--- _id: '10628' abstract: - lang: eng text: The surface states of 3D topological insulators in general have negligible quantum oscillations (QOs) when the chemical potential is tuned to the Dirac points. In contrast, we find that topological Kondo insulators (TKIs) can support surface states with an arbitrarily large Fermi surface (FS) when the chemical potential is pinned to the Dirac point. We illustrate that these FSs give rise to finite-frequency QOs, which can become comparable to the extremal area of the unhybridized bulk bands. We show that this occurs when the crystal symmetry is lowered from cubic to tetragonal in a minimal two-orbital model. We label such surface modes as 'shadow surface states'. Moreover, we show that the sufficient next-nearest neighbor out-of-plane hybridization leading to shadow surface states can be self-consistently stabilized for tetragonal TKIs. Consequently, shadow surface states provide an important example of high-frequency QOs beyond the context of cubic TKIs. acknowledgement: PG acknowledges support from National Science Foundation Awards No. DMR-1824265 for this work. AG acknowledges support from the European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant Agreement No. 754411. EMN is supported by ASU startup grant. OE is in part supported by NSF-DMR-1904716. article_number: '123042' article_processing_charge: No article_type: original author: - first_name: Areg full_name: Ghazaryan, Areg id: 4AF46FD6-F248-11E8-B48F-1D18A9856A87 last_name: Ghazaryan orcid: 0000-0001-9666-3543 - first_name: Emilian M. full_name: Nica, Emilian M. last_name: Nica - first_name: Onur full_name: Erten, Onur last_name: Erten - first_name: Pouyan full_name: Ghaemi, Pouyan last_name: Ghaemi citation: ama: Ghazaryan A, Nica EM, Erten O, Ghaemi P. Shadow surface states in topological Kondo insulators. New Journal of Physics. 2021;23(12). doi:10.1088/1367-2630/ac4124 apa: Ghazaryan, A., Nica, E. M., Erten, O., & Ghaemi, P. (2021). Shadow surface states in topological Kondo insulators. New Journal of Physics. IOP Publishing. https://doi.org/10.1088/1367-2630/ac4124 chicago: Ghazaryan, Areg, Emilian M. Nica, Onur Erten, and Pouyan Ghaemi. “Shadow Surface States in Topological Kondo Insulators.” New Journal of Physics. IOP Publishing, 2021. https://doi.org/10.1088/1367-2630/ac4124. ieee: A. Ghazaryan, E. M. Nica, O. Erten, and P. Ghaemi, “Shadow surface states in topological Kondo insulators,” New Journal of Physics, vol. 23, no. 12. IOP Publishing, 2021. ista: Ghazaryan A, Nica EM, Erten O, Ghaemi P. 2021. Shadow surface states in topological Kondo insulators. New Journal of Physics. 23(12), 123042. mla: Ghazaryan, Areg, et al. “Shadow Surface States in Topological Kondo Insulators.” New Journal of Physics, vol. 23, no. 12, 123042, IOP Publishing, 2021, doi:10.1088/1367-2630/ac4124. short: A. Ghazaryan, E.M. Nica, O. Erten, P. Ghaemi, New Journal of Physics 23 (2021). date_created: 2022-01-16T23:01:28Z date_published: 2021-12-23T00:00:00Z date_updated: 2023-08-17T06:54:54Z day: '23' ddc: - '530' department: - _id: MiLe doi: 10.1088/1367-2630/ac4124 ec_funded: 1 external_id: arxiv: - '2012.11625' isi: - '000734063700001' file: - access_level: open_access checksum: 0c3cb6816242fa8afd1cc87a5fe77821 content_type: application/pdf creator: cchlebak date_created: 2022-01-17T10:01:58Z date_updated: 2022-01-17T10:01:58Z file_id: '10632' file_name: 2021_NewJourPhys_Ghazaryan.pdf file_size: 2533102 relation: main_file success: 1 file_date_updated: 2022-01-17T10:01:58Z has_accepted_license: '1' intvolume: ' 23' isi: 1 issue: '12' language: - iso: eng month: '12' oa: 1 oa_version: Published Version project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: New Journal of Physics publication_identifier: issn: - 1367-2630 publication_status: published publisher: IOP Publishing quality_controlled: '1' scopus_import: '1' status: public title: Shadow surface states in topological Kondo insulators tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 23 year: '2021' ... --- _id: '10631' abstract: - lang: eng text: We combine experimental and theoretical approaches to explore excited rotational states of molecules embedded in helium nanodroplets using CS2 and I2 as examples. Laser-induced nonadiabatic molecular alignment is employed to measure spectral lines for rotational states extending beyond those initially populated at the 0.37 K droplet temperature. We construct a simple quantum-mechanical model, based on a linear rotor coupled to a single-mode bosonic bath, to determine the rotational energy structure in its entirety. The calculated and measured spectral lines are in good agreement. We show that the effect of the surrounding superfluid on molecular rotation can be rationalized by a single quantity, the angular momentum, transferred from the molecule to the droplet. acknowledgement: I.C. acknowledges the support by the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 665385. G.B. acknowledges support from the Austrian Science Fund (FWF), under project No. M2461-N27. M.L. acknowledges support by the Austrian Science Fund (FWF), under project No. P29902-N27, and by the European Research Council (ERC) Starting Grant No. 801770 (ANGULON). H.S acknowledges support from the European Research Council-AdG (Project No. 320459, DropletControl) and from The Villum Foundation through a Villum Investigator grant no. 25886. article_number: L061303 article_processing_charge: No article_type: original author: - first_name: Igor full_name: Cherepanov, Igor id: 339C7E5A-F248-11E8-B48F-1D18A9856A87 last_name: Cherepanov - first_name: Giacomo full_name: Bighin, Giacomo id: 4CA96FD4-F248-11E8-B48F-1D18A9856A87 last_name: Bighin orcid: 0000-0001-8823-9777 - first_name: Constant A. full_name: Schouder, Constant A. last_name: Schouder - first_name: Adam S. full_name: Chatterley, Adam S. last_name: Chatterley - first_name: Simon H. full_name: Albrechtsen, Simon H. last_name: Albrechtsen - first_name: Alberto Viñas full_name: Muñoz, Alberto Viñas last_name: Muñoz - first_name: Lars full_name: Christiansen, Lars last_name: Christiansen - first_name: Henrik full_name: Stapelfeldt, Henrik last_name: Stapelfeldt - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 citation: ama: Cherepanov I, Bighin G, Schouder CA, et al. Excited rotational states of molecules in a superfluid. Physical Review A. 2021;104(6). doi:10.1103/PhysRevA.104.L061303 apa: Cherepanov, I., Bighin, G., Schouder, C. A., Chatterley, A. S., Albrechtsen, S. H., Muñoz, A. V., … Lemeshko, M. (2021). Excited rotational states of molecules in a superfluid. Physical Review A. American Physical Society. https://doi.org/10.1103/PhysRevA.104.L061303 chicago: Cherepanov, Igor, Giacomo Bighin, Constant A. Schouder, Adam S. Chatterley, Simon H. Albrechtsen, Alberto Viñas Muñoz, Lars Christiansen, Henrik Stapelfeldt, and Mikhail Lemeshko. “Excited Rotational States of Molecules in a Superfluid.” Physical Review A. American Physical Society, 2021. https://doi.org/10.1103/PhysRevA.104.L061303. ieee: I. Cherepanov et al., “Excited rotational states of molecules in a superfluid,” Physical Review A, vol. 104, no. 6. American Physical Society, 2021. ista: Cherepanov I, Bighin G, Schouder CA, Chatterley AS, Albrechtsen SH, Muñoz AV, Christiansen L, Stapelfeldt H, Lemeshko M. 2021. Excited rotational states of molecules in a superfluid. Physical Review A. 104(6), L061303. mla: Cherepanov, Igor, et al. “Excited Rotational States of Molecules in a Superfluid.” Physical Review A, vol. 104, no. 6, L061303, American Physical Society, 2021, doi:10.1103/PhysRevA.104.L061303. short: I. Cherepanov, G. Bighin, C.A. Schouder, A.S. Chatterley, S.H. Albrechtsen, A.V. Muñoz, L. Christiansen, H. Stapelfeldt, M. Lemeshko, Physical Review A 104 (2021). date_created: 2022-01-16T23:01:29Z date_published: 2021-12-30T00:00:00Z date_updated: 2023-08-17T06:52:17Z day: '30' department: - _id: MiLe doi: 10.1103/PhysRevA.104.L061303 ec_funded: 1 external_id: arxiv: - '2107.00468' isi: - '000739618300001' intvolume: ' 104' isi: 1 issue: '6' language: - iso: eng main_file_link: - open_access: '1' url: http://128.84.4.18/abs/2107.00468 month: '12' oa: 1 oa_version: Preprint project: - _id: 26031614-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29902 name: Quantum rotations in the presence of a many-body environment - _id: 2688CF98-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '801770' name: 'Angulon: physics and applications of a new quasiparticle' - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program - _id: 26986C82-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M02641 name: A path-integral approach to composite impurities publication: Physical Review A publication_identifier: eissn: - 2469-9934 issn: - 2469-9926 publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Excited rotational states of molecules in a superfluid type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 104 year: '2021' ... --- _id: '10762' abstract: - lang: eng text: Methods inspired from machine learning have recently attracted great interest in the computational study of quantum many-particle systems. So far, however, it has proven challenging to deal with microscopic models in which the total number of particles is not conserved. To address this issue, we propose a new variant of neural network states, which we term neural coherent states. Taking the Fröhlich impurity model as a case study, we show that neural coherent states can learn the ground state of non-additive systems very well. In particular, we observe substantial improvement over the standard coherent state estimates in the most challenging intermediate coupling regime. Our approach is generic and does not assume specific details of the system, suggesting wide applications. acknowledgement: "We acknowledge fruitful discussions with Giacomo Bighin, Giammarco Fabiani, Areg Ghazaryan, Christoph\r\nLampert, and Artem Volosniev at various stages of this work. W.R. is a recipient of a DOC Fellowship of the\r\nAustrian Academy of Sciences and has received funding from the EU Horizon 2020 programme under the Marie\r\nSkłodowska-Curie Grant Agreement No. 665385. M. L. acknowledges support by the European Research Council (ERC) Starting Grant No. 801770 (ANGULON). This work is part of the Shell-NWO/FOM-initiative “Computational sciences for energy research” of Shell and Chemical Sciences, Earth and Life Sciences, Physical Sciences, FOM and STW." article_processing_charge: No author: - first_name: Wojciech full_name: Rzadkowski, Wojciech id: 48C55298-F248-11E8-B48F-1D18A9856A87 last_name: Rzadkowski orcid: 0000-0002-1106-4419 - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 - first_name: Johan H. full_name: Mentink, Johan H. last_name: Mentink citation: ama: Rzadkowski W, Lemeshko M, Mentink JH. Artificial neural network states for non-additive systems. arXiv. doi:10.48550/arXiv.2105.15193 apa: Rzadkowski, W., Lemeshko, M., & Mentink, J. H. (n.d.). Artificial neural network states for non-additive systems. arXiv. https://doi.org/10.48550/arXiv.2105.15193 chicago: Rzadkowski, Wojciech, Mikhail Lemeshko, and Johan H. Mentink. “Artificial Neural Network States for Non-Additive Systems.” ArXiv, n.d. https://doi.org/10.48550/arXiv.2105.15193. ieee: W. Rzadkowski, M. Lemeshko, and J. H. Mentink, “Artificial neural network states for non-additive systems,” arXiv. . ista: Rzadkowski W, Lemeshko M, Mentink JH. Artificial neural network states for non-additive systems. arXiv, 10.48550/arXiv.2105.15193. mla: Rzadkowski, Wojciech, et al. “Artificial Neural Network States for Non-Additive Systems.” ArXiv, doi:10.48550/arXiv.2105.15193. short: W. Rzadkowski, M. Lemeshko, J.H. Mentink, ArXiv (n.d.). date_created: 2022-02-17T11:18:57Z date_published: 2021-05-31T00:00:00Z date_updated: 2023-09-07T13:44:16Z day: '31' department: - _id: MiLe doi: 10.48550/arXiv.2105.15193 ec_funded: 1 external_id: arxiv: - '2105.15193' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2105.15193 month: '05' oa: 1 oa_version: Preprint page: '2105.15193' project: - _id: 2688CF98-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '801770' name: 'Angulon: physics and applications of a new quasiparticle' - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: arXiv publication_status: submitted related_material: record: - id: '10759' relation: dissertation_contains status: public status: public title: Artificial neural network states for non-additive systems type: preprint user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2021' ... --- _id: '10029' abstract: - lang: eng text: Superconductor-semiconductor hybrids are platforms for realizing effective p-wave superconductivity. Spin-orbit coupling, combined with the proximity effect, causes the two-dimensional semiconductor to inherit p±ip intraband pairing, and application of magnetic field can then result in transitions to the normal state, partial Bogoliubov Fermi surfaces, or topological phases with Majorana modes. Experimentally probing the hybrid superconductor-semiconductor interface is challenging due to the shunting effect of the conventional superconductor. Consequently, the nature of induced pairing remains an open question. Here, we use the circuit quantum electrodynamics architecture to probe induced superconductivity in a two dimensional Al-InAs hybrid system. We observe a strong suppression of superfluid density and enhanced dissipation driven by magnetic field, which cannot be accounted for by the depairing theory of an s-wave superconductor. These observations are explained by a picture of independent intraband p±ip superconductors giving way to partial Bogoliubov Fermi surfaces, and allow for the first characterization of key properties of the hybrid superconducting system. acknowledged_ssus: - _id: M-Shop - _id: NanoFab acknowledgement: This research was supported by the Scientific Service Units of IST Austria through resources provided by the MIBA Machine Shop and the nanofabrication facility. JS and AG were supported by funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Grant Agreement No.754411. article_number: '2107.03695' article_processing_charge: No author: - first_name: Duc T full_name: Phan, Duc T id: 29C8C0B4-F248-11E8-B48F-1D18A9856A87 last_name: Phan - first_name: Jorden L full_name: Senior, Jorden L id: 5479D234-2D30-11EA-89CC-40953DDC885E last_name: Senior orcid: 0000-0002-0672-9295 - first_name: Areg full_name: Ghazaryan, Areg id: 4AF46FD6-F248-11E8-B48F-1D18A9856A87 last_name: Ghazaryan orcid: 0000-0001-9666-3543 - first_name: M. full_name: Hatefipour, M. last_name: Hatefipour - first_name: W. M. full_name: Strickland, W. M. last_name: Strickland - first_name: J. full_name: Shabani, J. last_name: Shabani - first_name: Maksym full_name: Serbyn, Maksym id: 47809E7E-F248-11E8-B48F-1D18A9856A87 last_name: Serbyn orcid: 0000-0002-2399-5827 - first_name: Andrew P full_name: Higginbotham, Andrew P id: 4AD6785A-F248-11E8-B48F-1D18A9856A87 last_name: Higginbotham orcid: 0000-0003-2607-2363 citation: ama: Phan DT, Senior JL, Ghazaryan A, et al. Breakdown of induced p±ip pairing in a superconductor-semiconductor hybrid. arXiv. apa: Phan, D. T., Senior, J. L., Ghazaryan, A., Hatefipour, M., Strickland, W. M., Shabani, J., … Higginbotham, A. P. (n.d.). Breakdown of induced p±ip pairing in a superconductor-semiconductor hybrid. arXiv. chicago: Phan, Duc T, Jorden L Senior, Areg Ghazaryan, M. Hatefipour, W. M. Strickland, J. Shabani, Maksym Serbyn, and Andrew P Higginbotham. “Breakdown of Induced P±ip Pairing in a Superconductor-Semiconductor Hybrid.” ArXiv, n.d. ieee: D. T. Phan et al., “Breakdown of induced p±ip pairing in a superconductor-semiconductor hybrid,” arXiv. . ista: Phan DT, Senior JL, Ghazaryan A, Hatefipour M, Strickland WM, Shabani J, Serbyn M, Higginbotham AP. Breakdown of induced p±ip pairing in a superconductor-semiconductor hybrid. arXiv, 2107.03695. mla: Phan, Duc T., et al. “Breakdown of Induced P±ip Pairing in a Superconductor-Semiconductor Hybrid.” ArXiv, 2107.03695. short: D.T. Phan, J.L. Senior, A. Ghazaryan, M. Hatefipour, W.M. Strickland, J. Shabani, M. Serbyn, A.P. Higginbotham, ArXiv (n.d.). date_created: 2021-09-21T08:41:02Z date_published: 2021-07-08T00:00:00Z date_updated: 2024-02-21T12:36:52Z day: '08' department: - _id: MaSe - _id: AnHi - _id: MiLe ec_funded: 1 external_id: arxiv: - '2107.03695' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2107.03695 month: '07' oa: 1 oa_version: Preprint project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: arXiv publication_status: submitted related_material: record: - id: '10851' relation: later_version status: public - id: '9636' relation: research_data status: public status: public title: Breakdown of induced p±ip pairing in a superconductor-semiconductor hybrid type: preprint user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2021' ... --- _id: '10134' abstract: - lang: eng text: We investigate the effect of coupling between translational and internal degrees of freedom of composite quantum particles on their localization in a random potential. We show that entanglement between the two degrees of freedom weakens localization due to the upper bound imposed on the inverse participation ratio by purity of a quantum state. We perform numerical calculations for a two-particle system bound by a harmonic force in a 1D disordered lattice and a rigid rotor in a 2D disordered lattice. We illustrate that the coupling has a dramatic effect on localization properties, even with a small number of internal states participating in quantum dynamics. acknowledgement: "We acknowledge helpful discussions with W. G. Unruh and A. Rodriguez. F. S. is supported by European Union’s\r\nHorizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant No. 754411. M. L. acknowledges support by the European Research Council (ERC) Starting Grant No. 801770 (ANGULON). W. H. Z. is\r\nsupported by Department of Energy under the Los\r\nAlamos National Laboratory LDRD Program as well as by the U.S. Department of Energy, Office of Science, Basic\r\nEnergy Sciences, Materials Sciences and Engineering Division, Condensed Matter Theory Program. R. V. K. is supported by NSERC of Canada.\r\n" article_number: '160602' article_processing_charge: No article_type: original author: - first_name: Fumika full_name: Suzuki, Fumika id: 650C99FC-1079-11EA-A3C0-73AE3DDC885E last_name: Suzuki orcid: 0000-0003-4982-5970 - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 - first_name: Wojciech H. full_name: Zurek, Wojciech H. last_name: Zurek - first_name: Roman V. full_name: Krems, Roman V. last_name: Krems citation: ama: Suzuki F, Lemeshko M, Zurek WH, Krems RV. Anderson localization of composite particles. Physical Review Letters. 2021;127(16). doi:10.1103/physrevlett.127.160602 apa: Suzuki, F., Lemeshko, M., Zurek, W. H., & Krems, R. V. (2021). Anderson localization of composite particles. Physical Review Letters. American Physical Society . https://doi.org/10.1103/physrevlett.127.160602 chicago: Suzuki, Fumika, Mikhail Lemeshko, Wojciech H. Zurek, and Roman V. Krems. “Anderson Localization of Composite Particles.” Physical Review Letters. American Physical Society , 2021. https://doi.org/10.1103/physrevlett.127.160602. ieee: F. Suzuki, M. Lemeshko, W. H. Zurek, and R. V. Krems, “Anderson localization of composite particles,” Physical Review Letters, vol. 127, no. 16. American Physical Society , 2021. ista: Suzuki F, Lemeshko M, Zurek WH, Krems RV. 2021. Anderson localization of composite particles. Physical Review Letters. 127(16), 160602. mla: Suzuki, Fumika, et al. “Anderson Localization of Composite Particles.” Physical Review Letters, vol. 127, no. 16, 160602, American Physical Society , 2021, doi:10.1103/physrevlett.127.160602. short: F. Suzuki, M. Lemeshko, W.H. Zurek, R.V. Krems, Physical Review Letters 127 (2021). date_created: 2021-10-13T09:21:33Z date_published: 2021-10-12T00:00:00Z date_updated: 2024-02-29T12:34:10Z day: '12' department: - _id: MiLe doi: 10.1103/physrevlett.127.160602 ec_funded: 1 external_id: arxiv: - '2011.06279' isi: - '000707495700001' intvolume: ' 127' isi: 1 issue: '16' keyword: - General Physics and Astronomy language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2011.06279 month: '10' oa: 1 oa_version: Preprint project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: 2688CF98-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '801770' name: 'Angulon: physics and applications of a new quasiparticle' publication: Physical Review Letters publication_identifier: eissn: - 1079-7114 issn: - 0031-9007 publication_status: published publisher: 'American Physical Society ' quality_controlled: '1' scopus_import: '1' status: public title: Anderson localization of composite particles type: journal_article user_id: 3E5EF7F0-F248-11E8-B48F-1D18A9856A87 volume: 127 year: '2021' ... --- _id: '7594' abstract: - lang: eng text: The concept of the entanglement between spin and orbital degrees of freedom plays a crucial role in our understanding of various phases and exotic ground states in a broad class of materials, including orbitally ordered materials and spin liquids. We investigate how the spin-orbital entanglement in a Mott insulator depends on the value of the spin-orbit coupling of the relativistic origin. To this end, we numerically diagonalize a one-dimensional spin-orbital model with Kugel-Khomskii exchange interactions between spins and orbitals on different sites supplemented by the on-site spin-orbit coupling. In the regime of small spin-orbit coupling with regard to the spin-orbital exchange, the ground state to a large extent resembles the one obtained in the limit of vanishing spin-orbit coupling. On the other hand, for large spin-orbit coupling the ground state can, depending on the model parameters, either still show negligible spin-orbital entanglement or evolve to a highly spin-orbitally-entangled phase with completely distinct properties that are described by an effective XXZ model. The presented results suggest that (i) the spin-orbital entanglement may be induced by large on-site spin-orbit coupling, as found in the 5d transition metal oxides, such as the iridates; (ii) for Mott insulators with weak spin-orbit coupling of Ising type, such as, e.g., the alkali hyperoxides, the effects of the spin-orbit coupling on the ground state can, in the first order of perturbation theory, be neglected. article_number: '013353' article_processing_charge: No article_type: original author: - first_name: Dorota full_name: Gotfryd, Dorota last_name: Gotfryd - first_name: Ekaterina full_name: Paerschke, Ekaterina id: 8275014E-6063-11E9-9B7F-6338E6697425 last_name: Paerschke orcid: 0000-0003-0853-8182 - first_name: Jiri full_name: Chaloupka, Jiri last_name: Chaloupka - first_name: Andrzej M. full_name: Oles, Andrzej M. last_name: Oles - first_name: Krzysztof full_name: Wohlfeld, Krzysztof last_name: Wohlfeld citation: ama: Gotfryd D, Paerschke E, Chaloupka J, Oles AM, Wohlfeld K. How spin-orbital entanglement depends on the spin-orbit coupling in a Mott insulator. Physical Review Research. 2020;2(1). doi:10.1103/PhysRevResearch.2.013353 apa: Gotfryd, D., Paerschke, E., Chaloupka, J., Oles, A. M., & Wohlfeld, K. (2020). How spin-orbital entanglement depends on the spin-orbit coupling in a Mott insulator. Physical Review Research. American Physical Society. https://doi.org/10.1103/PhysRevResearch.2.013353 chicago: Gotfryd, Dorota, Ekaterina Paerschke, Jiri Chaloupka, Andrzej M. Oles, and Krzysztof Wohlfeld. “How Spin-Orbital Entanglement Depends on the Spin-Orbit Coupling in a Mott Insulator.” Physical Review Research. American Physical Society, 2020. https://doi.org/10.1103/PhysRevResearch.2.013353. ieee: D. Gotfryd, E. Paerschke, J. Chaloupka, A. M. Oles, and K. Wohlfeld, “How spin-orbital entanglement depends on the spin-orbit coupling in a Mott insulator,” Physical Review Research, vol. 2, no. 1. American Physical Society, 2020. ista: Gotfryd D, Paerschke E, Chaloupka J, Oles AM, Wohlfeld K. 2020. How spin-orbital entanglement depends on the spin-orbit coupling in a Mott insulator. Physical Review Research. 2(1), 013353. mla: Gotfryd, Dorota, et al. “How Spin-Orbital Entanglement Depends on the Spin-Orbit Coupling in a Mott Insulator.” Physical Review Research, vol. 2, no. 1, 013353, American Physical Society, 2020, doi:10.1103/PhysRevResearch.2.013353. short: D. Gotfryd, E. Paerschke, J. Chaloupka, A.M. Oles, K. Wohlfeld, Physical Review Research 2 (2020). date_created: 2020-03-20T15:21:10Z date_published: 2020-03-20T00:00:00Z date_updated: 2021-01-12T08:14:23Z day: '20' ddc: - '530' department: - _id: MiLe doi: 10.1103/PhysRevResearch.2.013353 ec_funded: 1 file: - access_level: open_access checksum: 1be551fd5f5583635076017d7391ffdc content_type: application/pdf creator: dernst date_created: 2020-03-23T10:18:38Z date_updated: 2020-07-14T12:48:00Z file_id: '7610' file_name: 2020_PhysRevResearch_Gotfryd.pdf file_size: 1436735 relation: main_file file_date_updated: 2020-07-14T12:48:00Z has_accepted_license: '1' intvolume: ' 2' issue: '1' language: - iso: eng month: '03' oa: 1 oa_version: Published Version project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Physical Review Research publication_status: published publisher: American Physical Society quality_controlled: '1' status: public title: How spin-orbital entanglement depends on the spin-orbit coupling in a Mott insulator tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 2 year: '2020' ... --- _id: '7919' abstract: - lang: eng text: We explore the time evolution of two impurities in a trapped one-dimensional Bose gas that follows a change of the boson-impurity interaction. We study the induced impurity-impurity interactions and their effect on the quench dynamics. In particular, we report on the size of the impurity cloud, the impurity-impurity entanglement, and the impurity-impurity correlation function. The presented numerical simulations are based upon the variational multilayer multiconfiguration time-dependent Hartree method for bosons. To analyze and quantify induced impurity-impurity correlations, we employ an effective two-body Hamiltonian with a contact interaction. We show that the effective model consistent with the mean-field attraction of two heavy impurities explains qualitatively our results for weak interactions. Our findings suggest that the quench dynamics in cold-atom systems can be a tool for studying impurity-impurity correlations. article_number: '023154 ' article_processing_charge: No article_type: original author: - first_name: S. I. full_name: Mistakidis, S. I. last_name: Mistakidis - first_name: Artem full_name: Volosniev, Artem id: 37D278BC-F248-11E8-B48F-1D18A9856A87 last_name: Volosniev orcid: 0000-0003-0393-5525 - first_name: P. full_name: Schmelcher, P. last_name: Schmelcher citation: ama: Mistakidis SI, Volosniev A, Schmelcher P. Induced correlations between impurities in a one-dimensional quenched Bose gas. Physical Review Research. 2020;2. doi:10.1103/physrevresearch.2.023154 apa: Mistakidis, S. I., Volosniev, A., & Schmelcher, P. (2020). Induced correlations between impurities in a one-dimensional quenched Bose gas. Physical Review Research. American Physical Society. https://doi.org/10.1103/physrevresearch.2.023154 chicago: Mistakidis, S. I., Artem Volosniev, and P. Schmelcher. “Induced Correlations between Impurities in a One-Dimensional Quenched Bose Gas.” Physical Review Research. American Physical Society, 2020. https://doi.org/10.1103/physrevresearch.2.023154. ieee: S. I. Mistakidis, A. Volosniev, and P. Schmelcher, “Induced correlations between impurities in a one-dimensional quenched Bose gas,” Physical Review Research, vol. 2. American Physical Society, 2020. ista: Mistakidis SI, Volosniev A, Schmelcher P. 2020. Induced correlations between impurities in a one-dimensional quenched Bose gas. Physical Review Research. 2, 023154. mla: Mistakidis, S. I., et al. “Induced Correlations between Impurities in a One-Dimensional Quenched Bose Gas.” Physical Review Research, vol. 2, 023154, American Physical Society, 2020, doi:10.1103/physrevresearch.2.023154. short: S.I. Mistakidis, A. Volosniev, P. Schmelcher, Physical Review Research 2 (2020). date_created: 2020-06-03T11:30:10Z date_published: 2020-05-11T00:00:00Z date_updated: 2023-02-23T13:20:16Z day: '11' ddc: - '530' department: - _id: MiLe doi: 10.1103/physrevresearch.2.023154 ec_funded: 1 file: - access_level: open_access checksum: e1c362fe094d6b246b3cd4a49722e78b content_type: application/pdf creator: dernst date_created: 2020-06-04T13:51:59Z date_updated: 2020-07-14T12:48:05Z file_id: '7926' file_name: 2020_PhysRevResearch_Mistakidis.pdf file_size: 1741098 relation: main_file file_date_updated: 2020-07-14T12:48:05Z has_accepted_license: '1' intvolume: ' 2' language: - iso: eng month: '05' oa: 1 oa_version: Published Version project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Physical Review Research publication_identifier: issn: - 2643-1564 publication_status: published publisher: American Physical Society quality_controlled: '1' status: public title: Induced correlations between impurities in a one-dimensional quenched Bose gas tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 2 year: '2020' ... --- _id: '8726' abstract: - lang: eng text: Several realistic spin-orbital models for transition metal oxides go beyond the classical expectations and could be understood only by employing the quantum entanglement. Experiments on these materials confirm that spin-orbital entanglement has measurable consequences. Here, we capture the essential features of spin-orbital entanglement in complex quantum matter utilizing 1D spin-orbital model which accommodates SU(2)⊗SU(2) symmetric Kugel-Khomskii superexchange as well as the Ising on-site spin-orbit coupling. Building on the results obtained for full and effective models in the regime of strong spin-orbit coupling, we address the question whether the entanglement found on superexchange bonds always increases when the Ising spin-orbit coupling is added. We show that (i) quantum entanglement is amplified by strong spin-orbit coupling and, surprisingly, (ii) almost classical disentangled states are possible. We complete the latter case by analyzing how the entanglement existing for intermediate values of spin-orbit coupling can disappear for higher values of this coupling. article_number: '53' article_processing_charge: No article_type: original author: - first_name: Dorota full_name: Gotfryd, Dorota last_name: Gotfryd - first_name: Ekaterina full_name: Paerschke, Ekaterina id: 8275014E-6063-11E9-9B7F-6338E6697425 last_name: Paerschke orcid: 0000-0003-0853-8182 - first_name: Krzysztof full_name: Wohlfeld, Krzysztof last_name: Wohlfeld - first_name: Andrzej M. full_name: Oleś, Andrzej M. last_name: Oleś citation: ama: Gotfryd D, Paerschke E, Wohlfeld K, Oleś AM. Evolution of spin-orbital entanglement with increasing ising spin-orbit coupling. Condensed Matter. 2020;5(3). doi:10.3390/condmat5030053 apa: Gotfryd, D., Paerschke, E., Wohlfeld, K., & Oleś, A. M. (2020). Evolution of spin-orbital entanglement with increasing ising spin-orbit coupling. Condensed Matter. MDPI. https://doi.org/10.3390/condmat5030053 chicago: Gotfryd, Dorota, Ekaterina Paerschke, Krzysztof Wohlfeld, and Andrzej M. Oleś. “Evolution of Spin-Orbital Entanglement with Increasing Ising Spin-Orbit Coupling.” Condensed Matter. MDPI, 2020. https://doi.org/10.3390/condmat5030053. ieee: D. Gotfryd, E. Paerschke, K. Wohlfeld, and A. M. Oleś, “Evolution of spin-orbital entanglement with increasing ising spin-orbit coupling,” Condensed Matter, vol. 5, no. 3. MDPI, 2020. ista: Gotfryd D, Paerschke E, Wohlfeld K, Oleś AM. 2020. Evolution of spin-orbital entanglement with increasing ising spin-orbit coupling. Condensed Matter. 5(3), 53. mla: Gotfryd, Dorota, et al. “Evolution of Spin-Orbital Entanglement with Increasing Ising Spin-Orbit Coupling.” Condensed Matter, vol. 5, no. 3, 53, MDPI, 2020, doi:10.3390/condmat5030053. short: D. Gotfryd, E. Paerschke, K. Wohlfeld, A.M. Oleś, Condensed Matter 5 (2020). date_created: 2020-11-06T07:21:00Z date_published: 2020-08-26T00:00:00Z date_updated: 2021-01-12T08:20:46Z day: '26' ddc: - '530' department: - _id: MiLe doi: 10.3390/condmat5030053 ec_funded: 1 external_id: arxiv: - '2009.11773' file: - access_level: open_access checksum: a57a698ff99a11b6665bafd1bac7afbc content_type: application/pdf creator: dernst date_created: 2020-11-06T07:24:40Z date_updated: 2020-11-06T07:24:40Z file_id: '8727' file_name: 2020_CondensedMatter_Gotfryd.pdf file_size: 768336 relation: main_file success: 1 file_date_updated: 2020-11-06T07:24:40Z has_accepted_license: '1' intvolume: ' 5' issue: '3' language: - iso: eng month: '08' oa: 1 oa_version: Published Version project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Condensed Matter publication_identifier: issn: - 2410-3896 publication_status: published publisher: MDPI quality_controlled: '1' scopus_import: '1' status: public title: Evolution of spin-orbital entanglement with increasing ising spin-orbit coupling tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 5 year: '2020' ... --- _id: '7882' abstract: - lang: eng text: A few-body cluster is a building block of a many-body system in a gas phase provided the temperature at most is of the order of the binding energy of this cluster. Here we illustrate this statement by considering a system of tubes filled with dipolar distinguishable particles. We calculate the partition function, which determines the probability to find a few-body cluster at a given temperature. The input for our calculations—the energies of few-body clusters—is estimated using the harmonic approximation. We first describe and demonstrate the validity of our numerical procedure. Then we discuss the results featuring melting of the zero-temperature many-body state into a gas of free particles and few-body clusters. For temperature higher than its binding energy threshold, the dimers overwhelmingly dominate the ensemble, where the remaining probability is in free particles. At very high temperatures free (harmonic oscillator trap-bound) particle dominance is eventually reached. This structure evolution appears both for one and two particles in each layer providing crucial information about the behavior of ultracold dipolar gases. The investigation addresses the transition region between few- and many-body physics as a function of temperature using a system of ten dipoles in five tubes. article_number: '484' article_processing_charge: No article_type: original author: - first_name: Jeremy R. full_name: Armstrong, Jeremy R. last_name: Armstrong - first_name: Aksel S. full_name: Jensen, Aksel S. last_name: Jensen - first_name: Artem full_name: Volosniev, Artem id: 37D278BC-F248-11E8-B48F-1D18A9856A87 last_name: Volosniev orcid: 0000-0003-0393-5525 - first_name: Nikolaj T. full_name: Zinner, Nikolaj T. last_name: Zinner citation: ama: Armstrong JR, Jensen AS, Volosniev A, Zinner NT. Clusters in separated tubes of tilted dipoles. Mathematics. 2020;8(4). doi:10.3390/math8040484 apa: Armstrong, J. R., Jensen, A. S., Volosniev, A., & Zinner, N. T. (2020). Clusters in separated tubes of tilted dipoles. Mathematics. MDPI. https://doi.org/10.3390/math8040484 chicago: Armstrong, Jeremy R., Aksel S. Jensen, Artem Volosniev, and Nikolaj T. Zinner. “Clusters in Separated Tubes of Tilted Dipoles.” Mathematics. MDPI, 2020. https://doi.org/10.3390/math8040484. ieee: J. R. Armstrong, A. S. Jensen, A. Volosniev, and N. T. Zinner, “Clusters in separated tubes of tilted dipoles,” Mathematics, vol. 8, no. 4. MDPI, 2020. ista: Armstrong JR, Jensen AS, Volosniev A, Zinner NT. 2020. Clusters in separated tubes of tilted dipoles. Mathematics. 8(4), 484. mla: Armstrong, Jeremy R., et al. “Clusters in Separated Tubes of Tilted Dipoles.” Mathematics, vol. 8, no. 4, 484, MDPI, 2020, doi:10.3390/math8040484. short: J.R. Armstrong, A.S. Jensen, A. Volosniev, N.T. Zinner, Mathematics 8 (2020). date_created: 2020-05-24T22:01:00Z date_published: 2020-04-01T00:00:00Z date_updated: 2023-08-21T06:23:36Z day: '01' ddc: - '510' department: - _id: MiLe doi: 10.3390/math8040484 ec_funded: 1 external_id: isi: - '000531824100024' file: - access_level: open_access checksum: a05a7df724522203d079673a0d4de4bc content_type: application/pdf creator: dernst date_created: 2020-05-25T14:42:22Z date_updated: 2020-07-14T12:48:04Z file_id: '7887' file_name: 2020_Mathematics_Armstrong.pdf file_size: 990540 relation: main_file file_date_updated: 2020-07-14T12:48:04Z has_accepted_license: '1' intvolume: ' 8' isi: 1 issue: '4' language: - iso: eng month: '04' oa: 1 oa_version: Published Version project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: Mathematics publication_identifier: eissn: - '22277390' publication_status: published publisher: MDPI quality_controlled: '1' scopus_import: '1' status: public title: Clusters in separated tubes of tilted dipoles tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 8 year: '2020' ... --- _id: '7933' abstract: - lang: eng text: We study a mobile quantum impurity, possessing internal rotational degrees of freedom, confined to a ring in the presence of a many-particle bosonic bath. By considering the recently introduced rotating polaron problem, we define the Hamiltonian and examine the energy spectrum. The weak-coupling regime is studied by means of a variational ansatz in the truncated Fock space. The corresponding spectrum indicates that there emerges a coupling between the internal and orbital angular momenta of the impurity as a consequence of the phonon exchange. We interpret the coupling as a phonon-mediated spin-orbit coupling and quantify it by using a correlation function between the internal and the orbital angular momentum operators. The strong-coupling regime is investigated within the Pekar approach, and it is shown that the correlation function of the ground state shows a kink at a critical coupling, that is explained by a sharp transition from the noninteracting state to the states that exhibit strong interaction with the surroundings. The results might find applications in such fields as spintronics or topological insulators where spin-orbit coupling is of crucial importance. article_number: '184104 ' article_processing_charge: No article_type: original author: - first_name: Mikhail full_name: Maslov, Mikhail id: 2E65BB0E-F248-11E8-B48F-1D18A9856A87 last_name: Maslov orcid: 0000-0003-4074-2570 - first_name: Mikhail full_name: Lemeshko, Mikhail id: 37CB05FA-F248-11E8-B48F-1D18A9856A87 last_name: Lemeshko orcid: 0000-0002-6990-7802 - first_name: Enderalp full_name: Yakaboylu, Enderalp id: 38CB71F6-F248-11E8-B48F-1D18A9856A87 last_name: Yakaboylu orcid: 0000-0001-5973-0874 citation: ama: Maslov M, Lemeshko M, Yakaboylu E. Synthetic spin-orbit coupling mediated by a bosonic environment. Physical Review B. 2020;101(18). doi:10.1103/PhysRevB.101.184104 apa: Maslov, M., Lemeshko, M., & Yakaboylu, E. (2020). Synthetic spin-orbit coupling mediated by a bosonic environment. Physical Review B. American Physical Society. https://doi.org/10.1103/PhysRevB.101.184104 chicago: Maslov, Mikhail, Mikhail Lemeshko, and Enderalp Yakaboylu. “Synthetic Spin-Orbit Coupling Mediated by a Bosonic Environment.” Physical Review B. American Physical Society, 2020. https://doi.org/10.1103/PhysRevB.101.184104. ieee: M. Maslov, M. Lemeshko, and E. Yakaboylu, “Synthetic spin-orbit coupling mediated by a bosonic environment,” Physical Review B, vol. 101, no. 18. American Physical Society, 2020. ista: Maslov M, Lemeshko M, Yakaboylu E. 2020. Synthetic spin-orbit coupling mediated by a bosonic environment. Physical Review B. 101(18), 184104. mla: Maslov, Mikhail, et al. “Synthetic Spin-Orbit Coupling Mediated by a Bosonic Environment.” Physical Review B, vol. 101, no. 18, 184104, American Physical Society, 2020, doi:10.1103/PhysRevB.101.184104. short: M. Maslov, M. Lemeshko, E. Yakaboylu, Physical Review B 101 (2020). date_created: 2020-06-07T22:00:52Z date_published: 2020-05-01T00:00:00Z date_updated: 2023-08-21T07:05:15Z day: '01' department: - _id: MiLe doi: 10.1103/PhysRevB.101.184104 ec_funded: 1 external_id: arxiv: - '1912.03092' isi: - '000530754700003' intvolume: ' 101' isi: 1 issue: '18' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1912.03092 month: '05' oa: 1 oa_version: Preprint project: - _id: 26031614-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P29902 name: Quantum rotations in the presence of a many-body environment - _id: 2688CF98-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '801770' name: 'Angulon: physics and applications of a new quasiparticle' publication: Physical Review B publication_identifier: eissn: - '24699969' issn: - '24699950' publication_status: published publisher: American Physical Society quality_controlled: '1' scopus_import: '1' status: public title: Synthetic spin-orbit coupling mediated by a bosonic environment type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 101 year: '2020' ...