effective rotational constant. A major advantage of molecules in He droplets is that their 0.4 K temperature leads to stronger alignment than what can generally be achieved for gas phase molecules -- here demonstrated by a direct comparison of the droplet results to measurements on a ∼ 1 K supersonic beam of isolated molecules. This point is further illustrated for more complex system by measurements on 1,4-diiodobenzene and 1,4-dibromobenzene. For all three molecular species studied the highest values of ⟨cos 2 θ 2D ⟩ achieved in He droplets exceed 0.96. ' article_number: '013946' article_processing_charge: No author: - first_name: Benjamin full_name: Shepperson, Benjamin last_name: Shepperson - first_name: Adam full_name: Chatterley, Adam last_name: Chatterley - first_name: Anders full_name: Søndergaard, Anders last_name: Søndergaard - first_name: Lars full_name: Christiansen, Lars last_name: Christiansen - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 - first_name: Henrik full_name: Stapelfeldt, Henrik last_name: Stapelfeldt citation: ama: Shepperson B, Chatterley A, Søndergaard A, Christiansen L, Lemeshko M, Stapelfeldt H. Strongly aligned molecules inside helium droplets in the near-adiabatic regime. The Journal of Chemical Physics. 2017;147(1). doi:10.1063/1.4983703 apa: Shepperson, B., Chatterley, A., Søndergaard, A., Christiansen, L., Lemeshko, M., & Stapelfeldt, H. (2017). Strongly aligned molecules inside helium droplets in the near-adiabatic regime. The Journal of Chemical Physics. AIP Publishing. https://doi.org/10.1063/1.4983703 chicago: Shepperson, Benjamin, Adam Chatterley, Anders Søndergaard, Lars Christiansen, Mikhail Lemeshko, and Henrik Stapelfeldt. “Strongly Aligned Molecules inside Helium Droplets in the Near-Adiabatic Regime.” The Journal of Chemical Physics. AIP Publishing, 2017. https://doi.org/10.1063/1.4983703. ieee: B. Shepperson, A. Chatterley, A. Søndergaard, L. Christiansen, M. Lemeshko, and H. Stapelfeldt, “Strongly aligned molecules inside helium droplets in the near-adiabatic regime,” The Journal of Chemical Physics, vol. 147, no. 1. AIP Publishing, 2017. ista: Shepperson B, Chatterley A, Søndergaard A, Christiansen L, Lemeshko M, Stapelfeldt H. 2017. Strongly aligned molecules inside helium droplets in the near-adiabatic regime. The Journal of Chemical Physics. 147(1), 013946. mla: Shepperson, Benjamin, et al. “Strongly Aligned Molecules inside Helium Droplets in the Near-Adiabatic Regime.” The Journal of Chemical Physics, vol. 147, no. 1, 013946, AIP Publishing, 2017, doi:10.1063/1.4983703. short: B. Shepperson, A. Chatterley, A. Søndergaard, L. Christiansen, M. Lemeshko, H. Stapelfeldt, The Journal of Chemical Physics 147 (2017). date_created: 2018-12-11T11:49:36Z date_published: 2017-06-01T00:00:00Z date_updated: 2024-02-28T13:02:26Z day: '01' department: - _id: MiLe doi: 10.1063/1.4983703 external_id: isi: - '000405089400047' intvolume: ' 147' isi: 1 issue: '1' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1704.03684 month: '06' oa: 1 oa_version: Submitted Version publication: The Journal of Chemical Physics publication_identifier: issn: - '00219606' publication_status: published publisher: AIP Publishing publist_id: '6403' quality_controlled: '1' scopus_import: '1' status: public title: Strongly aligned molecules inside helium droplets in the near-adiabatic regime type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 147 year: '2017' ... --- _id: '1204' abstract: - lang: eng text: In science, as in life, "surprises" can be adequately appreciated only in the presence of a null model, what we expect a priori. In physics, theories sometimes express the values of dimensionless physical constants as combinations of mathematical constants like π or e. The inverse problem also arises, whereby the measured value of a physical constant admits a "surprisingly" simple approximation in terms of well-known mathematical constants. Can we estimate the probability for this to be a mere coincidence, rather than an inkling of some theory? We answer the question in the most naive form. author: - first_name: Ariel full_name: Amir, Ariel last_name: Amir - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 - first_name: Tadashi full_name: Tokieda, Tadashi last_name: Tokieda citation: ama: Amir A, Lemeshko M, Tokieda T. Surprises in numerical expressions of physical constants. American Mathematical Monthly. 2016;123(6):609-612. doi:10.4169/amer.math.monthly.123.6.609 apa: Amir, A., Lemeshko, M., & Tokieda, T. (2016). Surprises in numerical expressions of physical constants. American Mathematical Monthly. Mathematical Association of America. https://doi.org/10.4169/amer.math.monthly.123.6.609 chicago: Amir, Ariel, Mikhail Lemeshko, and Tadashi Tokieda. “Surprises in Numerical Expressions of Physical Constants.” American Mathematical Monthly. Mathematical Association of America, 2016. https://doi.org/10.4169/amer.math.monthly.123.6.609. ieee: A. Amir, M. Lemeshko, and T. Tokieda, “Surprises in numerical expressions of physical constants,” American Mathematical Monthly, vol. 123, no. 6. Mathematical Association of America, pp. 609–612, 2016. ista: Amir A, Lemeshko M, Tokieda T. 2016. Surprises in numerical expressions of physical constants. American Mathematical Monthly. 123(6), 609–612. mla: Amir, Ariel, et al. “Surprises in Numerical Expressions of Physical Constants.” American Mathematical Monthly, vol. 123, no. 6, Mathematical Association of America, 2016, pp. 609–12, doi:10.4169/amer.math.monthly.123.6.609. short: A. Amir, M. Lemeshko, T. Tokieda, American Mathematical Monthly 123 (2016) 609–612. date_created: 2018-12-11T11:50:42Z date_published: 2016-06-01T00:00:00Z date_updated: 2021-01-12T06:49:04Z day: '01' department: - _id: MiLe doi: 10.4169/amer.math.monthly.123.6.609 intvolume: ' 123' issue: '6' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1603.00299 month: '06' oa: 1 oa_version: Preprint page: 609 - 612 publication: American Mathematical Monthly publication_status: published publisher: Mathematical Association of America publist_id: '6143' quality_controlled: '1' scopus_import: 1 status: public title: Surprises in numerical expressions of physical constants type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 123 year: '2016' ... --- _id: '1206' abstract: - lang: eng text: We study a polar molecule immersed in a superfluid environment, such as a helium nanodroplet or a Bose–Einstein condensate, in the presence of a strong electrostatic field. We show that coupling of the molecular pendular motion, induced by the field, to the fluctuating bath leads to formation of pendulons—spherical harmonic librators dressed by a field of many-particle excitations. We study the behavior of the pendulon in a broad range of molecule–bath and molecule–field interaction strengths, and reveal that its spectrum features a series of instabilities which are absent in the field-free case of the angulon quasiparticle. Furthermore, we show that an external field allows to fine-tune the positions of these instabilities in the molecular rotational spectrum. This opens the door to detailed experimental studies of redistribution of orbital angular momentum in many-particle systems. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim author: - first_name: Elena full_name: Redchenko, Elena id: 2C21D6E8-F248-11E8-B48F-1D18A9856A87 last_name: Redchenko - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 citation: ama: Redchenko E, Lemeshko M. Libration of strongly oriented polar molecules inside a superfluid. ChemPhysChem. 2016;17(22):3649-3654. doi:10.1002/cphc.201601042 apa: Redchenko, E., & Lemeshko, M. (2016). Libration of strongly oriented polar molecules inside a superfluid. ChemPhysChem. Wiley-Blackwell. https://doi.org/10.1002/cphc.201601042 chicago: Redchenko, Elena, and Mikhail Lemeshko. “Libration of Strongly Oriented Polar Molecules inside a Superfluid.” ChemPhysChem. Wiley-Blackwell, 2016. https://doi.org/10.1002/cphc.201601042. ieee: E. Redchenko and M. Lemeshko, “Libration of strongly oriented polar molecules inside a superfluid,” ChemPhysChem, vol. 17, no. 22. Wiley-Blackwell, pp. 3649–3654, 2016. ista: Redchenko E, Lemeshko M. 2016. Libration of strongly oriented polar molecules inside a superfluid. ChemPhysChem. 17(22), 3649–3654. mla: Redchenko, Elena, and Mikhail Lemeshko. “Libration of Strongly Oriented Polar Molecules inside a Superfluid.” ChemPhysChem, vol. 17, no. 22, Wiley-Blackwell, 2016, pp. 3649–54, doi:10.1002/cphc.201601042. short: E. Redchenko, M. Lemeshko, ChemPhysChem 17 (2016) 3649–3654. date_created: 2018-12-11T11:50:43Z date_published: 2016-09-18T00:00:00Z date_updated: 2021-01-12T06:49:05Z day: '18' department: - _id: JoFi - _id: MiLe doi: 10.1002/cphc.201601042 ec_funded: 1 intvolume: ' 17' issue: '22' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1609.08161 month: '09' oa: 1 oa_version: Preprint page: 3649 - 3654 project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: ChemPhysChem publication_status: published publisher: Wiley-Blackwell publist_id: '6140' quality_controlled: '1' scopus_import: 1 status: public title: Libration of strongly oriented polar molecules inside a superfluid type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 17 year: '2016' ... --- _id: '1286' abstract: - lang: eng text: We use recently developed angulon theory [R. Schmidt and M. Lemeshko, Phys. Rev. Lett. 114, 203001 (2015)PRLTAO0031-900710.1103/PhysRevLett.114.203001] to study the rotational spectrum of a cyanide molecular anion immersed into Bose-Einstein condensates of rubidium and strontium. Based on ab initio potential energy surfaces, we provide a detailed study of the rotational Lamb shift and many-body-induced fine structure which arise due to dressing of molecular rotation by a field of phonon excitations. We demonstrate that the magnitude of these effects is large enough in order to be observed in modern experiments on cold molecular ions. Furthermore, we introduce a novel method to construct pseudopotentials starting from the ab initio potential energy surfaces, which provides a means to obtain effective coupling constants for low-energy polaron models. acknowledgement: The work was supported by the NSF through a grant for the Institute for Theoretical Atomic, Molecular, and Optical Physics at Harvard University and the Smithsonian Astrophysical Observatory. B.M. acknowledges financial support received from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA grant agreement No. 291734. M.T. acknowledges support from the EU Marie Curie COFUND action (ICFOnest), the EU Grants ERC AdG OSYRIS, FP7 SIQS and EQuaM, FETPROACT QUIC, the Spanish Ministry Grants FOQUS (FIS2013-46768-P) and Severo Ochoa (SEV-2015-0522), Generalitat de Catalunya (SGR 874), Fundacio Cellex, the National Science Centre (2015/19/D/ST4/02173), and the PL-Grid Infrastructure. article_number: '041601' author: - first_name: Bikashkali full_name: Midya, Bikashkali id: 456187FC-F248-11E8-B48F-1D18A9856A87 last_name: Midya - first_name: Michał full_name: Tomza, Michał last_name: Tomza - first_name: Richard full_name: Schmidt, Richard last_name: Schmidt - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 citation: ama: Midya B, Tomza M, Schmidt R, Lemeshko M. Rotation of cold molecular ions inside a Bose-Einstein condensate. Physical Review A - Atomic, Molecular, and Optical Physics. 2016;94(4). doi:10.1103/PhysRevA.94.041601 apa: Midya, B., Tomza, M., Schmidt, R., & Lemeshko, M. (2016). Rotation of cold molecular ions inside a Bose-Einstein condensate. Physical Review A - Atomic, Molecular, and Optical Physics. American Physical Society. https://doi.org/10.1103/PhysRevA.94.041601 chicago: Midya, Bikashkali, Michał Tomza, Richard Schmidt, and Mikhail Lemeshko. “Rotation of Cold Molecular Ions inside a Bose-Einstein Condensate.” Physical Review A - Atomic, Molecular, and Optical Physics. American Physical Society, 2016. https://doi.org/10.1103/PhysRevA.94.041601. ieee: B. Midya, M. Tomza, R. Schmidt, and M. Lemeshko, “Rotation of cold molecular ions inside a Bose-Einstein condensate,” Physical Review A - Atomic, Molecular, and Optical Physics, vol. 94, no. 4. American Physical Society, 2016. ista: Midya B, Tomza M, Schmidt R, Lemeshko M. 2016. Rotation of cold molecular ions inside a Bose-Einstein condensate. Physical Review A - Atomic, Molecular, and Optical Physics. 94(4), 041601. mla: Midya, Bikashkali, et al. “Rotation of Cold Molecular Ions inside a Bose-Einstein Condensate.” Physical Review A - Atomic, Molecular, and Optical Physics, vol. 94, no. 4, 041601, American Physical Society, 2016, doi:10.1103/PhysRevA.94.041601. short: B. Midya, M. Tomza, R. Schmidt, M. Lemeshko, Physical Review A - Atomic, Molecular, and Optical Physics 94 (2016). date_created: 2018-12-11T11:51:09Z date_published: 2016-10-13T00:00:00Z date_updated: 2021-01-12T06:49:37Z day: '13' department: - _id: MiLe doi: 10.1103/PhysRevA.94.041601 ec_funded: 1 intvolume: ' 94' issue: '4' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1607.06092 month: '10' oa: 1 oa_version: Preprint project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Physical Review A - Atomic, Molecular, and Optical Physics publication_status: published publisher: American Physical Society publist_id: '6030' quality_controlled: '1' scopus_import: 1 status: public title: Rotation of cold molecular ions inside a Bose-Einstein condensate type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 94 year: '2016' ... --- _id: '1343' abstract: - lang: eng text: "The Fermi-Hubbard model is one of the key models of condensed matter physics, which holds a\r\n\r\npotential for explaining the mystery of high-temperature superconductivity. Recent progress in\r\n\r\nultracold atoms in optical lattices has paved the way to studying the model’s phase diagram using\r\n\r\nthe tools of quantum simulation, which emerged as a promising alternative to the numerical\r\n\r\ncalculations plagued by the infamous sign problem. However, the temperatures achieved using\r\n\r\nelaborate laser cooling protocols so far have been too high to show the appearance of\r\n\r\nantiferromagnetic (AF) and superconducting quantum phases directly. In this work, we demonstrate\r\n\r\nthat using the machinery of dissipative quantum state engineering, one can observe the emergence of\r\n\r\nthe AF order in the Fermi-Hubbard model with fermions in optical lattices. The core of the approach\r\n\r\nis to add incoherent laser scattering in such a way that the AF state emerges as the dark state of\r\n\r\nthe driven-dissipative dynamics. The proposed controlled dissipation channels described in this work\r\n\r\nare straightforward to add to already existing experimental setups." acknowledgement: "We acknowledge stimulating discussions with Ken Brown, Tommaso Calarco, Andrew Daley, Suzanne\r\nMcEndoo, Tobias Osborne, Cindy Regal, Luis Santos, Micha\r\nł\r\nTomza, and Martin Zwierlein. The work was supported by the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA grant agreement no. [291734], by the Volkswagen Foundation, and by DFG within SFB 1227 (DQ-mat)." article_number: '093042' author: - first_name: Jan full_name: Kaczmarczyk, Jan id: 46C405DE-F248-11E8-B48F-1D18A9856A87 last_name: Kaczmarczyk orcid: 0000-0002-1629-3675 - first_name: Hendrik full_name: Weimer, Hendrik last_name: Weimer - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 citation: ama: Kaczmarczyk J, Weimer H, Lemeshko M. Dissipative preparation of antiferromagnetic order in the Fermi-Hubbard model. New Journal of Physics. 2016;18(9). doi:10.1088/1367-2630/18/9/093042 apa: Kaczmarczyk, J., Weimer, H., & Lemeshko, M. (2016). Dissipative preparation of antiferromagnetic order in the Fermi-Hubbard model. New Journal of Physics. IOP Publishing Ltd. https://doi.org/10.1088/1367-2630/18/9/093042 chicago: Kaczmarczyk, Jan, Hendrik Weimer, and Mikhail Lemeshko. “Dissipative Preparation of Antiferromagnetic Order in the Fermi-Hubbard Model.” New Journal of Physics. IOP Publishing Ltd., 2016. https://doi.org/10.1088/1367-2630/18/9/093042. ieee: J. Kaczmarczyk, H. Weimer, and M. Lemeshko, “Dissipative preparation of antiferromagnetic order in the Fermi-Hubbard model,” New Journal of Physics, vol. 18, no. 9. IOP Publishing Ltd., 2016. ista: Kaczmarczyk J, Weimer H, Lemeshko M. 2016. Dissipative preparation of antiferromagnetic order in the Fermi-Hubbard model. New Journal of Physics. 18(9), 093042. mla: Kaczmarczyk, Jan, et al. “Dissipative Preparation of Antiferromagnetic Order in the Fermi-Hubbard Model.” New Journal of Physics, vol. 18, no. 9, 093042, IOP Publishing Ltd., 2016, doi:10.1088/1367-2630/18/9/093042. short: J. Kaczmarczyk, H. Weimer, M. Lemeshko, New Journal of Physics 18 (2016). date_created: 2018-12-11T11:51:29Z date_published: 2016-09-22T00:00:00Z date_updated: 2021-01-12T06:50:01Z day: '22' ddc: - '530' department: - _id: MiLe doi: 10.1088/1367-2630/18/9/093042 ec_funded: 1 file: - access_level: open_access checksum: 2a43e235222755e31ffbd369882c61de content_type: application/pdf creator: system date_created: 2018-12-12T10:17:52Z date_updated: 2020-07-14T12:44:45Z file_id: '5309' file_name: IST-2016-655-v1+1_njp_18_9_093042.pdf file_size: 1076029 relation: main_file file_date_updated: 2020-07-14T12:44:45Z has_accepted_license: '1' intvolume: ' 18' issue: '9' language: - iso: eng month: '09' oa: 1 oa_version: Published Version project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: New Journal of Physics publication_status: published publisher: IOP Publishing Ltd. publist_id: '5909' pubrep_id: '655' quality_controlled: '1' scopus_import: 1 status: public title: Dissipative preparation of antiferromagnetic order in the Fermi-Hubbard model tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 18 year: '2016' ... --- _id: '1347' abstract: - lang: eng text: 'During the past 70 years, the quantum theory of angular momentum has been successfully applied to describing the properties of nuclei, atoms, and molecules, and their interactions with each other as well as with external fields. Because of the properties of quantum rotations, the angular-momentum algebra can be of tremendous complexity even for a few interacting particles, such as valence electrons of an atom, not to mention larger many-particle systems. In this work, we study an example of the latter: A rotating quantum impurity coupled to a many-body bosonic bath. In the regime of strong impurity-bath couplings, the problem involves the addition of an infinite number of angular momenta, which renders it intractable using currently available techniques. Here, we introduce a novel canonical transformation that allows us to eliminate the complex angular-momentum algebra from such a class of many-body problems. In addition, the transformation exposes the problem''s constants of motion, and renders it solvable exactly in the limit of a slowly rotating impurity. We exemplify the technique by showing that there exists a critical rotational speed at which the impurity suddenly acquires one quantum of angular momentum from the many-particle bath. Such an instability is accompanied by the deformation of the phonon density in the frame rotating along with the impurity.' acknowledgement: We are grateful to Eugene Demler, Jan Kaczmarczyk, Laleh Safari, and Hendrik Weimer for insightful discussions. The work was supported by the NSF through a grant for the Institute for Theoretical Atomic, Molecular, and Optical Physics at Harvard University and Smithsonian Astrophysical Observatory. article_number: '011012' author: - first_name: Richard full_name: Schmidt, Richard last_name: Schmidt - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 citation: ama: Schmidt R, Lemeshko M. Deformation of a quantum many-particle system by a rotating impurity. Physical Review X. 2016;6(1). doi:10.1103/PhysRevX.6.011012 apa: Schmidt, R., & Lemeshko, M. (2016). Deformation of a quantum many-particle system by a rotating impurity. Physical Review X. American Physical Society. https://doi.org/10.1103/PhysRevX.6.011012 chicago: Schmidt, Richard, and Mikhail Lemeshko. “Deformation of a Quantum Many-Particle System by a Rotating Impurity.” Physical Review X. American Physical Society, 2016. https://doi.org/10.1103/PhysRevX.6.011012. ieee: R. Schmidt and M. Lemeshko, “Deformation of a quantum many-particle system by a rotating impurity,” Physical Review X, vol. 6, no. 1. American Physical Society, 2016. ista: Schmidt R, Lemeshko M. 2016. Deformation of a quantum many-particle system by a rotating impurity. Physical Review X. 6(1), 011012. mla: Schmidt, Richard, and Mikhail Lemeshko. “Deformation of a Quantum Many-Particle System by a Rotating Impurity.” Physical Review X, vol. 6, no. 1, 011012, American Physical Society, 2016, doi:10.1103/PhysRevX.6.011012. short: R. Schmidt, M. Lemeshko, Physical Review X 6 (2016). date_created: 2018-12-11T11:51:30Z date_published: 2016-01-01T00:00:00Z date_updated: 2021-01-12T06:50:03Z day: '01' ddc: - '530' department: - _id: MiLe doi: 10.1103/PhysRevX.6.011012 file: - access_level: open_access checksum: 6757a164d3c38905e05b2b5a188cb8ff content_type: application/pdf creator: system date_created: 2018-12-12T10:15:59Z date_updated: 2020-07-14T12:44:45Z file_id: '5183' file_name: IST-2016-652-v1+1_PhysRevX.6.011012.pdf file_size: 1165869 relation: main_file file_date_updated: 2020-07-14T12:44:45Z has_accepted_license: '1' intvolume: ' 6' issue: '1' language: - iso: eng month: '01' oa: 1 oa_version: Published Version publication: Physical Review X publication_status: published publisher: American Physical Society publist_id: '5902' pubrep_id: '652' quality_controlled: '1' scopus_import: 1 status: public title: Deformation of a quantum many-particle system by a rotating impurity tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 6 year: '2016' ... --- _id: '1352' abstract: - lang: eng text: We study the interplay of nematic and superconducting order in the two-dimensional Hubbard model and show that they can coexist, especially when superconductivity is not the energetically dominant phase. Due to a breaking of the C4 symmetry, the coexisting phase inherently contains admixture of the s-wave pairing components. As a result, the superconducting gap exhibits nonstandard features including changed nodal directions. Our results also show that in the optimally doped regime the pure superconducting phase is typically unstable towards developing nematicity (breaking of the C4 symmetry). This has implications for the cuprate high-Tc superconductors, for which in this regime the so-called intertwined orders have recently been observed. Namely, the coexisting phase may be viewed as a precursor to such more involved patterns of symmetry breaking. acknowledgement: The authors are grateful to Florian Gebhard and Mikhail Lemeshko for discussions and critical reading of the manuscript. The work was supported by the Ministry of Science and Higher Education in Poland through the Iuventus Plus Grant No. IP2012 017172, as well as by the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA Grant Agreement No. 291734. J.K. acknowledges hospitality of the Leibniz Universität in Hannover where a large part of the work was performed. article_number: '085152' author: - first_name: Jan full_name: Kaczmarczyk, Jan id: 46C405DE-F248-11E8-B48F-1D18A9856A87 last_name: Kaczmarczyk orcid: 0000-0002-1629-3675 - first_name: Tobias full_name: Schickling, Tobias last_name: Schickling - first_name: Jörg full_name: Bünemann, Jörg last_name: Bünemann citation: ama: Kaczmarczyk J, Schickling T, Bünemann J. Coexistence of nematic order and superconductivity in the Hubbard model. Physical Review B - Condensed Matter and Materials Physics. 2016;94(8). doi:10.1103/PhysRevB.94.085152 apa: Kaczmarczyk, J., Schickling, T., & Bünemann, J. (2016). Coexistence of nematic order and superconductivity in the Hubbard model. Physical Review B - Condensed Matter and Materials Physics. American Physical Society. https://doi.org/10.1103/PhysRevB.94.085152 chicago: Kaczmarczyk, Jan, Tobias Schickling, and Jörg Bünemann. “Coexistence of Nematic Order and Superconductivity in the Hubbard Model.” Physical Review B - Condensed Matter and Materials Physics. American Physical Society, 2016. https://doi.org/10.1103/PhysRevB.94.085152. ieee: J. Kaczmarczyk, T. Schickling, and J. Bünemann, “Coexistence of nematic order and superconductivity in the Hubbard model,” Physical Review B - Condensed Matter and Materials Physics, vol. 94, no. 8. American Physical Society, 2016. ista: Kaczmarczyk J, Schickling T, Bünemann J. 2016. Coexistence of nematic order and superconductivity in the Hubbard model. Physical Review B - Condensed Matter and Materials Physics. 94(8), 085152. mla: Kaczmarczyk, Jan, et al. “Coexistence of Nematic Order and Superconductivity in the Hubbard Model.” Physical Review B - Condensed Matter and Materials Physics, vol. 94, no. 8, 085152, American Physical Society, 2016, doi:10.1103/PhysRevB.94.085152. short: J. Kaczmarczyk, T. Schickling, J. Bünemann, Physical Review B - Condensed Matter and Materials Physics 94 (2016). date_created: 2018-12-11T11:51:32Z date_published: 2016-08-30T00:00:00Z date_updated: 2021-01-12T06:50:05Z day: '30' department: - _id: MiLe doi: 10.1103/PhysRevB.94.085152 ec_funded: 1 intvolume: ' 94' issue: '8' language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1512.06688 month: '08' oa: 1 oa_version: Preprint project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Physical Review B - Condensed Matter and Materials Physics publication_status: published publisher: American Physical Society publist_id: '5897' quality_controlled: '1' scopus_import: 1 status: public title: Coexistence of nematic order and superconductivity in the Hubbard model type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 94 year: '2016' ... --- _id: '1368' abstract: - lang: eng text: Superconductivity in heavy-fermion systems has an unconventional nature and is considered to originate from the universal features of the electronic structure. Here, the Anderson lattice model is studied by means of the full variational Gutzwiller wave function incorporating nonlocal effects of the on-site interaction. We show that the d-wave superconducting ground state can be driven solely by interelectronic correlations. The proposed microscopic mechanism leads to a multigap superconductivity with the dominant contribution due to f electrons and in the dx2−y2-wave channel. Our results rationalize several important observations for CeCoIn5. acknowledgement: "The work has been supported by the National Science Center \ (NCN) under the Grant MAESTRO, No.\r\nDEC-2012/04/A/ST3/00342. " article_number: '024517' author: - first_name: Marcin full_name: Wysokiński, Marcin last_name: Wysokiński - first_name: Jan full_name: Kaczmarczyk, Jan id: 46C405DE-F248-11E8-B48F-1D18A9856A87 last_name: Kaczmarczyk orcid: 0000-0002-1629-3675 - first_name: Jozef full_name: Spałek, Jozef last_name: Spałek citation: ama: 'Wysokiński M, Kaczmarczyk J, Spałek J. Correlation driven d wave superconductivity in Anderson lattice model: Two gaps. Physical Review B - Condensed Matter and Materials Physics. 2016;94(2). doi:10.1103/PhysRevB.94.024517' apa: 'Wysokiński, M., Kaczmarczyk, J., & Spałek, J. (2016). Correlation driven d wave superconductivity in Anderson lattice model: Two gaps. Physical Review B - Condensed Matter and Materials Physics. American Physical Society. https://doi.org/10.1103/PhysRevB.94.024517' chicago: 'Wysokiński, Marcin, Jan Kaczmarczyk, and Jozef Spałek. “Correlation Driven d Wave Superconductivity in Anderson Lattice Model: Two Gaps.” Physical Review B - Condensed Matter and Materials Physics. American Physical Society, 2016. https://doi.org/10.1103/PhysRevB.94.024517.' ieee: 'M. Wysokiński, J. Kaczmarczyk, and J. Spałek, “Correlation driven d wave superconductivity in Anderson lattice model: Two gaps,” Physical Review B - Condensed Matter and Materials Physics, vol. 94, no. 2. American Physical Society, 2016.' ista: 'Wysokiński M, Kaczmarczyk J, Spałek J. 2016. Correlation driven d wave superconductivity in Anderson lattice model: Two gaps. Physical Review B - Condensed Matter and Materials Physics. 94(2), 024517.' mla: 'Wysokiński, Marcin, et al. “Correlation Driven d Wave Superconductivity in Anderson Lattice Model: Two Gaps.” Physical Review B - Condensed Matter and Materials Physics, vol. 94, no. 2, 024517, American Physical Society, 2016, doi:10.1103/PhysRevB.94.024517.' short: M. Wysokiński, J. Kaczmarczyk, J. Spałek, Physical Review B - Condensed Matter and Materials Physics 94 (2016). date_created: 2018-12-11T11:51:37Z date_published: 2016-07-01T00:00:00Z date_updated: 2021-01-12T06:50:12Z day: '01' department: - _id: MiLe doi: 10.1103/PhysRevB.94.024517 ec_funded: 1 intvolume: ' 94' issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1510.00224 month: '07' oa: 1 oa_version: Preprint project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Physical Review B - Condensed Matter and Materials Physics publication_status: published publisher: American Physical Society publist_id: '5844' quality_controlled: '1' scopus_import: 1 status: public title: 'Correlation driven d wave superconductivity in Anderson lattice model: Two gaps' type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 94 year: '2016' ... --- _id: '1416' abstract: - lang: eng text: Anisotropic dipole-dipole interactions between ultracold dipolar fermions break the symmetry of the Fermi surface and thereby deform it. Here we demonstrate that such a Fermi surface deformation induces a topological phase transition - the so-called Lifshitz transition - in the regime accessible to present-day experiments. We describe the impact of the Lifshitz transition on observable quantities such as the Fermi surface topology, the density-density correlation function, and the excitation spectrum of the system. The Lifshitz transition in ultracold atoms can be controlled by tuning the dipole orientation and, in contrast to the transition studied in crystalline solids, is completely interaction driven. article_number: '195145' author: - first_name: Erik full_name: Van Loon, Erik last_name: Van Loon - first_name: Mikhail full_name: Katsnelson, Mikhail last_name: Katsnelson - first_name: Lauriane full_name: Chomaz, Lauriane last_name: Chomaz - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 citation: ama: Van Loon E, Katsnelson M, Chomaz L, Lemeshko M. Interaction-driven Lifshitz transition with dipolar fermions in optical lattices. Physical Review B - Condensed Matter and Materials Physics. 2016;93(19). doi:10.1103/PhysRevB.93.195145 apa: Van Loon, E., Katsnelson, M., Chomaz, L., & Lemeshko, M. (2016). Interaction-driven Lifshitz transition with dipolar fermions in optical lattices. Physical Review B - Condensed Matter and Materials Physics. American Physical Society. https://doi.org/10.1103/PhysRevB.93.195145 chicago: Van Loon, Erik, Mikhail Katsnelson, Lauriane Chomaz, and Mikhail Lemeshko. “Interaction-Driven Lifshitz Transition with Dipolar Fermions in Optical Lattices.” Physical Review B - Condensed Matter and Materials Physics. American Physical Society, 2016. https://doi.org/10.1103/PhysRevB.93.195145. ieee: E. Van Loon, M. Katsnelson, L. Chomaz, and M. Lemeshko, “Interaction-driven Lifshitz transition with dipolar fermions in optical lattices,” Physical Review B - Condensed Matter and Materials Physics, vol. 93, no. 19. American Physical Society, 2016. ista: Van Loon E, Katsnelson M, Chomaz L, Lemeshko M. 2016. Interaction-driven Lifshitz transition with dipolar fermions in optical lattices. Physical Review B - Condensed Matter and Materials Physics. 93(19), 195145. mla: Van Loon, Erik, et al. “Interaction-Driven Lifshitz Transition with Dipolar Fermions in Optical Lattices.” Physical Review B - Condensed Matter and Materials Physics, vol. 93, no. 19, 195145, American Physical Society, 2016, doi:10.1103/PhysRevB.93.195145. short: E. Van Loon, M. Katsnelson, L. Chomaz, M. Lemeshko, Physical Review B - Condensed Matter and Materials Physics 93 (2016). date_created: 2018-12-11T11:51:54Z date_published: 2016-05-15T00:00:00Z date_updated: 2021-01-12T06:50:36Z day: '15' department: - _id: MiLe doi: 10.1103/PhysRevB.93.195145 intvolume: ' 93' issue: '19' language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1603.09358 month: '05' oa: 1 oa_version: Preprint publication: Physical Review B - Condensed Matter and Materials Physics publication_status: published publisher: American Physical Society publist_id: '5791' quality_controlled: '1' scopus_import: 1 status: public title: Interaction-driven Lifshitz transition with dipolar fermions in optical lattices type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 93 year: '2016' ... --- _id: '1419' abstract: - lang: eng text: We study the superconducting phase of the Hubbard model using the Gutzwiller variational wave function (GWF) and the recently proposed diagrammatic expansion technique (DE-GWF). The DE-GWF method works on the level of the full GWF and in the thermodynamic limit. Here, we consider a finite-size system to study the accuracy of the results as a function of the system size (which is practically unrestricted). We show that the finite-size scaling used, e.g. in the variational Monte Carlo method can lead to significant, uncontrolled errors. The presented research is the first step towards applying the DE-GWF method in studies of inhomogeneous situations, including systems with impurities, defects, inhomogeneous phases, or disorder. article_number: '175701' author: - first_name: Andrzej full_name: Tomski, Andrzej last_name: Tomski - first_name: Jan full_name: Kaczmarczyk, Jan id: 46C405DE-F248-11E8-B48F-1D18A9856A87 last_name: Kaczmarczyk orcid: 0000-0002-1629-3675 citation: ama: 'Tomski A, Kaczmarczyk J. Gutzwiller wave function for finite systems: Superconductivity in the Hubbard model. Journal of Physics: Condensed Matter. 2016;28(17). doi:10.1088/0953-8984/28/17/175701' apa: 'Tomski, A., & Kaczmarczyk, J. (2016). Gutzwiller wave function for finite systems: Superconductivity in the Hubbard model. Journal of Physics: Condensed Matter. IOP Publishing Ltd. https://doi.org/10.1088/0953-8984/28/17/175701' chicago: 'Tomski, Andrzej, and Jan Kaczmarczyk. “Gutzwiller Wave Function for Finite Systems: Superconductivity in the Hubbard Model.” Journal of Physics: Condensed Matter. IOP Publishing Ltd., 2016. https://doi.org/10.1088/0953-8984/28/17/175701.' ieee: 'A. Tomski and J. Kaczmarczyk, “Gutzwiller wave function for finite systems: Superconductivity in the Hubbard model,” Journal of Physics: Condensed Matter, vol. 28, no. 17. IOP Publishing Ltd., 2016.' ista: 'Tomski A, Kaczmarczyk J. 2016. Gutzwiller wave function for finite systems: Superconductivity in the Hubbard model. Journal of Physics: Condensed Matter. 28(17), 175701.' mla: 'Tomski, Andrzej, and Jan Kaczmarczyk. “Gutzwiller Wave Function for Finite Systems: Superconductivity in the Hubbard Model.” Journal of Physics: Condensed Matter, vol. 28, no. 17, 175701, IOP Publishing Ltd., 2016, doi:10.1088/0953-8984/28/17/175701.' short: 'A. Tomski, J. Kaczmarczyk, Journal of Physics: Condensed Matter 28 (2016).' date_created: 2018-12-11T11:51:55Z date_published: 2016-03-29T00:00:00Z date_updated: 2021-01-12T06:50:36Z day: '29' department: - _id: MiLe doi: 10.1088/0953-8984/28/17/175701 ec_funded: 1 intvolume: ' 28' issue: '17' language: - iso: eng month: '03' oa_version: None project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: 'Journal of Physics: Condensed Matter' publication_status: published publisher: IOP Publishing Ltd. publist_id: '5788' quality_controlled: '1' scopus_import: 1 status: public title: 'Gutzwiller wave function for finite systems: Superconductivity in the Hubbard model' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 28 year: '2016' ... --- _id: '1496' abstract: - lang: eng text: The two-photon 1s2 2s 2p 3P0 1s22s2 1S0 transition in berylliumlike ions is theoretically investigated within a fully relativistic framework and a second-order perturbation theory. We focus our analysis on how electron correlation, as well as the negative-energy spectrum, can affect the forbidden E1M1 decay rate. For this purpose, we include the electronic correlation via an effective local potential and within a single configuration-state model. Due to its experimental interest, evaluations of decay rates are performed for berylliumlike xenon and uranium. We find that the negative-energy contribution can be neglected at the present level of accuracy in the evaluation of the decay rate. On the other hand, if contributions of electronic correlation are not carefully taken into account, it may change the lifetime of the metastable state by up to 20%. By performing a full-relativistic jj-coupling calculation, we found a decrease of the decay rate by two orders of magnitude compared to non-relativistic LS-coupling calculations, for the selected heavy ions. acknowledgement: 'This research was supported in part by FCT, Portugal, through Project No. PTDC/FIS/117606/2010, financed by the European Community Fund FEDER through the COMPETE. ' article_number: '032502' author: - first_name: Pedro full_name: Amaro, Pedro last_name: Amaro - first_name: Filippo full_name: Fratini, Filippo last_name: Fratini - first_name: Laleh full_name: Safari, Laleh id: 3C325E5E-F248-11E8-B48F-1D18A9856A87 last_name: Safari - first_name: Jorge full_name: Machado, Jorge last_name: Machado - first_name: Mauro full_name: Guerra, Mauro last_name: Guerra - first_name: Paul full_name: Indelicato, Paul last_name: Indelicato - first_name: José full_name: Santos, José last_name: Santos citation: ama: Amaro P, Fratini F, Safari L, et al. Relativistic evaluation of the two-photon decay of the metastable 1s22s2p3P0 state in berylliumlike ions with an effective-potential model. Physical Review A - Atomic, Molecular, and Optical Physics. 2016;93(3). doi:10.1103/PhysRevA.93.032502 apa: Amaro, P., Fratini, F., Safari, L., Machado, J., Guerra, M., Indelicato, P., & Santos, J. (2016). Relativistic evaluation of the two-photon decay of the metastable 1s22s2p3P0 state in berylliumlike ions with an effective-potential model. Physical Review A - Atomic, Molecular, and Optical Physics. American Physical Society. https://doi.org/10.1103/PhysRevA.93.032502 chicago: Amaro, Pedro, Filippo Fratini, Laleh Safari, Jorge Machado, Mauro Guerra, Paul Indelicato, and José Santos. “Relativistic Evaluation of the Two-Photon Decay of the Metastable 1s22s2p3P0 State in Berylliumlike Ions with an Effective-Potential Model.” Physical Review A - Atomic, Molecular, and Optical Physics. American Physical Society, 2016. https://doi.org/10.1103/PhysRevA.93.032502. ieee: P. Amaro et al., “Relativistic evaluation of the two-photon decay of the metastable 1s22s2p3P0 state in berylliumlike ions with an effective-potential model,” Physical Review A - Atomic, Molecular, and Optical Physics, vol. 93, no. 3. American Physical Society, 2016. ista: Amaro P, Fratini F, Safari L, Machado J, Guerra M, Indelicato P, Santos J. 2016. Relativistic evaluation of the two-photon decay of the metastable 1s22s2p3P0 state in berylliumlike ions with an effective-potential model. Physical Review A - Atomic, Molecular, and Optical Physics. 93(3), 032502. mla: Amaro, Pedro, et al. “Relativistic Evaluation of the Two-Photon Decay of the Metastable 1s22s2p3P0 State in Berylliumlike Ions with an Effective-Potential Model.” Physical Review A - Atomic, Molecular, and Optical Physics, vol. 93, no. 3, 032502, American Physical Society, 2016, doi:10.1103/PhysRevA.93.032502. short: P. Amaro, F. Fratini, L. Safari, J. Machado, M. Guerra, P. Indelicato, J. Santos, Physical Review A - Atomic, Molecular, and Optical Physics 93 (2016). date_created: 2018-12-11T11:52:21Z date_published: 2016-03-07T00:00:00Z date_updated: 2021-01-12T06:51:09Z day: '07' department: - _id: MiLe doi: 10.1103/PhysRevA.93.032502 ec_funded: 1 intvolume: ' 93' issue: '3' language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1508.06169 month: '03' oa: 1 oa_version: Preprint project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Physical Review A - Atomic, Molecular, and Optical Physics publication_status: published publisher: American Physical Society publist_id: '5683' quality_controlled: '1' scopus_import: 1 status: public title: Relativistic evaluation of the two-photon decay of the metastable 1s22s2p3P0 state in berylliumlike ions with an effective-potential model type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 93 year: '2016' ... --- _id: '1287' abstract: - lang: eng text: A planar waveguide with an impedance boundary, composed of nonperfect metallic plates, and with passive or active dielectric filling, is considered. We show the possibility of selective mode guiding and amplification when a homogeneous pump is added to the dielectric and analyze differences in TE and TM mode propagation. Such a non-conservative system is also shown to feature exceptional points for specific and experimentally tunable parameters, which are described for a particular case of transparent dielectric. acknowledgement: The research of B.M. is supported by the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant No. [291734]. article_processing_charge: No author: - first_name: Bikashkali full_name: Midya, Bikashkali id: 456187FC-F248-11E8-B48F-1D18A9856A87 last_name: Midya - first_name: Vladimir full_name: Konotop, Vladimir last_name: Konotop citation: ama: Midya B, Konotop V. Modes and exceptional points in waveguides with impedance boundary conditions. Optics Letters. 2016;41(20):4621-4624. doi:10.1364/OL.41.004621 apa: Midya, B., & Konotop, V. (2016). Modes and exceptional points in waveguides with impedance boundary conditions. Optics Letters. Optica Publishing Group. https://doi.org/10.1364/OL.41.004621 chicago: Midya, Bikashkali, and Vladimir Konotop. “Modes and Exceptional Points in Waveguides with Impedance Boundary Conditions.” Optics Letters. Optica Publishing Group, 2016. https://doi.org/10.1364/OL.41.004621. ieee: B. Midya and V. Konotop, “Modes and exceptional points in waveguides with impedance boundary conditions,” Optics Letters, vol. 41, no. 20. Optica Publishing Group, pp. 4621–4624, 2016. ista: Midya B, Konotop V. 2016. Modes and exceptional points in waveguides with impedance boundary conditions. Optics Letters. 41(20), 4621–4624. mla: Midya, Bikashkali, and Vladimir Konotop. “Modes and Exceptional Points in Waveguides with Impedance Boundary Conditions.” Optics Letters, vol. 41, no. 20, Optica Publishing Group, 2016, pp. 4621–24, doi:10.1364/OL.41.004621. short: B. Midya, V. Konotop, Optics Letters 41 (2016) 4621–4624. date_created: 2018-12-11T11:51:09Z date_published: 2016-10-15T00:00:00Z date_updated: 2023-10-17T12:16:24Z day: '15' department: - _id: MiLe doi: 10.1364/OL.41.004621 ec_funded: 1 intvolume: ' 41' issue: '20' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1609.02863 month: '10' oa: 1 oa_version: Preprint page: 4621 - 4624 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Optics Letters publication_status: published publisher: Optica Publishing Group publist_id: '6029' quality_controlled: '1' scopus_import: '1' status: public title: Modes and exceptional points in waveguides with impedance boundary conditions type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 41 year: '2016' ... --- _id: '1587' abstract: - lang: eng text: We investigate the quantum interference shifts between energetically close states, where the state structure is observed by laser spectroscopy. We report a compact and analytical expression that models the quantum interference induced shift for any admixture of circular polarization of the incident laser and angle of observation. An experimental scenario free of quantum interference can thus be predicted with this formula. Although this study is exemplified here for muonic deuterium, it can be applied to any other laser spectroscopy measurement of ns-n′p frequencies of a nonrelativistic atomic system, via an ns→n′p→n′′s scheme. article_number: '062506' article_processing_charge: No article_type: original author: - first_name: Pedro full_name: Amaro, Pedro last_name: Amaro - first_name: Filippo full_name: Fratini, Filippo last_name: Fratini - first_name: Laleh full_name: Safari, Laleh id: 3C325E5E-F248-11E8-B48F-1D18A9856A87 last_name: Safari - first_name: Aldo full_name: Antognini, Aldo last_name: Antognini - first_name: Paul full_name: Indelicato, Paul last_name: Indelicato - first_name: Randolf full_name: Pohl, Randolf last_name: Pohl - first_name: José full_name: Santos, José last_name: Santos citation: ama: Amaro P, Fratini F, Safari L, et al. Quantum interference shifts in laser spectroscopy with elliptical polarization. Physical Review A - Atomic, Molecular, and Optical Physics. 2015;92(6). doi:10.1103/PhysRevA.92.062506 apa: Amaro, P., Fratini, F., Safari, L., Antognini, A., Indelicato, P., Pohl, R., & Santos, J. (2015). Quantum interference shifts in laser spectroscopy with elliptical polarization. Physical Review A - Atomic, Molecular, and Optical Physics. American Physical Society. https://doi.org/10.1103/PhysRevA.92.062506 chicago: Amaro, Pedro, Filippo Fratini, Laleh Safari, Aldo Antognini, Paul Indelicato, Randolf Pohl, and José Santos. “Quantum Interference Shifts in Laser Spectroscopy with Elliptical Polarization.” Physical Review A - Atomic, Molecular, and Optical Physics. American Physical Society, 2015. https://doi.org/10.1103/PhysRevA.92.062506. ieee: P. Amaro et al., “Quantum interference shifts in laser spectroscopy with elliptical polarization,” Physical Review A - Atomic, Molecular, and Optical Physics, vol. 92, no. 6. American Physical Society, 2015. ista: Amaro P, Fratini F, Safari L, Antognini A, Indelicato P, Pohl R, Santos J. 2015. Quantum interference shifts in laser spectroscopy with elliptical polarization. Physical Review A - Atomic, Molecular, and Optical Physics. 92(6), 062506. mla: Amaro, Pedro, et al. “Quantum Interference Shifts in Laser Spectroscopy with Elliptical Polarization.” Physical Review A - Atomic, Molecular, and Optical Physics, vol. 92, no. 6, 062506, American Physical Society, 2015, doi:10.1103/PhysRevA.92.062506. short: P. Amaro, F. Fratini, L. Safari, A. Antognini, P. Indelicato, R. Pohl, J. Santos, Physical Review A - Atomic, Molecular, and Optical Physics 92 (2015). date_created: 2018-12-11T11:52:53Z date_published: 2015-12-31T00:00:00Z date_updated: 2021-01-12T06:51:47Z day: '31' department: - _id: MiLe doi: 10.1103/PhysRevA.92.062506 ec_funded: 1 external_id: arxiv: - '1511.03585' intvolume: ' 92' issue: '6' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1511.03585 month: '12' oa: 1 oa_version: Preprint project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Physical Review A - Atomic, Molecular, and Optical Physics publication_status: published publisher: American Physical Society publist_id: '5584' quality_controlled: '1' scopus_import: 1 status: public title: Quantum interference shifts in laser spectroscopy with elliptical polarization type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 92 year: '2015' ... --- _id: '1693' abstract: - lang: eng text: Quantum interference between energetically close states is theoretically investigated, with the state structure being observed via laser spectroscopy. In this work, we focus on hyperfine states of selected hydrogenic muonic isotopes, and on how quantum interference affects the measured Lamb shift. The process of photon excitation and subsequent photon decay is implemented within the framework of nonrelativistic second-order perturbation theory. Due to its experimental interest, calculations are performed for muonic hydrogen, deuterium, and helium-3. We restrict our analysis to the case of photon scattering by incident linear polarized photons and the polarization of the scattered photons not being observed. We conclude that while quantum interference effects can be safely neglected in muonic hydrogen and helium-3, in the case of muonic deuterium there are resonances with close proximity, where quantum interference effects can induce shifts up to a few percent of the linewidth, assuming a pointlike detector. However, by taking into account the geometry of the setup used by the CREMA collaboration, this effect is reduced to less than 0.2% of the linewidth in all possible cases, which makes it irrelevant at the present level of accuracy. © 2015 American Physical Society. article_number: '022514' author: - first_name: Pedro full_name: Amaro, Pedro last_name: Amaro - first_name: Beatrice full_name: Franke, Beatrice last_name: Franke - first_name: Julian full_name: Krauth, Julian last_name: Krauth - first_name: Marc full_name: Diepold, Marc last_name: Diepold - first_name: Filippo full_name: Fratini, Filippo last_name: Fratini - first_name: Laleh full_name: Safari, Laleh id: 3C325E5E-F248-11E8-B48F-1D18A9856A87 last_name: Safari - first_name: Jorge full_name: Machado, Jorge last_name: Machado - first_name: Aldo full_name: Antognini, Aldo last_name: Antognini - first_name: Franz full_name: Kottmann, Franz last_name: Kottmann - first_name: Paul full_name: Indelicato, Paul last_name: Indelicato - first_name: Randolf full_name: Pohl, Randolf last_name: Pohl - first_name: José full_name: Santos, José last_name: Santos citation: ama: Amaro P, Franke B, Krauth J, et al. Quantum interference effects in laser spectroscopy of muonic hydrogen, deuterium, and helium-3. Physical Review A. 2015;92(2). doi:10.1103/PhysRevA.92.022514 apa: Amaro, P., Franke, B., Krauth, J., Diepold, M., Fratini, F., Safari, L., … Santos, J. (2015). Quantum interference effects in laser spectroscopy of muonic hydrogen, deuterium, and helium-3. Physical Review A. American Physical Society. https://doi.org/10.1103/PhysRevA.92.022514 chicago: Amaro, Pedro, Beatrice Franke, Julian Krauth, Marc Diepold, Filippo Fratini, Laleh Safari, Jorge Machado, et al. “Quantum Interference Effects in Laser Spectroscopy of Muonic Hydrogen, Deuterium, and Helium-3.” Physical Review A. American Physical Society, 2015. https://doi.org/10.1103/PhysRevA.92.022514. ieee: P. Amaro et al., “Quantum interference effects in laser spectroscopy of muonic hydrogen, deuterium, and helium-3,” Physical Review A, vol. 92, no. 2. American Physical Society, 2015. ista: Amaro P, Franke B, Krauth J, Diepold M, Fratini F, Safari L, Machado J, Antognini A, Kottmann F, Indelicato P, Pohl R, Santos J. 2015. Quantum interference effects in laser spectroscopy of muonic hydrogen, deuterium, and helium-3. Physical Review A. 92(2), 022514. mla: Amaro, Pedro, et al. “Quantum Interference Effects in Laser Spectroscopy of Muonic Hydrogen, Deuterium, and Helium-3.” Physical Review A, vol. 92, no. 2, 022514, American Physical Society, 2015, doi:10.1103/PhysRevA.92.022514. short: P. Amaro, B. Franke, J. Krauth, M. Diepold, F. Fratini, L. Safari, J. Machado, A. Antognini, F. Kottmann, P. Indelicato, R. Pohl, J. Santos, Physical Review A 92 (2015). date_created: 2018-12-11T11:53:30Z date_published: 2015-08-28T00:00:00Z date_updated: 2021-01-12T06:52:34Z day: '28' department: - _id: MiLe doi: 10.1103/PhysRevA.92.022514 ec_funded: 1 intvolume: ' 92' issue: '2' language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1506.02734 month: '08' oa: 1 oa_version: Preprint project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Physical Review A publication_status: published publisher: American Physical Society publist_id: '5451' quality_controlled: '1' scopus_import: 1 status: public title: Quantum interference effects in laser spectroscopy of muonic hydrogen, deuterium, and helium-3 type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 92 year: '2015' ... --- _id: '1695' abstract: - lang: eng text: We give a comprehensive introduction into a diagrammatic method that allows for the evaluation of Gutzwiller wave functions in finite spatial dimensions. We discuss in detail some numerical schemes that turned out to be useful in the real-space evaluation of the diagrams. The method is applied to the problem of d-wave superconductivity in a two-dimensional single-band Hubbard model. Here, we discuss in particular the role of long-range contributions in our diagrammatic expansion. We further reconsider our previous analysis on the kinetic energy gain in the superconducting state. author: - first_name: Jan full_name: Kaczmarczyk, Jan id: 46C405DE-F248-11E8-B48F-1D18A9856A87 last_name: Kaczmarczyk orcid: 0000-0002-1629-3675 - first_name: Tobias full_name: Schickling, Tobias last_name: Schickling - first_name: Jörg full_name: Bünemann, Jörg last_name: Bünemann citation: ama: 'Kaczmarczyk J, Schickling T, Bünemann J. Evaluation techniques for Gutzwiller wave functions in finite dimensions. Physica Status Solidi (B): Basic Solid State Physics. 2015;252(9):2059-2071. doi:10.1002/pssb.201552082' apa: 'Kaczmarczyk, J., Schickling, T., & Bünemann, J. (2015). Evaluation techniques for Gutzwiller wave functions in finite dimensions. Physica Status Solidi (B): Basic Solid State Physics. Wiley. https://doi.org/10.1002/pssb.201552082' chicago: 'Kaczmarczyk, Jan, Tobias Schickling, and Jörg Bünemann. “Evaluation Techniques for Gutzwiller Wave Functions in Finite Dimensions.” Physica Status Solidi (B): Basic Solid State Physics. Wiley, 2015. https://doi.org/10.1002/pssb.201552082.' ieee: 'J. Kaczmarczyk, T. Schickling, and J. Bünemann, “Evaluation techniques for Gutzwiller wave functions in finite dimensions,” Physica Status Solidi (B): Basic Solid State Physics, vol. 252, no. 9. Wiley, pp. 2059–2071, 2015.' ista: 'Kaczmarczyk J, Schickling T, Bünemann J. 2015. Evaluation techniques for Gutzwiller wave functions in finite dimensions. Physica Status Solidi (B): Basic Solid State Physics. 252(9), 2059–2071.' mla: 'Kaczmarczyk, Jan, et al. “Evaluation Techniques for Gutzwiller Wave Functions in Finite Dimensions.” Physica Status Solidi (B): Basic Solid State Physics, vol. 252, no. 9, Wiley, 2015, pp. 2059–71, doi:10.1002/pssb.201552082.' short: 'J. Kaczmarczyk, T. Schickling, J. Bünemann, Physica Status Solidi (B): Basic Solid State Physics 252 (2015) 2059–2071.' date_created: 2018-12-11T11:53:31Z date_published: 2015-09-01T00:00:00Z date_updated: 2021-01-12T06:52:34Z day: '01' department: - _id: MiLe doi: 10.1002/pssb.201552082 ec_funded: 1 intvolume: ' 252' issue: '9' language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1503.03738 month: '09' oa: 1 oa_version: Preprint page: 2059 - 2071 project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: 'Physica Status Solidi (B): Basic Solid State Physics' publication_status: published publisher: Wiley publist_id: '5449' quality_controlled: '1' scopus_import: 1 status: public title: Evaluation techniques for Gutzwiller wave functions in finite dimensions type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 252 year: '2015' ... --- _id: '1696' abstract: - lang: eng text: The recently proposed diagrammatic expansion (DE) technique for the full Gutzwiller wave function (GWF) is applied to the Anderson lattice model. This approach allows for a systematic evaluation of the expectation values with full Gutzwiller wave function in finite-dimensional systems. It introduces results extending in an essential manner those obtained by means of the standard Gutzwiller approximation (GA), which is variationally exact only in infinite dimensions. Within the DE-GWF approach we discuss the principal paramagnetic properties and their relevance to heavy-fermion systems. We demonstrate the formation of an effective, narrow f band originating from atomic f-electron states and subsequently interpret this behavior as a direct itineracy of f electrons; it represents a combined effect of both the hybridization and the correlations induced by the Coulomb repulsive interaction. Such a feature is absent on the level of GA, which is equivalent to the zeroth order of our expansion. Formation of the hybridization- and electron-concentration-dependent narrow f band rationalizes the common assumption of such dispersion of f levels in the phenomenological modeling of the band structure of CeCoIn5. Moreover, it is shown that the emerging f-electron direct itineracy leads in a natural manner to three physically distinct regimes within a single model that are frequently discussed for 4f- or 5f-electron compounds as separate model situations. We identify these regimes as (i) the mixed-valence regime, (ii) Kondo/almost-Kondo insulating regime, and (iii) the Kondo-lattice limit when the f-electron occupancy is very close to the f-state half filling, ⟨nˆf⟩→1. The nonstandard features of the emerging correlated quantum liquid state are stressed. acknowledgement: The work was partly supported by the National Science Centre (NCN) under MAESTRO, Grant No. DEC-2012/04/A/ST3/00342. M.W. acknowledges the hospitality of the Institute of Science and Technology Austria during the final stage of development of the present work, as well as partial financial support from the Society-Environment-Technology project of the Jagiellonian University for that stay. J.K. acknowledges support from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA Grant Agreement No. [291734 ]. article_number: '125135' author: - first_name: Marcin full_name: Wysokiński, Marcin last_name: Wysokiński - first_name: Jan full_name: Kaczmarczyk, Jan id: 46C405DE-F248-11E8-B48F-1D18A9856A87 last_name: Kaczmarczyk orcid: 0000-0002-1629-3675 - first_name: Jozef full_name: Spałek, Jozef last_name: Spałek citation: ama: 'Wysokiński M, Kaczmarczyk J, Spałek J. Gutzwiller wave function solution for Anderson lattice model: Emerging universal regimes of heavy quasiparticle states. Physical Review B. 2015;92(12). doi:10.1103/PhysRevB.92.125135' apa: 'Wysokiński, M., Kaczmarczyk, J., & Spałek, J. (2015). Gutzwiller wave function solution for Anderson lattice model: Emerging universal regimes of heavy quasiparticle states. Physical Review B. American Physical Society. https://doi.org/10.1103/PhysRevB.92.125135' chicago: 'Wysokiński, Marcin, Jan Kaczmarczyk, and Jozef Spałek. “Gutzwiller Wave Function Solution for Anderson Lattice Model: Emerging Universal Regimes of Heavy Quasiparticle States.” Physical Review B. American Physical Society, 2015. https://doi.org/10.1103/PhysRevB.92.125135.' ieee: 'M. Wysokiński, J. Kaczmarczyk, and J. Spałek, “Gutzwiller wave function solution for Anderson lattice model: Emerging universal regimes of heavy quasiparticle states,” Physical Review B, vol. 92, no. 12. American Physical Society, 2015.' ista: 'Wysokiński M, Kaczmarczyk J, Spałek J. 2015. Gutzwiller wave function solution for Anderson lattice model: Emerging universal regimes of heavy quasiparticle states. Physical Review B. 92(12), 125135.' mla: 'Wysokiński, Marcin, et al. “Gutzwiller Wave Function Solution for Anderson Lattice Model: Emerging Universal Regimes of Heavy Quasiparticle States.” Physical Review B, vol. 92, no. 12, 125135, American Physical Society, 2015, doi:10.1103/PhysRevB.92.125135.' short: M. Wysokiński, J. Kaczmarczyk, J. Spałek, Physical Review B 92 (2015). date_created: 2018-12-11T11:53:31Z date_published: 2015-09-18T00:00:00Z date_updated: 2021-01-12T06:52:35Z day: '18' department: - _id: MiLe doi: 10.1103/PhysRevB.92.125135 ec_funded: 1 intvolume: ' 92' issue: '12' language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1505.07003 month: '09' oa: 1 oa_version: Preprint project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Physical Review B publication_status: published publisher: American Physical Society publist_id: '5448' quality_controlled: '1' scopus_import: 1 status: public title: 'Gutzwiller wave function solution for Anderson lattice model: Emerging universal regimes of heavy quasiparticle states' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 92 year: '2015' ... --- _id: '1700' abstract: - lang: eng text: We use the dual boson approach to reveal the phase diagram of the Fermi-Hubbard model with long-range dipole-dipole interactions. By using a large-scale finite-temperature calculation on a 64×64 square lattice we demonstrate the existence of a novel phase, possessing an "ultralong-range" order. The fingerprint of this phase - the density correlation function - features a nontrivial behavior on a scale of tens of lattice sites. We study the properties and the stability of the ultralong-range-ordered phase, and show that it is accessible in modern experiments with ultracold polar molecules and magnetic atoms. acknowledgement: The work is supported by European Research Council (ERC) Advanced Grant No. 338957 FEMTO/NANO. article_number: '081106' author: - first_name: Erik full_name: Van Loon, Erik last_name: Van Loon - first_name: Mikhail full_name: Katsnelson, Mikhail last_name: Katsnelson - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 citation: ama: Van Loon E, Katsnelson M, Lemeshko M. Ultralong-range order in the Fermi-Hubbard model with long-range interactions. Physical Review B. 2015;92(8). doi:10.1103/PhysRevB.92.081106 apa: Van Loon, E., Katsnelson, M., & Lemeshko, M. (2015). Ultralong-range order in the Fermi-Hubbard model with long-range interactions. Physical Review B. American Physical Society. https://doi.org/10.1103/PhysRevB.92.081106 chicago: Van Loon, Erik, Mikhail Katsnelson, and Mikhail Lemeshko. “Ultralong-Range Order in the Fermi-Hubbard Model with Long-Range Interactions.” Physical Review B. American Physical Society, 2015. https://doi.org/10.1103/PhysRevB.92.081106. ieee: E. Van Loon, M. Katsnelson, and M. Lemeshko, “Ultralong-range order in the Fermi-Hubbard model with long-range interactions,” Physical Review B, vol. 92, no. 8. American Physical Society, 2015. ista: Van Loon E, Katsnelson M, Lemeshko M. 2015. Ultralong-range order in the Fermi-Hubbard model with long-range interactions. Physical Review B. 92(8), 081106. mla: Van Loon, Erik, et al. “Ultralong-Range Order in the Fermi-Hubbard Model with Long-Range Interactions.” Physical Review B, vol. 92, no. 8, 081106, American Physical Society, 2015, doi:10.1103/PhysRevB.92.081106. short: E. Van Loon, M. Katsnelson, M. Lemeshko, Physical Review B 92 (2015). date_created: 2018-12-11T11:53:32Z date_published: 2015-08-10T00:00:00Z date_updated: 2021-01-12T06:52:37Z day: '10' department: - _id: MiLe doi: 10.1103/PhysRevB.92.081106 intvolume: ' 92' issue: '8' language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1506.06007 month: '08' oa: 1 oa_version: Preprint publication: Physical Review B publication_status: published publisher: American Physical Society publist_id: '5441' scopus_import: 1 status: public title: Ultralong-range order in the Fermi-Hubbard model with long-range interactions type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 92 year: '2015' ... --- _id: '1812' abstract: - lang: eng text: "We investigate the occurrence of rotons in a quadrupolar Bose–Einstein condensate confined to two dimensions. Depending on the particle density, the ratio of the contact and quadrupole–quadrupole interactions, and the alignment of the quadrupole moments with respect to the confinement plane, the dispersion relation features two or four point-like roton minima or one ring-shaped minimum. We map out the entire parameter space of the roton behavior and identify the instability regions. We propose to observe the exotic rotons by monitoring the characteristic density wave dynamics resulting from a short local perturbation, and discuss the possibilities to detect the predicted effects in state-of-the-art experiments with ultracold homonuclear molecules.\r\n" article_number: '045005' article_processing_charge: No author: - first_name: Martin full_name: Lahrz, Martin last_name: Lahrz - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 - first_name: Ludwig full_name: Mathey, Ludwig last_name: Mathey citation: ama: Lahrz M, Lemeshko M, Mathey L. Exotic roton excitations in quadrupolar Bose–Einstein condensates . New Journal of Physics. 2015;17(4). doi:10.1088/1367-2630/17/4/045005 apa: Lahrz, M., Lemeshko, M., & Mathey, L. (2015). Exotic roton excitations in quadrupolar Bose–Einstein condensates . New Journal of Physics. IOP Publishing Ltd. https://doi.org/10.1088/1367-2630/17/4/045005 chicago: Lahrz, Martin, Mikhail Lemeshko, and Ludwig Mathey. “Exotic Roton Excitations in Quadrupolar Bose–Einstein Condensates .” New Journal of Physics. IOP Publishing Ltd., 2015. https://doi.org/10.1088/1367-2630/17/4/045005. ieee: M. Lahrz, M. Lemeshko, and L. Mathey, “Exotic roton excitations in quadrupolar Bose–Einstein condensates ,” New Journal of Physics, vol. 17, no. 4. IOP Publishing Ltd., 2015. ista: Lahrz M, Lemeshko M, Mathey L. 2015. Exotic roton excitations in quadrupolar Bose–Einstein condensates . New Journal of Physics. 17(4), 045005. mla: Lahrz, Martin, et al. “Exotic Roton Excitations in Quadrupolar Bose–Einstein Condensates .” New Journal of Physics, vol. 17, no. 4, 045005, IOP Publishing Ltd., 2015, doi:10.1088/1367-2630/17/4/045005. short: M. Lahrz, M. Lemeshko, L. Mathey, New Journal of Physics 17 (2015). date_created: 2018-12-11T11:54:09Z date_published: 2015-04-01T00:00:00Z date_updated: 2021-01-12T06:53:22Z day: '01' ddc: - '530' department: - _id: MiLe doi: 10.1088/1367-2630/17/4/045005 file: - access_level: open_access checksum: 551f751a75b39b89a1db2f7f498f9a49 content_type: application/pdf creator: system date_created: 2018-12-12T10:15:59Z date_updated: 2020-07-14T12:45:17Z file_id: '5184' file_name: IST-2016-446-v1+1_document.pdf file_size: 1900925 relation: main_file file_date_updated: 2020-07-14T12:45:17Z has_accepted_license: '1' intvolume: ' 17' issue: '4' language: - iso: eng month: '04' oa: 1 oa_version: Published Version publication: New Journal of Physics publication_status: published publisher: IOP Publishing Ltd. publist_id: '5294' pubrep_id: '446' quality_controlled: '1' scopus_import: 1 status: public title: 'Exotic roton excitations in quadrupolar Bose–Einstein condensates ' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 17 year: '2015' ... --- _id: '1811' abstract: - lang: eng text: Atomic form factors are widely used for the characterization of targets and specimens, from crystallography to biology. By using recent mathematical results, here we derive an analytical expression for the atomic form factor within the independent particle model constructed from nonrelativistic screened hydrogenic wave functions. The range of validity of this analytical expression is checked by comparing the analytically obtained form factors with the ones obtained within the Hartee-Fock method. As an example, we apply our analytical expression for the atomic form factor to evaluate the differential cross section for Rayleigh scattering off neutral atoms. acknowledgement: The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement n◦ [291734]. F.F. acknowledges support by Fundação de Amparo à Pesquisa do estado de Minas Gerais (FAPEMIG), by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and by the Austrian Science Fund (FWF) through the START Grant No. Y 591-N16. article_number: '052105' author: - first_name: Laleh full_name: Safari, Laleh id: 3C325E5E-F248-11E8-B48F-1D18A9856A87 last_name: Safari - first_name: José full_name: Santos, José last_name: Santos - first_name: Pedro full_name: Amaro, Pedro last_name: Amaro - first_name: Kari full_name: Jänkälä, Kari last_name: Jänkälä - first_name: Filippo full_name: Fratini, Filippo last_name: Fratini citation: ama: 'Safari L, Santos J, Amaro P, Jänkälä K, Fratini F. Analytical evaluation of atomic form factors: Application to Rayleigh scattering. Journal of Mathematical Physics. 2015;56(5). doi:10.1063/1.4921227' apa: 'Safari, L., Santos, J., Amaro, P., Jänkälä, K., & Fratini, F. (2015). Analytical evaluation of atomic form factors: Application to Rayleigh scattering. Journal of Mathematical Physics. American Institute of Physics. https://doi.org/10.1063/1.4921227' chicago: 'Safari, Laleh, José Santos, Pedro Amaro, Kari Jänkälä, and Filippo Fratini. “Analytical Evaluation of Atomic Form Factors: Application to Rayleigh Scattering.” Journal of Mathematical Physics. American Institute of Physics, 2015. https://doi.org/10.1063/1.4921227.' ieee: 'L. Safari, J. Santos, P. Amaro, K. Jänkälä, and F. Fratini, “Analytical evaluation of atomic form factors: Application to Rayleigh scattering,” Journal of Mathematical Physics, vol. 56, no. 5. American Institute of Physics, 2015.' ista: 'Safari L, Santos J, Amaro P, Jänkälä K, Fratini F. 2015. Analytical evaluation of atomic form factors: Application to Rayleigh scattering. Journal of Mathematical Physics. 56(5), 052105.' mla: 'Safari, Laleh, et al. “Analytical Evaluation of Atomic Form Factors: Application to Rayleigh Scattering.” Journal of Mathematical Physics, vol. 56, no. 5, 052105, American Institute of Physics, 2015, doi:10.1063/1.4921227.' short: L. Safari, J. Santos, P. Amaro, K. Jänkälä, F. Fratini, Journal of Mathematical Physics 56 (2015). date_created: 2018-12-11T11:54:08Z date_published: 2015-05-20T00:00:00Z date_updated: 2021-01-12T06:53:21Z day: '20' department: - _id: MiLe doi: 10.1063/1.4921227 ec_funded: 1 intvolume: ' 56' issue: '5' language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1409.0110 month: '05' oa: 1 oa_version: Preprint project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Journal of Mathematical Physics publication_status: published publisher: American Institute of Physics publist_id: '5295' scopus_import: 1 status: public title: 'Analytical evaluation of atomic form factors: Application to Rayleigh scattering' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 56 year: '2015' ... --- _id: '1813' abstract: - lang: eng text: We develop a microscopic theory describing a quantum impurity whose rotational degree of freedom is coupled to a many-particle bath. We approach the problem by introducing the concept of an “angulon”—a quantum rotor dressed by a quantum field—and reveal its quasiparticle properties using a combination of variational and diagrammatic techniques. Our theory predicts renormalization of the impurity rotational structure, such as that observed in experiments with molecules in superfluid helium droplets, in terms of a rotational Lamb shift induced by the many-particle environment. Furthermore, we discover a rich many-body-induced fine structure, emerging in rotational spectra due to a redistribution of angular momentum within the quantum many-body system. article_number: '203001' author: - first_name: Richard full_name: Schmidt, Richard last_name: Schmidt - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 citation: ama: Schmidt R, Lemeshko M. Rotation of quantum impurities in the presence of a many-body environment. Physical Review Letters. 2015;114(20). doi:10.1103/PhysRevLett.114.203001 apa: Schmidt, R., & Lemeshko, M. (2015). Rotation of quantum impurities in the presence of a many-body environment. Physical Review Letters. American Physical Society. https://doi.org/10.1103/PhysRevLett.114.203001 chicago: Schmidt, Richard, and Mikhail Lemeshko. “Rotation of Quantum Impurities in the Presence of a Many-Body Environment.” Physical Review Letters. American Physical Society, 2015. https://doi.org/10.1103/PhysRevLett.114.203001. ieee: R. Schmidt and M. Lemeshko, “Rotation of quantum impurities in the presence of a many-body environment,” Physical Review Letters, vol. 114, no. 20. American Physical Society, 2015. ista: Schmidt R, Lemeshko M. 2015. Rotation of quantum impurities in the presence of a many-body environment. Physical Review Letters. 114(20), 203001. mla: Schmidt, Richard, and Mikhail Lemeshko. “Rotation of Quantum Impurities in the Presence of a Many-Body Environment.” Physical Review Letters, vol. 114, no. 20, 203001, American Physical Society, 2015, doi:10.1103/PhysRevLett.114.203001. short: R. Schmidt, M. Lemeshko, Physical Review Letters 114 (2015). date_created: 2018-12-11T11:54:09Z date_published: 2015-05-18T00:00:00Z date_updated: 2021-01-12T06:53:22Z day: '18' department: - _id: MiLe doi: 10.1103/PhysRevLett.114.203001 intvolume: ' 114' issue: '20' language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1502.03447 month: '05' oa: 1 oa_version: Preprint publication: Physical Review Letters publication_status: published publisher: American Physical Society publist_id: '5293' quality_controlled: '1' scopus_import: 1 status: public title: Rotation of quantum impurities in the presence of a many-body environment type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 114 year: '2015' ... --- _id: '1995' abstract: - lang: eng text: 'Optical transport represents a natural route towards fast communications, and it is currently used in large scale data transfer. The progressive miniaturization of devices for information processing calls for the microscopic tailoring of light transport and confinement at length scales appropriate for upcoming technologies. With this goal in mind, we present a theoretical analysis of a one-dimensional Fabry-Perot interferometer built with two highly saturable nonlinear mirrors: a pair of two-level systems. Our approach captures nonlinear and nonreciprocal effects of light transport that were not reported previously. Remarkably, we show that such an elementary device can operate as a microscopic integrated optical rectifier.' article_number: '243601' author: - first_name: Filippo full_name: Fratini, Filippo last_name: Fratini - first_name: Eduardo full_name: Mascarenhas, Eduardo last_name: Mascarenhas - first_name: Laleh full_name: Safari, Laleh id: 3C325E5E-F248-11E8-B48F-1D18A9856A87 last_name: Safari - first_name: Jean full_name: Poizat, Jean last_name: Poizat - first_name: Daniel full_name: Valente, Daniel last_name: Valente - first_name: Alexia full_name: Auffèves, Alexia last_name: Auffèves - first_name: Dario full_name: Gerace, Dario last_name: Gerace - first_name: Marcelo full_name: Santos, Marcelo last_name: Santos citation: ama: 'Fratini F, Mascarenhas E, Safari L, et al. Fabry-Perot interferometer with quantum mirrors: Nonlinear light transport and rectification. Physical Review Letters. 2014;113(24). doi:10.1103/PhysRevLett.113.243601' apa: 'Fratini, F., Mascarenhas, E., Safari, L., Poizat, J., Valente, D., Auffèves, A., … Santos, M. (2014). Fabry-Perot interferometer with quantum mirrors: Nonlinear light transport and rectification. Physical Review Letters. American Physical Society. https://doi.org/10.1103/PhysRevLett.113.243601' chicago: 'Fratini, Filippo, Eduardo Mascarenhas, Laleh Safari, Jean Poizat, Daniel Valente, Alexia Auffèves, Dario Gerace, and Marcelo Santos. “Fabry-Perot Interferometer with Quantum Mirrors: Nonlinear Light Transport and Rectification.” Physical Review Letters. American Physical Society, 2014. https://doi.org/10.1103/PhysRevLett.113.243601.' ieee: 'F. Fratini et al., “Fabry-Perot interferometer with quantum mirrors: Nonlinear light transport and rectification,” Physical Review Letters, vol. 113, no. 24. American Physical Society, 2014.' ista: 'Fratini F, Mascarenhas E, Safari L, Poizat J, Valente D, Auffèves A, Gerace D, Santos M. 2014. Fabry-Perot interferometer with quantum mirrors: Nonlinear light transport and rectification. Physical Review Letters. 113(24), 243601.' mla: 'Fratini, Filippo, et al. “Fabry-Perot Interferometer with Quantum Mirrors: Nonlinear Light Transport and Rectification.” Physical Review Letters, vol. 113, no. 24, 243601, American Physical Society, 2014, doi:10.1103/PhysRevLett.113.243601.' short: F. Fratini, E. Mascarenhas, L. Safari, J. Poizat, D. Valente, A. Auffèves, D. Gerace, M. Santos, Physical Review Letters 113 (2014). date_created: 2018-12-11T11:55:06Z date_published: 2014-12-08T00:00:00Z date_updated: 2021-01-12T06:54:34Z day: '08' department: - _id: MiLe doi: 10.1103/PhysRevLett.113.243601 ec_funded: 1 intvolume: ' 113' issue: '24' language: - iso: eng main_file_link: - open_access: '1' url: http://arxiv.org/abs/1410.5972 month: '12' oa: 1 oa_version: Submitted Version project: - _id: 25681D80-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '291734' name: International IST Postdoc Fellowship Programme publication: Physical Review Letters publication_status: published publisher: American Physical Society publist_id: '5085' quality_controlled: '1' scopus_import: 1 status: public title: 'Fabry-Perot interferometer with quantum mirrors: Nonlinear light transport and rectification' type: journal_article user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87 volume: 113 year: '2014' ...