TY - JOUR AB - We prove the r-spin cobordism hypothesis in the setting of (weak) 2-categories for every positive integer r: the 2-groupoid of 2-dimensional fully extended r-spin TQFTs with given target is equivalent to the homotopy fixed points of an induced Spin 2r -action. In particular, such TQFTs are classified by fully dualisable objects together with a trivialisation of the rth power of their Serre automorphisms. For r=1, we recover the oriented case (on which our proof builds), while ordinary spin structures correspond to r=2. To construct examples, we explicitly describe Spin 2r​-homotopy fixed points in the equivariant completion of any symmetric monoidal 2-category. We also show that every object in a 2-category of Landau–Ginzburg models gives rise to fully extended spin TQFTs and that half of these do not factor through the oriented bordism 2-category. AU - Carqueville, Nils AU - Szegedy, Lorant ID - 14756 IS - 3 JF - Quantum Topology KW - Geometry and Topology KW - Mathematical Physics SN - 1663-487X TI - Fully extended r-spin TQFTs VL - 14 ER - TY - JOUR AB - We study an impurity with a resonance level whose position coincides with the Fermi energy of the surrounding Fermi gas. An impurity causes a rapid variation of the scattering phase shift for fermions at the Fermi surface, introducing a new characteristic length scale into the problem. We investigate manifestations of this length scale in the self-energy of the impurity and in the density of the bath. Our calculations reveal a model-independent deformation of the density of the Fermi gas, which is determined by the width of the resonance. To provide a broader picture, we investigate time evolution of the density in quench dynamics, and study the behavior of the system at finite temperatures. Finally, we briefly discuss implications of our findings for the Fermi-polaron problem. AU - Maslov, Mikhail AU - Lemeshko, Mikhail AU - Volosniev, Artem ID - 10845 JF - Physical Review Research SN - 2643-1564 TI - Impurity with a resonance in the vicinity of the Fermi energy VL - 4 ER - TY - JOUR AB - A critical overview of the theory of the chirality-induced spin selectivity (CISS) effect, that is, phenomena in which the chirality of molecular species imparts significant spin selectivity to various electron processes, is provided. Based on discussions in a recently held workshop, and further work published since, the status of CISS effects—in electron transmission, electron transport, and chemical reactions—is reviewed. For each, a detailed discussion of the state-of-the-art in theoretical understanding is provided and remaining challenges and research opportunities are identified. AU - Evers, Ferdinand AU - Aharony, Amnon AU - Bar-Gill, Nir AU - Entin-Wohlman, Ora AU - Hedegård, Per AU - Hod, Oded AU - Jelinek, Pavel AU - Kamieniarz, Grzegorz AU - Lemeshko, Mikhail AU - Michaeli, Karen AU - Mujica, Vladimiro AU - Naaman, Ron AU - Paltiel, Yossi AU - Refaely-Abramson, Sivan AU - Tal, Oren AU - Thijssen, Jos AU - Thoss, Michael AU - Van Ruitenbeek, Jan M. AU - Venkataraman, Latha AU - Waldeck, David H. AU - Yan, Binghai AU - Kronik, Leeor ID - 10771 IS - 13 JF - Advanced Materials SN - 09359648 TI - Theory of chirality induced spin selectivity: Progress and challenges VL - 34 ER - TY - JOUR AB - Rotational dynamics of D2 molecules inside helium nanodroplets is induced by a moderately intense femtosecond pump pulse and measured as a function of time by recording the yield of HeD+ ions, created through strong-field dissociative ionization with a delayed femtosecond probe pulse. The yield oscillates with a period of 185 fs, reflecting field-free rotational wave packet dynamics, and the oscillation persists for more than 500 periods. Within the experimental uncertainty, the rotational constant BHe of the in-droplet D2 molecule, determined by Fourier analysis, is the same as Bgas for an isolated D2 molecule. Our observations show that the D2 molecules inside helium nanodroplets essentially rotate as free D2 molecules. AU - Qiang, Junjie AU - Zhou, Lianrong AU - Lu, Peifen AU - Lin, Kang AU - Ma, Yongzhe AU - Pan, Shengzhe AU - Lu, Chenxu AU - Jiang, Wenyu AU - Sun, Fenghao AU - Zhang, Wenbin AU - Li, Hui AU - Gong, Xiaochun AU - Averbukh, Ilya Sh AU - Prior, Yehiam AU - Schouder, Constant A. AU - Stapelfeldt, Henrik AU - Cherepanov, Igor AU - Lemeshko, Mikhail AU - Jäger, Wolfgang AU - Wu, Jian ID - 11552 IS - 24 JF - Physical Review Letters SN - 00319007 TI - Femtosecond rotational dynamics of D2 molecules in superfluid helium nanodroplets VL - 128 ER - TY - JOUR AB - We investigate the ground-state properties of weakly repulsive one-dimensional bosons in the presence of an attractive zero-range impurity potential. First, we derive mean-field solutions to the problem on a finite ring for the two asymptotic cases: (i) all bosons are bound to the impurity and (ii) all bosons are in a scattering state. Moreover, we derive the critical line that separates these regimes in the parameter space. In the thermodynamic limit, this critical line determines the maximum number of bosons that can be bound by the impurity potential, forming an artificial atom. Second, we validate the mean-field results using the flow equation approach and the multi-layer multi-configuration time-dependent Hartree method for atomic mixtures. While beyond-mean-field effects destroy long-range order in the Bose gas, the critical boson number is unaffected. Our findings are important for understanding such artificial atoms in low-density Bose gases with static and mobile impurities. AU - Brauneis, Fabian AU - Backert, Timothy G. AU - Mistakidis, Simeon I. AU - Lemeshko, Mikhail AU - Hammer, Hans Werner AU - Volosniev, Artem ID - 11590 IS - 6 JF - New Journal of Physics SN - 1367-2630 TI - Artificial atoms from cold bosons in one dimension VL - 24 ER - TY - JOUR AB - We compare recent experimental results [Science 375, 528 (2022)] of the superfluid unitary Fermi gas near the critical temperature with a thermodynamic model based on the elementary excitations of the system. We find good agreement between experimental data and our theory for several quantities such as first sound, second sound, and superfluid fraction. We also show that mode mixing between first and second sound occurs. Finally, we characterize the response amplitude to a density perturbation: Close to the critical temperature both first and second sound can be excited through a density perturbation, whereas at lower temperatures only the first sound mode exhibits a significant response. AU - Bighin, Giacomo AU - Cappellaro, Alberto AU - Salasnich, L. ID - 11592 IS - 6 JF - Physical Review A SN - 2469-9926 TI - Unitary Fermi superfluid near the critical temperature: Thermodynamics and sound modes from elementary excitations VL - 105 ER - TY - JOUR AB - Recently it became possible to study highly excited rotational states of molecules in superfluid helium through nonadiabatic alignment experiments (Cherepanov et al 2021 Phys. Rev. A 104 L061303). This calls for theoretical approaches that go beyond explaining renormalized values of molecular spectroscopic constants, which suffices when only the lowest few rotational states are involved. As the first step in this direction, here we present a basic quantum mechanical model describing highly excited rotational states of molecules in superfluid helium nanodroplets. We show that a linear molecule immersed in a superfluid can be seen as an effective symmetric top, similar to the rotational structure of radicals, such as OH or NO, but with the angular momentum of the superfluid playing the role of the electronic angular momentum in free molecules. The simple theory sheds light onto what happens when the rotational angular momentum of the molecule increases beyond the lowest excited states accessible by infrared spectroscopy. In addition, the model allows to estimate the effective rotational and centrifugal distortion constants for a broad range of species and to explain the crossover between light and heavy molecules in superfluid 4He in terms of the many-body wavefunction structure. Some of the above mentioned insights can be acquired by analyzing a simple 2 × 2 matrix. AU - Cherepanov, Igor AU - Bighin, Giacomo AU - Schouder, Constant A. AU - Chatterley, Adam S. AU - Stapelfeldt, Henrik AU - Lemeshko, Mikhail ID - 11998 IS - 7 JF - New Journal of Physics SN - 1367-2630 TI - A simple model for high rotational excitations of molecules in a superfluid VL - 24 ER - TY - JOUR AB - We study the fate of an impurity in an ultracold heteronuclear Bose mixture, focusing on the experimentally relevant case of a ⁴¹K - ⁸⁷Rb mixture, with the impurity in a ⁴¹K hyperfine state. Our paper provides a comprehensive description of an impurity in a BEC mixture with contact interactions across its phase diagram. We present results for the miscible and immiscible regimes, as well as for the impurity in a self-bound quantum droplet. Here, varying the interactions, we find exotic states where the impurity localizes either at the center or at the surface of the droplet. AU - Bighin, Giacomo AU - Burchianti, A. AU - Minardi, F. AU - Macrì, T. ID - 11997 IS - 2 JF - Physical Review A SN - 2469-9926 TI - Impurity in a heteronuclear two-component Bose mixture VL - 106 ER - TY - JOUR AB - We demonstrate the formation of robust zero-energy modes close to magnetic impurities in the iron-based superconductor FeSe1-z Tez. We find that the Zeeman field generated by the impurity favors a spin-triplet interorbital pairing as opposed to the spin-singlet intraorbital pairing prevalent in the bulk. The preferred spin-triplet pairing preserves time-reversal symmetry and is topological, as robust, topologically protected zero modes emerge at the boundary between regions with different pairing states. Moreover, the zero modes form Kramers doublets that are insensitive to the direction of the spin polarization or to the separation between impurities. We argue that our theoretical results are consistent with recent experimental measurements on FeSe1-z Tez. AU - Ghazaryan, Areg AU - Kirmani, Ammar AU - Fernandes, Rafael M. AU - Ghaemi, Pouyan ID - 12139 IS - 20 JF - Physical Review B SN - 2469-9950 TI - Anomalous Shiba states in topological iron-based superconductors VL - 106 ER - TY - JOUR AB - Methods inspired from machine learning have recently attracted great interest in the computational study of quantum many-particle systems. So far, however, it has proven challenging to deal with microscopic models in which the total number of particles is not conserved. To address this issue, we propose a variant of neural network states, which we term neural coherent states. Taking the Fröhlich impurity model as a case study, we show that neural coherent states can learn the ground state of nonadditive systems very well. In particular, we recover exact diagonalization in all regimes tested and observe substantial improvement over the standard coherent state estimates in the most challenging intermediate-coupling regime. Our approach is generic and does not assume specific details of the system, suggesting wide applications. AU - Rzadkowski, Wojciech AU - Lemeshko, Mikhail AU - Mentink, Johan H. ID - 12150 IS - 15 JF - Physical Review B SN - 2469-9950 TI - Artificial neural network states for nonadditive systems VL - 106 ER - TY - JOUR AB - Motivated by properties-controlling potential of the strain, we investigate strain dependence of structure, electronic, and magnetic properties of Sr2IrO4 using complementary theoretical tools: ab-initio calculations, analytical approaches (rigid octahedra picture, Slater-Koster integrals), and extended t−J model. We find that strain affects both Ir-Ir distance and Ir-O-Ir angle, and the rigid octahedra picture is not relevant. Second, we find fundamentally different behavior for compressive and tensile strain. One remarkable feature is the formation of two subsets of bond- and orbital-dependent carriers, a compass-like model, under compression. This originates from the strain-induced renormalization of the Ir-O-Ir superexchange and O on-site energy. We also show that under compressive (tensile) strain, Fermi surface becomes highly dispersive (relatively flat). Already at a tensile strain of 1.5%, we observe spectral weight redistribution, with the low-energy band acquiring almost purely singlet character. These results can be directly compared with future experiments. AU - Paerschke, Ekaterina AU - Chen, Wei-Chih AU - Ray, Rajyavardhan AU - Chen, Cheng-Chien ID - 12213 JF - npj Quantum Materials KW - Condensed Matter Physics KW - Electronic KW - Optical and Magnetic Materials TI - Evolution of electronic and magnetic properties of Sr₂IrO₄ under strain VL - 7 ER - TY - JOUR AB - We review our theoretical results of the sound propagation in two-dimensional (2D) systems of ultracold fermionic and bosonic atoms. In the superfluid phase, characterized by the spontaneous symmetry breaking of the U(1) symmetry, there is the coexistence of first and second sound. In the case of weakly-interacting repulsive bosons, we model the recent measurements of the sound velocities of 39K atoms in 2D obtained in the weakly-interacting regime and around the Berezinskii–Kosterlitz–Thouless (BKT) superfluid-to-normal transition temperature. In particular, we perform a quite accurate computation of the superfluid density and show that it is reasonably consistent with the experimental results. For superfluid attractive fermions, we calculate the first and second sound velocities across the whole BCS-BEC crossover. In the low-temperature regime, we reproduce the recent measurements of first-sound speed with 6Li atoms. We also predict that there is mixing between sound modes only in the finite-temperature BEC regime. AU - Salasnich, Luca AU - Cappellaro, Alberto AU - Furutani, Koichiro AU - Tononi, Andrea AU - Bighin, Giacomo ID - 12154 IS - 10 JF - Symmetry KW - Physics and Astronomy (miscellaneous) KW - General Mathematics KW - Chemistry (miscellaneous) KW - Computer Science (miscellaneous) SN - 2073-8994 TI - First and second sound in two-dimensional bosonic and fermionic superfluids VL - 14 ER - TY - THES AB - In this Thesis, I study composite quantum impurities with variational techniques, both inspired by machine learning as well as fully analytic. I supplement this with exploration of other applications of machine learning, in particular artificial neural networks, in many-body physics. In Chapters 3 and 4, I study quasiparticle systems with variational approach. I derive a Hamiltonian describing the angulon quasiparticle in the presence of a magnetic field. I apply analytic variational treatment to this Hamiltonian. Then, I introduce a variational approach for non-additive systems, based on artificial neural networks. I exemplify this approach on the example of the polaron quasiparticle (Fröhlich Hamiltonian). In Chapter 5, I continue using artificial neural networks, albeit in a different setting. I apply artificial neural networks to detect phases from snapshots of two types physical systems. Namely, I study Monte Carlo snapshots of multilayer classical spin models as well as molecular dynamics maps of colloidal systems. The main type of networks that I use here are convolutional neural networks, known for their applicability to image data. AU - Rzadkowski, Wojciech ID - 10759 SN - 2663-337X TI - Analytic and machine learning approaches to composite quantum impurities ER - TY - JOUR AB - Recently it was shown that anyons on the two-sphere naturally arise from a system of molecular impurities exchanging angular momentum with a many-particle bath (Phys. Rev. Lett. 126, 015301 (2021)). Here we further advance this approach and rigorously demonstrate that in the experimentally realized regime the lowest spectrum of two linear molecules immersed in superfluid helium corresponds to the spectrum of two anyons on the sphere. We develop the formalism within the framework of the recently experimentally observed angulon quasiparticle AU - Brooks, Morris AU - Lemeshko, Mikhail AU - Lundholm, Douglas AU - Yakaboylu, Enderalp ID - 10585 IS - 4 JF - Atoms KW - anyons KW - quasiparticles KW - Quantum Hall Effect KW - topological states of matter TI - Emergence of anyons on the two-sphere in molecular impurities VL - 9 ER - TY - JOUR AB - Area-dependent quantum field theory is a modification of two-dimensional topological quantum field theory, where one equips each connected component of a bordism with a positive real number—interpreted as area—which behaves additively under glueing. As opposed to topological theories, in area-dependent theories the state spaces can be infinite-dimensional. We introduce the notion of regularised Frobenius algebras in Hilbert spaces and show that area-dependent theories are in one-to-one correspondence to commutative regularised Frobenius algebras. We also provide a state sum construction for area-dependent theories. Our main example is two-dimensional Yang–Mills theory with compact gauge group, which we treat in detail. AU - Runkel, Ingo AU - Szegedy, Lorant ID - 8816 IS - 1 JF - Communications in Mathematical Physics SN - 00103616 TI - Area-dependent quantum field theory VL - 381 ER - TY - JOUR AB - Studies on the experimental realization of two-dimensional anyons in terms of quasiparticles have been restricted, so far, to only anyons on the plane. It is known, however, that the geometry and topology of space can have significant effects on quantum statistics for particles moving on it. Here, we have undertaken the first step toward realizing the emerging fractional statistics for particles restricted to move on the sphere instead of on the plane. We show that such a model arises naturally in the context of quantum impurity problems. In particular, we demonstrate a setup in which the lowest-energy spectrum of two linear bosonic or fermionic molecules immersed in a quantum many-particle environment can coincide with the anyonic spectrum on the sphere. This paves the way toward the experimental realization of anyons on the sphere using molecular impurities. Furthermore, since a change in the alignment of the molecules corresponds to the exchange of the particles on the sphere, such a realization reveals a novel type of exclusion principle for molecular impurities, which could also be of use as a powerful technique to measure the statistics parameter. Finally, our approach opens up a simple numerical route to investigate the spectra of many anyons on the sphere. Accordingly, we present the spectrum of two anyons on the sphere in the presence of a Dirac monopole field. AU - Brooks, Morris AU - Lemeshko, Mikhail AU - Lundholm, D. AU - Yakaboylu, Enderalp ID - 9005 IS - 1 JF - Physical Review Letters SN - 00319007 TI - Molecular impurities as a realization of anyons on the two-sphere VL - 126 ER - TY - JOUR AB - We employ the Gross-Pitaevskii equation to study acoustic emission generated in a uniform Bose gas by a static impurity. The impurity excites a sound-wave packet, which propagates through the gas. We calculate the shape of this wave packet in the limit of long wave lengths, and argue that it is possible to extract properties of the impurity by observing this shape. We illustrate here this possibility for a Bose gas with a trapped impurity atom -- an example of a relevant experimental setup. Presented results are general for all one-dimensional systems described by the nonlinear Schrödinger equation and can also be used in nonatomic systems, e.g., to analyze light propagation in nonlinear optical media. Finally, we calculate the shape of the sound-wave packet for a three-dimensional Bose gas assuming a spherically symmetric perturbation. AU - Marchukov, Oleksandr AU - Volosniev, Artem ID - 9093 IS - 2 JF - SciPost Physics SN - 2542-4653 TI - Shape of a sound wave in a weakly-perturbed Bose gas VL - 10 ER - TY - JOUR AB - Sound propagation is a macroscopic manifestation of the interplay between the equilibrium thermodynamics and the dynamical transport properties of fluids. Here, for a two-dimensional system of ultracold fermions, we calculate the first and second sound velocities across the whole BCS-BEC crossover, and we analyze the system response to an external perturbation. In the low-temperature regime we reproduce the recent measurements [Phys. Rev. Lett. 124, 240403 (2020)] of the first sound velocity, which, due to the decoupling of density and entropy fluctuations, is the sole mode excited by a density probe. Conversely, a heat perturbation excites only the second sound, which, being sensitive to the superfluid depletion, vanishes in the deep BCS regime and jumps discontinuously to zero at the Berezinskii-Kosterlitz-Thouless superfluid transition. A mixing between the modes occurs only in the finite-temperature BEC regime, where our theory converges to the purely bosonic results. AU - Tononi, A. AU - Cappellaro, Alberto AU - Bighin, Giacomo AU - Salasnich, L. ID - 9606 IS - 6 JF - Physical Review A SN - 24699926 TI - Propagation of first and second sound in a two-dimensional Fermi superfluid VL - 103 ER - TY - JOUR AB - The relative motion of three impenetrable particles on a ring, in our case two identical fermions and one impurity, is isomorphic to a triangular quantum billiard. Depending on the ratio κ of the impurity and fermion masses, the billiards can be integrable or non-integrable (also referred to in the main text as chaotic). To set the stage, we first investigate the energy level distributions of the billiards as a function of 1/κ ∈ [0, 1] and find no evidence of integrable cases beyond the limiting values 1/κ = 1 and 1/κ = 0. Then, we use machine learning tools to analyze properties of probability distributions of individual quantum states. We find that convolutional neural networks can correctly classify integrable and non-integrable states. The decisive features of the wave functions are the normalization and a large number of zero elements, corresponding to the existence of a nodal line. The network achieves typical accuracies of 97%, suggesting that machine learning tools can be used to analyze and classify the morphology of probability densities obtained in theory or experiment. AU - Huber, David AU - Marchukov, Oleksandr V. AU - Hammer, Hans Werner AU - Volosniev, Artem ID - 9679 IS - 6 JF - New Journal of Physics TI - Morphology of three-body quantum states from machine learning VL - 23 ER - TY - JOUR AB - We study an effective one-dimensional quantum model that includes friction and spin-orbit coupling (SOC), and show that the model exhibits spin polarization when both terms are finite. Most important, strong spin polarization can be observed even for moderate SOC, provided that the friction is strong. Our findings might help to explain the pronounced effect of chirality on spin distribution and transport in chiral molecules. In particular, our model implies static magnetic properties of a chiral molecule, which lead to Shiba-like states when a molecule is placed on a superconductor, in accordance with recent experimental data. AU - Volosniev, Artem AU - Alpern, Hen AU - Paltiel, Yossi AU - Millo, Oded AU - Lemeshko, Mikhail AU - Ghazaryan, Areg ID - 9770 IS - 2 JF - Physical Review B SN - 2469-9950 TI - Interplay between friction and spin-orbit coupling as a source of spin polarization VL - 104 ER - TY - JOUR AB - A few years ago, flow equations were introduced as a technique for calculating the ground-state energies of cold Bose gases with and without impurities. In this paper, we extend this approach to compute observables other than the energy. As an example, we calculate the densities, and phase fluctuations of one-dimensional Bose gases with one and two impurities. For a single mobile impurity, we use flow equations to validate the mean-field results obtained upon the Lee-Low-Pines transformation. We show that the mean-field approximation is accurate for all values of the boson-impurity interaction strength as long as the phase coherence length is much larger than the healing length of the condensate. For two static impurities, we calculate impurity-impurity interactions induced by the Bose gas. We find that leading order perturbation theory fails when boson-impurity interactions are stronger than boson-boson interactions. The mean-field approximation reproduces the flow equation results for all values of the boson-impurity interaction strength as long as boson-boson interactions are weak. AU - Brauneis, Fabian AU - Hammer, Hans-Werner AU - Lemeshko, Mikhail AU - Volosniev, Artem ID - 9769 IS - 1 JF - SciPost Physics TI - Impurities in a one-dimensional Bose gas: The flow equation approach VL - 11 ER - TY - JOUR AB - Eigenstate thermalization in quantum many-body systems implies that eigenstates at high energy are similar to random vectors. Identifying systems where at least some eigenstates are nonthermal is an outstanding question. In this Letter we show that interacting quantum models that have a nullspace—a degenerate subspace of eigenstates at zero energy (zero modes), which corresponds to infinite temperature, provide a route to nonthermal eigenstates. We analytically show the existence of a zero mode which can be represented as a matrix product state for a certain class of local Hamiltonians. In the more general case we use a subspace disentangling algorithm to generate an orthogonal basis of zero modes characterized by increasing entanglement entropy. We show evidence for an area-law entanglement scaling of the least-entangled zero mode in the broad parameter regime, leading to a conjecture that all local Hamiltonians with the nullspace feature zero modes with area-law entanglement scaling and, as such, break the strong thermalization hypothesis. Finally, we find zero modes in constrained models and propose a setup for observing their experimental signatures. AU - Karle, Volker AU - Serbyn, Maksym AU - Michailidis, Alexios ID - 9903 IS - 6 JF - Physical Review Letters SN - 0031-9007 TI - Area-law entangled eigenstates from nullspaces of local Hamiltonians VL - 127 ER - TY - JOUR AB - Ferromagnetism is most common in transition metal compounds but may also arise in low-density two-dimensional electron systems, with signatures observed in silicon, III-V semiconductor systems, and graphene moiré heterostructures. Here we show that gate-tuned van Hove singularities in rhombohedral trilayer graphene drive the spontaneous ferromagnetic polarization of the electron system into one or more spin- and valley flavors. Using capacitance measurements on graphite-gated van der Waals heterostructures, we find a cascade of density- and electronic displacement field tuned phase transitions marked by negative electronic compressibility. The transitions define the boundaries between phases where quantum oscillations have either four-fold, two-fold, or one-fold degeneracy, associated with a spin and valley degenerate normal metal, spin-polarized `half-metal', and spin and valley polarized `quarter metal', respectively. For electron doping, the salient features are well captured by a phenomenological Stoner model with a valley-anisotropic Hund's coupling, likely arising from interactions at the lattice scale. For hole filling, we observe a richer phase diagram featuring a delicate interplay of broken symmetries and transitions in the Fermi surface topology. Finally, by rotational alignment of a hexagonal boron nitride substrate to induce a moiré superlattice, we find that the superlattice perturbs the preexisting isospin order only weakly, leaving the basic phase diagram intact while catalyzing the formation of topologically nontrivial gapped states whenever itinerant half- or quarter metal states occur at half- or quarter superlattice band filling. Our results show that rhombohedral trilayer graphene is an ideal platform for well-controlled tests of many-body theory and reveal magnetism in moiré materials to be fundamentally itinerant in nature. AU - Zhou, Haoxin AU - Xie, Tian AU - Ghazaryan, Areg AU - Holder, Tobias AU - Ehrets, James R. AU - Spanton, Eric M. AU - Taniguchi, Takashi AU - Watanabe, Kenji AU - Berg, Erez AU - Serbyn, Maksym AU - Young, Andrea F. ID - 10025 JF - Nature KW - condensed matter - mesoscale and nanoscale physics KW - condensed matter - strongly correlated electrons KW - multidisciplinary SN - 0028-0836 TI - Half and quarter metals in rhombohedral trilayer graphene ER - TY - JOUR AB - We give a combinatorial model for r-spin surfaces with parameterized boundary based on Novak (“Lattice topological field theories in two dimensions,” Ph.D. thesis, Universität Hamburg, 2015). The r-spin structure is encoded in terms of ℤ𝑟-valued indices assigned to the edges of a polygonal decomposition. This combinatorial model is designed for our state-sum construction of two-dimensional topological field theories on r-spin surfaces. We show that an example of such a topological field theory computes the Arf-invariant of an r-spin surface as introduced by Randal-Williams [J. Topol. 7, 155 (2014)] and Geiges et al. [Osaka J. Math. 49, 449 (2012)]. This implies, in particular, that the r-spin Arf-invariant is constant on orbits of the mapping class group, providing an alternative proof of that fact. AU - Runkel, Ingo AU - Szegedy, Lorant ID - 10176 IS - 10 JF - Journal of Mathematical Physics SN - 00222488 TI - Topological field theory on r-spin surfaces and the Arf-invariant VL - 62 ER - TY - JOUR AB - Theoretical and experimental studies of the interaction between spins and temperature are vital for the development of spin caloritronics, as they dictate the design of future devices. In this work, we propose a two-terminal cold-atom simulator to study that interaction. The proposed quantum simulator consists of strongly interacting atoms that occupy two temperature reservoirs connected by a one-dimensional link. First, we argue that the dynamics in the link can be described using an inhomogeneous Heisenberg spin chain whose couplings are defined by the local temperature. Second, we show the existence of a spin current in a system with a temperature difference by studying the dynamics that follows the spin-flip of an atom in the link. A temperature gradient accelerates the impurity in one direction more than in the other, leading to an overall spin current similar to the spin Seebeck effect. AU - Barfknecht, Rafael E. AU - Foerster, Angela AU - Zinner, Nikolaj T. AU - Volosniev, Artem ID - 10401 IS - 1 JF - Communications Physics TI - Generation of spin currents by a temperature gradient in a two-terminal device VL - 4 ER - TY - JOUR AB - The surface states of 3D topological insulators in general have negligible quantum oscillations (QOs) when the chemical potential is tuned to the Dirac points. In contrast, we find that topological Kondo insulators (TKIs) can support surface states with an arbitrarily large Fermi surface (FS) when the chemical potential is pinned to the Dirac point. We illustrate that these FSs give rise to finite-frequency QOs, which can become comparable to the extremal area of the unhybridized bulk bands. We show that this occurs when the crystal symmetry is lowered from cubic to tetragonal in a minimal two-orbital model. We label such surface modes as 'shadow surface states'. Moreover, we show that the sufficient next-nearest neighbor out-of-plane hybridization leading to shadow surface states can be self-consistently stabilized for tetragonal TKIs. Consequently, shadow surface states provide an important example of high-frequency QOs beyond the context of cubic TKIs. AU - Ghazaryan, Areg AU - Nica, Emilian M. AU - Erten, Onur AU - Ghaemi, Pouyan ID - 10628 IS - 12 JF - New Journal of Physics SN - 1367-2630 TI - Shadow surface states in topological Kondo insulators VL - 23 ER - TY - JOUR AB - We combine experimental and theoretical approaches to explore excited rotational states of molecules embedded in helium nanodroplets using CS2 and I2 as examples. Laser-induced nonadiabatic molecular alignment is employed to measure spectral lines for rotational states extending beyond those initially populated at the 0.37 K droplet temperature. We construct a simple quantum-mechanical model, based on a linear rotor coupled to a single-mode bosonic bath, to determine the rotational energy structure in its entirety. The calculated and measured spectral lines are in good agreement. We show that the effect of the surrounding superfluid on molecular rotation can be rationalized by a single quantity, the angular momentum, transferred from the molecule to the droplet. AU - Cherepanov, Igor AU - Bighin, Giacomo AU - Schouder, Constant A. AU - Chatterley, Adam S. AU - Albrechtsen, Simon H. AU - Muñoz, Alberto Viñas AU - Christiansen, Lars AU - Stapelfeldt, Henrik AU - Lemeshko, Mikhail ID - 10631 IS - 6 JF - Physical Review A SN - 2469-9926 TI - Excited rotational states of molecules in a superfluid VL - 104 ER - TY - GEN AB - Methods inspired from machine learning have recently attracted great interest in the computational study of quantum many-particle systems. So far, however, it has proven challenging to deal with microscopic models in which the total number of particles is not conserved. To address this issue, we propose a new variant of neural network states, which we term neural coherent states. Taking the Fröhlich impurity model as a case study, we show that neural coherent states can learn the ground state of non-additive systems very well. In particular, we observe substantial improvement over the standard coherent state estimates in the most challenging intermediate coupling regime. Our approach is generic and does not assume specific details of the system, suggesting wide applications. AU - Rzadkowski, Wojciech AU - Lemeshko, Mikhail AU - Mentink, Johan H. ID - 10762 T2 - arXiv TI - Artificial neural network states for non-additive systems ER - TY - GEN AB - Superconductor-semiconductor hybrids are platforms for realizing effective p-wave superconductivity. Spin-orbit coupling, combined with the proximity effect, causes the two-dimensional semiconductor to inherit p±ip intraband pairing, and application of magnetic field can then result in transitions to the normal state, partial Bogoliubov Fermi surfaces, or topological phases with Majorana modes. Experimentally probing the hybrid superconductor-semiconductor interface is challenging due to the shunting effect of the conventional superconductor. Consequently, the nature of induced pairing remains an open question. Here, we use the circuit quantum electrodynamics architecture to probe induced superconductivity in a two dimensional Al-InAs hybrid system. We observe a strong suppression of superfluid density and enhanced dissipation driven by magnetic field, which cannot be accounted for by the depairing theory of an s-wave superconductor. These observations are explained by a picture of independent intraband p±ip superconductors giving way to partial Bogoliubov Fermi surfaces, and allow for the first characterization of key properties of the hybrid superconducting system. AU - Phan, Duc T AU - Senior, Jorden L AU - Ghazaryan, Areg AU - Hatefipour, M. AU - Strickland, W. M. AU - Shabani, J. AU - Serbyn, Maksym AU - Higginbotham, Andrew P ID - 10029 T2 - arXiv TI - Breakdown of induced p±ip pairing in a superconductor-semiconductor hybrid ER - TY - JOUR AB - We investigate the effect of coupling between translational and internal degrees of freedom of composite quantum particles on their localization in a random potential. We show that entanglement between the two degrees of freedom weakens localization due to the upper bound imposed on the inverse participation ratio by purity of a quantum state. We perform numerical calculations for a two-particle system bound by a harmonic force in a 1D disordered lattice and a rigid rotor in a 2D disordered lattice. We illustrate that the coupling has a dramatic effect on localization properties, even with a small number of internal states participating in quantum dynamics. AU - Suzuki, Fumika AU - Lemeshko, Mikhail AU - Zurek, Wojciech H. AU - Krems, Roman V. ID - 10134 IS - 16 JF - Physical Review Letters KW - General Physics and Astronomy SN - 0031-9007 TI - Anderson localization of composite particles VL - 127 ER - TY - JOUR AB - The concept of the entanglement between spin and orbital degrees of freedom plays a crucial role in our understanding of various phases and exotic ground states in a broad class of materials, including orbitally ordered materials and spin liquids. We investigate how the spin-orbital entanglement in a Mott insulator depends on the value of the spin-orbit coupling of the relativistic origin. To this end, we numerically diagonalize a one-dimensional spin-orbital model with Kugel-Khomskii exchange interactions between spins and orbitals on different sites supplemented by the on-site spin-orbit coupling. In the regime of small spin-orbit coupling with regard to the spin-orbital exchange, the ground state to a large extent resembles the one obtained in the limit of vanishing spin-orbit coupling. On the other hand, for large spin-orbit coupling the ground state can, depending on the model parameters, either still show negligible spin-orbital entanglement or evolve to a highly spin-orbitally-entangled phase with completely distinct properties that are described by an effective XXZ model. The presented results suggest that (i) the spin-orbital entanglement may be induced by large on-site spin-orbit coupling, as found in the 5d transition metal oxides, such as the iridates; (ii) for Mott insulators with weak spin-orbit coupling of Ising type, such as, e.g., the alkali hyperoxides, the effects of the spin-orbit coupling on the ground state can, in the first order of perturbation theory, be neglected. AU - Gotfryd, Dorota AU - Paerschke, Ekaterina AU - Chaloupka, Jiri AU - Oles, Andrzej M. AU - Wohlfeld, Krzysztof ID - 7594 IS - 1 JF - Physical Review Research TI - How spin-orbital entanglement depends on the spin-orbit coupling in a Mott insulator VL - 2 ER - TY - JOUR AB - We explore the time evolution of two impurities in a trapped one-dimensional Bose gas that follows a change of the boson-impurity interaction. We study the induced impurity-impurity interactions and their effect on the quench dynamics. In particular, we report on the size of the impurity cloud, the impurity-impurity entanglement, and the impurity-impurity correlation function. The presented numerical simulations are based upon the variational multilayer multiconfiguration time-dependent Hartree method for bosons. To analyze and quantify induced impurity-impurity correlations, we employ an effective two-body Hamiltonian with a contact interaction. We show that the effective model consistent with the mean-field attraction of two heavy impurities explains qualitatively our results for weak interactions. Our findings suggest that the quench dynamics in cold-atom systems can be a tool for studying impurity-impurity correlations. AU - Mistakidis, S. I. AU - Volosniev, Artem AU - Schmelcher, P. ID - 7919 JF - Physical Review Research SN - 2643-1564 TI - Induced correlations between impurities in a one-dimensional quenched Bose gas VL - 2 ER - TY - JOUR AB - Several realistic spin-orbital models for transition metal oxides go beyond the classical expectations and could be understood only by employing the quantum entanglement. Experiments on these materials confirm that spin-orbital entanglement has measurable consequences. Here, we capture the essential features of spin-orbital entanglement in complex quantum matter utilizing 1D spin-orbital model which accommodates SU(2)⊗SU(2) symmetric Kugel-Khomskii superexchange as well as the Ising on-site spin-orbit coupling. Building on the results obtained for full and effective models in the regime of strong spin-orbit coupling, we address the question whether the entanglement found on superexchange bonds always increases when the Ising spin-orbit coupling is added. We show that (i) quantum entanglement is amplified by strong spin-orbit coupling and, surprisingly, (ii) almost classical disentangled states are possible. We complete the latter case by analyzing how the entanglement existing for intermediate values of spin-orbit coupling can disappear for higher values of this coupling. AU - Gotfryd, Dorota AU - Paerschke, Ekaterina AU - Wohlfeld, Krzysztof AU - Oleś, Andrzej M. ID - 8726 IS - 3 JF - Condensed Matter SN - 2410-3896 TI - Evolution of spin-orbital entanglement with increasing ising spin-orbit coupling VL - 5 ER - TY - JOUR AB - A few-body cluster is a building block of a many-body system in a gas phase provided the temperature at most is of the order of the binding energy of this cluster. Here we illustrate this statement by considering a system of tubes filled with dipolar distinguishable particles. We calculate the partition function, which determines the probability to find a few-body cluster at a given temperature. The input for our calculations—the energies of few-body clusters—is estimated using the harmonic approximation. We first describe and demonstrate the validity of our numerical procedure. Then we discuss the results featuring melting of the zero-temperature many-body state into a gas of free particles and few-body clusters. For temperature higher than its binding energy threshold, the dimers overwhelmingly dominate the ensemble, where the remaining probability is in free particles. At very high temperatures free (harmonic oscillator trap-bound) particle dominance is eventually reached. This structure evolution appears both for one and two particles in each layer providing crucial information about the behavior of ultracold dipolar gases. The investigation addresses the transition region between few- and many-body physics as a function of temperature using a system of ten dipoles in five tubes. AU - Armstrong, Jeremy R. AU - Jensen, Aksel S. AU - Volosniev, Artem AU - Zinner, Nikolaj T. ID - 7882 IS - 4 JF - Mathematics TI - Clusters in separated tubes of tilted dipoles VL - 8 ER - TY - JOUR AB - We study a mobile quantum impurity, possessing internal rotational degrees of freedom, confined to a ring in the presence of a many-particle bosonic bath. By considering the recently introduced rotating polaron problem, we define the Hamiltonian and examine the energy spectrum. The weak-coupling regime is studied by means of a variational ansatz in the truncated Fock space. The corresponding spectrum indicates that there emerges a coupling between the internal and orbital angular momenta of the impurity as a consequence of the phonon exchange. We interpret the coupling as a phonon-mediated spin-orbit coupling and quantify it by using a correlation function between the internal and the orbital angular momentum operators. The strong-coupling regime is investigated within the Pekar approach, and it is shown that the correlation function of the ground state shows a kink at a critical coupling, that is explained by a sharp transition from the noninteracting state to the states that exhibit strong interaction with the surroundings. The results might find applications in such fields as spintronics or topological insulators where spin-orbit coupling is of crucial importance. AU - Maslov, Mikhail AU - Lemeshko, Mikhail AU - Yakaboylu, Enderalp ID - 7933 IS - 18 JF - Physical Review B SN - 24699950 TI - Synthetic spin-orbit coupling mediated by a bosonic environment VL - 101 ER - TY - JOUR AB - Alignment of OCS, CS2, and I2 molecules embedded in helium nanodroplets is measured as a function of time following rotational excitation by a nonresonant, comparatively weak ps laser pulse. The distinct peaks in the power spectra, obtained by Fourier analysis, are used to determine the rotational, B, and centrifugal distortion, D, constants. For OCS, B and D match the values known from IR spectroscopy. For CS2 and I2, they are the first experimental results reported. The alignment dynamics calculated from the gas-phase rotational Schrödinger equation, using the experimental in-droplet B and D values, agree in detail with the measurement for all three molecules. The rotational spectroscopy technique for molecules in helium droplets introduced here should apply to a range of molecules and complexes. AU - Chatterley, Adam S. AU - Christiansen, Lars AU - Schouder, Constant A. AU - Jørgensen, Anders V. AU - Shepperson, Benjamin AU - Cherepanov, Igor AU - Bighin, Giacomo AU - Zillich, Robert E. AU - Lemeshko, Mikhail AU - Stapelfeldt, Henrik ID - 8170 IS - 1 JF - Physical Review Letters SN - 00319007 TI - Rotational coherence spectroscopy of molecules in Helium nanodroplets: Reconciling the time and the frequency domains VL - 125 ER - TY - JOUR AB - Nature creates electrons with two values of the spin projection quantum number. In certain applications, it is important to filter electrons with one spin projection from the rest. Such filtering is not trivial, since spin-dependent interactions are often weak, and cannot lead to any substantial effect. Here we propose an efficient spin filter based upon scattering from a two-dimensional crystal, which is made of aligned point magnets. The polarization of the outgoing electron flux is controlled by the crystal, and reaches maximum at specific values of the parameters. In our scheme, polarization increase is accompanied by higher reflectivity of the crystal. High transmission is feasible in scattering from a quantum cavity made of two crystals. Our findings can be used for studies of low-energy spin-dependent scattering from two-dimensional ordered structures made of magnetic atoms or aligned chiral molecules. AU - Ghazaryan, Areg AU - Lemeshko, Mikhail AU - Volosniev, Artem ID - 8652 JF - Communications Physics SN - 2399-3650 TI - Filtering spins by scattering from a lattice of point magnets VL - 3 ER - TY - JOUR AB - In the high spin–orbit-coupled Sr2IrO4, the high sensitivity of the ground state to the details of the local lattice structure shows a large potential for the manipulation of the functional properties by inducing local lattice distortions. We use epitaxial strain to modify the Ir–O bond geometry in Sr2IrO4 and perform momentum-dependent resonant inelastic X-ray scattering (RIXS) at the metal and at the ligand sites to unveil the response of the low-energy elementary excitations. We observe that the pseudospin-wave dispersion for tensile-strained Sr2IrO4 films displays large softening along the [h,0] direction, while along the [h,h] direction it shows hardening. This evolution reveals a renormalization of the magnetic interactions caused by a strain-driven cross-over from anisotropic to isotropic interactions between the magnetic moments. Moreover, we detect dispersive electron–hole pair excitations which shift to lower (higher) energies upon compressive (tensile) strain, manifesting a reduction (increase) in the size of the charge gap. This behavior shows an intimate coupling between charge excitations and lattice distortions in Sr2IrO4, originating from the modified hopping elements between the t2g orbitals. Our work highlights the central role played by the lattice degrees of freedom in determining both the pseudospin and charge excitations of Sr2IrO4 and provides valuable information toward the control of the ground state of complex oxides in the presence of high spin–orbit coupling. AU - Paris, Eugenio AU - Tseng, Yi AU - Paerschke, Ekaterina AU - Zhang, Wenliang AU - Upton, Mary H AU - Efimenko, Anna AU - Rolfs, Katharina AU - McNally, Daniel E AU - Maurel, Laura AU - Naamneh, Muntaser AU - Caputo, Marco AU - Strocov, Vladimir N AU - Wang, Zhiming AU - Casa, Diego AU - Schneider, Christof W AU - Pomjakushina, Ekaterina AU - Wohlfeld, Krzysztof AU - Radovic, Milan AU - Schmitt, Thorsten ID - 8699 IS - 40 JF - Proceedings of the National Academy of Sciences of the United States of America SN - 00278424 TI - Strain engineering of the charge and spin-orbital interactions in Sr2IrO4 VL - 117 ER - TY - JOUR AB - Organic materials are known to feature long spin-diffusion times, originating in a generally small spin–orbit coupling observed in these systems. From that perspective, chiral molecules acting as efficient spin selectors pose a puzzle that attracted a lot of attention in recent years. Here, we revisit the physical origins of chiral-induced spin selectivity (CISS) and propose a simple analytic minimal model to describe it. The model treats a chiral molecule as an anisotropic wire with molecular dipole moments aligned arbitrarily with respect to the wire’s axes and is therefore quite general. Importantly, it shows that the helical structure of the molecule is not necessary to observe CISS and other chiral nonhelical molecules can also be considered as potential candidates for the CISS effect. We also show that the suggested simple model captures the main characteristics of CISS observed in the experiment, without the need for additional constraints employed in the previous studies. The results pave the way for understanding other related physical phenomena where the CISS effect plays an essential role. AU - Ghazaryan, Areg AU - Paltiel, Yossi AU - Lemeshko, Mikhail ID - 7968 IS - 21 JF - The Journal of Physical Chemistry C SN - 1932-7447 TI - Analytic model of chiral-induced spin selectivity VL - 124 ER - TY - JOUR AB - Dipolar (or spatially indirect) excitons (IXs) in semiconductor double quantum well (DQW) subjected to an electric field are neutral species with a dipole moment oriented perpendicular to the DQW plane. Here, we theoretically study interactions between IXs in stacked DQW bilayers, where the dipolar coupling can be either attractive or repulsive depending on the relative positions of the particles. By using microscopic band structure calculations to determine the electronic states forming the excitons, we show that the attractive dipolar interaction between stacked IXs deforms their electronic wave function, thereby increasing the inter-DQW interaction energy and making the IX even more electrically polarizable. Many-particle interaction effects are addressed by considering the coupling between a single IX in one of the DQWs to a cloud of IXs in the other DQW, which is modeled either as a closed-packed lattice or as a continuum IX fluid. We find that the lattice model yields IX interlayer binding energies decreasing with increasing lattice density. This behavior is due to the dominating role of the intra-DQW dipolar repulsion, which prevents more than one exciton from entering the attractive region of the inter-DQW coupling. Finally, both models shows that the single IX distorts the distribution of IXs in the adjacent DQW, thus inducing the formation of an IX dipolar polaron (dipolaron). While the interlayer binding energy reduces with IX density for lattice dipolarons, the continuous polaron model predicts a nonmonotonous dependence on density in semiquantitative agreement with a recent experimental study [cf. Hubert et al., Phys. Rev. X 9, 021026 (2019)]. AU - Hubert, C. AU - Cohen, K. AU - Ghazaryan, Areg AU - Lemeshko, Mikhail AU - Rapaport, R. AU - Santos, P. V. ID - 8588 IS - 4 JF - Physical Review B SN - 2469-9950 TI - Attractive interactions, molecular complexes, and polarons in coupled dipolar exciton fluids VL - 102 ER - TY - JOUR AB - One of the hallmarks of quantum statistics, tightly entwined with the concept of topological phases of matter, is the prediction of anyons. Although anyons are predicted to be realized in certain fractional quantum Hall systems, they have not yet been unambiguously detected in experiment. Here we introduce a simple quantum impurity model, where bosonic or fermionic impurities turn into anyons as a consequence of their interaction with the surrounding many-particle bath. A cloud of phonons dresses each impurity in such a way that it effectively attaches fluxes or vortices to it and thereby converts it into an Abelian anyon. The corresponding quantum impurity model, first, provides a different approach to the numerical solution of the many-anyon problem, along with a concrete perspective of anyons as emergent quasiparticles built from composite bosons or fermions. More importantly, the model paves the way toward realizing anyons using impurities in crystal lattices as well as ultracold gases. In particular, we consider two heavy electrons interacting with a two-dimensional lattice crystal in a magnetic field, and show that when the impurity-bath system is rotated at the cyclotron frequency, impurities behave as anyons as a consequence of the angular momentum exchange between the impurities and the bath. A possible experimental realization is proposed by identifying the statistics parameter in terms of the mean-square distance of the impurities and the magnetization of the impurity-bath system, both of which are accessible to experiment. Another proposed application is impurities immersed in a two-dimensional weakly interacting Bose gas. AU - Yakaboylu, Enderalp AU - Ghazaryan, Areg AU - Lundholm, D. AU - Rougerie, N. AU - Lemeshko, Mikhail AU - Seiringer, Robert ID - 8769 IS - 14 JF - Physical Review B SN - 2469-9950 TI - Quantum impurity model for anyons VL - 102 ER - TY - JOUR AB - Inspired by the possibility to experimentally manipulate and enhance chemical reactivity in helium nanodroplets, we investigate the effective interaction and the resulting correlations between two diatomic molecules immersed in a bath of bosons. By analogy with the bipolaron, we introduce the biangulon quasiparticle describing two rotating molecules that align with respect to each other due to the effective attractive interaction mediated by the excitations of the bath. We study this system in different parameter regimes and apply several theoretical approaches to describe its properties. Using a Born–Oppenheimer approximation, we investigate the dependence of the effective intermolecular interaction on the rotational state of the two molecules. In the strong-coupling regime, a product-state ansatz shows that the molecules tend to have a strong alignment in the ground state. To investigate the system in the weak-coupling regime, we apply a one-phonon excitation variational ansatz, which allows us to access the energy spectrum. In comparison to the angulon quasiparticle, the biangulon shows shifted angulon instabilities and an additional spectral instability, where resonant angular momentum transfer between the molecules and the bath takes place. These features are proposed as an experimentally observable signature for the formation of the biangulon quasiparticle. Finally, by using products of single angulon and bare impurity wave functions as basis states, we introduce a diagonalization scheme that allows us to describe the transition from two separated angulons to a biangulon as a function of the distance between the two molecules. AU - Li, Xiang AU - Yakaboylu, Enderalp AU - Bighin, Giacomo AU - Schmidt, Richard AU - Lemeshko, Mikhail AU - Deuchert, Andreas ID - 8587 IS - 16 JF - The Journal of Chemical Physics KW - Physical and Theoretical Chemistry KW - General Physics and Astronomy SN - 0021-9606 TI - Intermolecular forces and correlations mediated by a phonon bath VL - 152 ER - TY - JOUR AB - Determining the phase diagram of systems consisting of smaller subsystems 'connected' via a tunable coupling is a challenging task relevant for a variety of physical settings. A general question is whether new phases, not present in the uncoupled limit, may arise. We use machine learning and a suitable quasidistance between different points of the phase diagram to study layered spin models, in which the spin variables constituting each of the uncoupled systems (to which we refer as layers) are coupled to each other via an interlayer coupling. In such systems, in general, composite order parameters involving spins of different layers may emerge as a consequence of the interlayer coupling. We focus on the layered Ising and Ashkin–Teller models as a paradigmatic case study, determining their phase diagram via the application of a machine learning algorithm to the Monte Carlo data. Remarkably our technique is able to correctly characterize all the system phases also in the case of hidden order parameters, i.e. order parameters whose expression in terms of the microscopic configurations would require additional preprocessing of the data fed to the algorithm. We correctly retrieve the three known phases of the Ashkin–Teller model with ferromagnetic couplings, including the phase described by a composite order parameter. For the bilayer and trilayer Ising models the phases we find are only the ferromagnetic and the paramagnetic ones. Within the approach we introduce, owing to the construction of convolutional neural networks, naturally suitable for layered image-like data with arbitrary number of layers, no preprocessing of the Monte Carlo data is needed, also with regard to its spatial structure. The physical meaning of our results is discussed and compared with analytical data, where available. Yet, the method can be used without any a priori knowledge of the phases one seeks to find and can be applied to other models and structures. AU - Rzadkowski, Wojciech AU - Defenu, N AU - Chiacchiera, S AU - Trombettoni, A AU - Bighin, Giacomo ID - 8644 IS - 9 JF - New Journal of Physics SN - 13672630 TI - Detecting composite orders in layered models via machine learning VL - 22 ER - TY - THES AB - The oft-quoted dictum by Arthur Schawlow: ``A diatomic molecule has one atom too many'' has been disavowed. Inspired by the possibility to experimentally manipulate and enhance chemical reactivity in helium nanodroplets, we investigate the rotation of coupled cold molecules in the presence of a many-body environment. In this thesis, we introduce new variational approaches to quantum impurities and apply them to the Fröhlich polaron - a quasiparticle formed out of an electron (or other point-like impurity) in a polar medium, and to the angulon - a quasiparticle formed out of a rotating molecule in a bosonic bath. With this theoretical toolbox, we reveal the self-localization transition for the angulon quasiparticle. We show that, unlike for polarons, self-localization of angulons occurs at finite impurity-bath coupling already at the mean-field level. The transition is accompanied by the spherical-symmetry breaking of the angulon ground state and a discontinuity in the first derivative of the ground-state energy. Moreover, the type of symmetry breaking is dictated by the symmetry of the microscopic impurity-bath interaction, which leads to a number of distinct self-localized states. For the system containing multiple impurities, by analogy with the bipolaron, we introduce the biangulon quasiparticle describing two rotating molecules that align with respect to each other due to the effective attractive interaction mediated by the excitations of the bath. We study this system from the strong-coupling regime to the weak molecule-bath interaction regime. We show that the molecules tend to have a strong alignment in the ground state, the biangulon shows shifted angulon instabilities and an additional spectral instability, where resonant angular momentum transfer between the molecules and the bath takes place. Finally, we introduce a diagonalization scheme that allows us to describe the transition from two separated angulons to a biangulon as a function of the distance between the two molecules. AU - Li, Xiang ID - 8958 SN - 2663-337X TI - Rotation of coupled cold molecules in the presence of a many-body environment ER - TY - JOUR AB - When short-range attractions are combined with long-range repulsions in colloidal particle systems, complex microphases can emerge. Here, we study a system of isotropic particles, which can form lamellar structures or a disordered fluid phase when temperature is varied. We show that, at equilibrium, the lamellar structure crystallizes, while out of equilibrium, the system forms a variety of structures at different shear rates and temperatures above melting. The shear-induced ordering is analyzed by means of principal component analysis and artificial neural networks, which are applied to data of reduced dimensionality. Our results reveal the possibility of inducing ordering by shear, potentially providing a feasible route to the fabrication of ordered lamellar structures from isotropic particles. AU - Pȩkalski, J. AU - Rzadkowski, Wojciech AU - Panagiotopoulos, A. Z. ID - 7956 IS - 20 JF - The Journal of chemical physics TI - Shear-induced ordering in systems with competing interactions: A machine learning study VL - 152 ER - TY - JOUR AB - In the superconducting regime of FeTe(1−x)Sex, there exist two types of vortices which are distinguished by the presence or absence of zero-energy states in their core. To understand their origin, we examine the interplay of Zeeman coupling and superconducting pairings in three-dimensional metals with band inversion. Weak Zeeman fields are found to suppress intraorbital spin-singlet pairing, known to localize the states at the ends of the vortices on the surface. On the other hand, an orbital-triplet pairing is shown to be stable against Zeeman interactions, but leads to delocalized zero-energy Majorana modes which extend through the vortex. In contrast, the finite-energy vortex modes remain localized at the vortex ends even when the pairing is of orbital-triplet form. Phenomenologically, this manifests as an observed disappearance of zero-bias peaks within the cores of topological vortices upon an increase of the applied magnetic field. The presence of magnetic impurities in FeTe(1−x)Sex, which are attracted to the vortices, would lead to such Zeeman-induced delocalization of Majorana modes in a fraction of vortices that capture a large enough number of magnetic impurities. Our results provide an explanation for the dichotomy between topological and nontopological vortices recently observed in FeTe(1−x)Sex. AU - Ghazaryan, Areg AU - Lopes, P. L.S. AU - Hosur, Pavan AU - Gilbert, Matthew J. AU - Ghaemi, Pouyan ID - 7428 IS - 2 JF - Physical Review B SN - 24699950 TI - Effect of Zeeman coupling on the Majorana vortex modes in iron-based topological superconductors VL - 101 ER - TY - JOUR AB - In ecology, climate and other fields, (sub)systems have been identified that can transition into a qualitatively different state when a critical threshold or tipping point in a driving process is crossed. An understanding of those tipping elements is of great interest given the increasing influence of humans on the biophysical Earth system. Complex interactions exist between tipping elements, e.g. physical mechanisms connect subsystems of the climate system. Based on earlier work on such coupled nonlinear systems, we systematically assessed the qualitative long-term behaviour of interacting tipping elements. We developed an understanding of the consequences of interactions on the tipping behaviour allowing for tipping cascades to emerge under certain conditions. The (narrative) application of these qualitative results to real-world examples of interacting tipping elements indicates that tipping cascades with profound consequences may occur: the interacting Greenland ice sheet and thermohaline ocean circulation might tip before the tipping points of the isolated subsystems are crossed. The eutrophication of the first lake in a lake chain might propagate through the following lakes without a crossing of their individual critical nutrient input levels. The possibility of emerging cascading tipping dynamics calls for the development of a unified theory of interacting tipping elements and the quantitative analysis of interacting real-world tipping elements. AU - Klose, Ann Kristin AU - Karle, Volker AU - Winkelmann, Ricarda AU - Donges, Jonathan F. ID - 8741 IS - 6 JF - Royal Society Open Science TI - Emergence of cascading dynamics in interacting tipping elements of ecology and climate: Cascading dynamics in tipping elements VL - 7 ER - TY - JOUR AB - We study the effect of a linear tunneling coupling between two-dimensional systems, each separately exhibiting the topological Berezinskii-Kosterlitz-Thouless (BKT) transition. In the uncoupled limit, there are two phases: one where the one-body correlation functions are algebraically decaying and the other with exponential decay. When the linear coupling is turned on, a third BKT-paired phase emerges, in which one-body correlations are exponentially decaying, while two-body correlation functions exhibit power-law decay. We perform numerical simulations in the paradigmatic case of two coupled XY models at finite temperature, finding evidences that for any finite value of the interlayer coupling, the BKT-paired phase is present. We provide a picture of the phase diagram using a renormalization group approach. AU - Bighin, Giacomo AU - Defenu, Nicolò AU - Nándori, István AU - Salasnich, Luca AU - Trombettoni, Andrea ID - 6940 IS - 10 JF - Physical Review Letters SN - 0031-9007 TI - Berezinskii-Kosterlitz-Thouless paired phase in coupled XY models VL - 123 ER - TY - JOUR AB - We study few-body bound states of charged particles subject to attractive zero-range/short-range plus repulsive Coulomb interparticle forces. The characteristic length scales of the system at zero energy are set by the Coulomb length scale D and the Coulomb-modified effective range r eff. We study shallow bound states of charged particles with D >> r eff and show that these systems obey universal scaling laws different from neutral particles. An accurate description of these states requires both the Coulomb-modified scattering length and the effective range unless the Coulomb interaction is very weak (D -> ). Our findings are relevant for bound states whose spatial extent is significantly larger than the range of the attractive potential. These states enjoy universality – their character is independent of the shape of the short-range potential. AU - Schmickler, C.H. AU - Hammer, H.-W. AU - Volosniev, Artem ID - 6955 JF - Physics Letters B SN - 0370-2693 TI - Universal physics of bound states of a few charged particles VL - 798 ER - TY - JOUR AB - Problems involving quantum impurities, in which one or a few particles are interacting with a macroscopic environment, represent a pervasive paradigm, spanning across atomic, molecular, and condensed-matter physics. In this paper we introduce new variational approaches to quantum impurities and apply them to the Fröhlich polaron–a quasiparticle formed out of an electron (or other point-like impurity) in a polar medium, and to the angulon–a quasiparticle formed out of a rotating molecule in a bosonic bath. We benchmark these approaches against established theories, evaluating their accuracy as a function of the impurity-bath coupling. AU - Li, Xiang AU - Bighin, Giacomo AU - Yakaboylu, Enderalp AU - Lemeshko, Mikhail ID - 5886 JF - Molecular Physics SN - 00268976 TI - Variational approaches to quantum impurities: from the Fröhlich polaron to the angulon ER -