TY - JOUR
AB - The two-photon 1s2 2s 2p 3P0 1s22s2 1S0 transition in berylliumlike ions is theoretically investigated within a fully relativistic framework and a second-order perturbation theory. We focus our analysis on how electron correlation, as well as the negative-energy spectrum, can affect the forbidden E1M1 decay rate. For this purpose, we include the electronic correlation via an effective local potential and within a single configuration-state model. Due to its experimental interest, evaluations of decay rates are performed for berylliumlike xenon and uranium. We find that the negative-energy contribution can be neglected at the present level of accuracy in the evaluation of the decay rate. On the other hand, if contributions of electronic correlation are not carefully taken into account, it may change the lifetime of the metastable state by up to 20%. By performing a full-relativistic jj-coupling calculation, we found a decrease of the decay rate by two orders of magnitude compared to non-relativistic LS-coupling calculations, for the selected heavy ions.
AU - Amaro, Pedro
AU - Fratini, Filippo
AU - Safari, Laleh
AU - Machado, Jorge
AU - Guerra, Mauro
AU - Indelicato, Paul
AU - Santos, José
ID - 1496
IS - 3
JF - Physical Review A - Atomic, Molecular, and Optical Physics
TI - Relativistic evaluation of the two-photon decay of the metastable 1s22s2p3P0 state in berylliumlike ions with an effective-potential model
VL - 93
ER -
TY - JOUR
AB - In science, as in life, "surprises" can be adequately appreciated only in the presence of a null model, what we expect a priori. In physics, theories sometimes express the values of dimensionless physical constants as combinations of mathematical constants like π or e. The inverse problem also arises, whereby the measured value of a physical constant admits a "surprisingly" simple approximation in terms of well-known mathematical constants. Can we estimate the probability for this to be a mere coincidence, rather than an inkling of some theory? We answer the question in the most naive form.
AU - Amir, Ariel
AU - Lemeshko, Mikhail
AU - Tokieda, Tadashi
ID - 1204
IS - 6
JF - American Mathematical Monthly
TI - Surprises in numerical expressions of physical constants
VL - 123
ER -
TY - JOUR
AB - We study a polar molecule immersed in a superfluid environment, such as a helium nanodroplet or a Bose–Einstein condensate, in the presence of a strong electrostatic field. We show that coupling of the molecular pendular motion, induced by the field, to the fluctuating bath leads to formation of pendulons—spherical harmonic librators dressed by a field of many-particle excitations. We study the behavior of the pendulon in a broad range of molecule–bath and molecule–field interaction strengths, and reveal that its spectrum features a series of instabilities which are absent in the field-free case of the angulon quasiparticle. Furthermore, we show that an external field allows to fine-tune the positions of these instabilities in the molecular rotational spectrum. This opens the door to detailed experimental studies of redistribution of orbital angular momentum in many-particle systems. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
AU - Redchenko, Elena
AU - Lemeshko, Mikhail
ID - 1206
IS - 22
JF - ChemPhysChem
TI - Libration of strongly oriented polar molecules inside a superfluid
VL - 17
ER -
TY - JOUR
AB - Quantum interference between energetically close states is theoretically investigated, with the state structure being observed via laser spectroscopy. In this work, we focus on hyperfine states of selected hydrogenic muonic isotopes, and on how quantum interference affects the measured Lamb shift. The process of photon excitation and subsequent photon decay is implemented within the framework of nonrelativistic second-order perturbation theory. Due to its experimental interest, calculations are performed for muonic hydrogen, deuterium, and helium-3. We restrict our analysis to the case of photon scattering by incident linear polarized photons and the polarization of the scattered photons not being observed. We conclude that while quantum interference effects can be safely neglected in muonic hydrogen and helium-3, in the case of muonic deuterium there are resonances with close proximity, where quantum interference effects can induce shifts up to a few percent of the linewidth, assuming a pointlike detector. However, by taking into account the geometry of the setup used by the CREMA collaboration, this effect is reduced to less than 0.2% of the linewidth in all possible cases, which makes it irrelevant at the present level of accuracy. © 2015 American Physical Society.
AU - Amaro, Pedro
AU - Franke, Beatrice
AU - Krauth, Julian
AU - Diepold, Marc
AU - Fratini, Filippo
AU - Safari, Laleh
AU - Machado, Jorge
AU - Antognini, Aldo
AU - Kottmann, Franz
AU - Indelicato, Paul
AU - Pohl, Randolf
AU - Santos, José
ID - 1693
IS - 2
JF - Physical Review A
TI - Quantum interference effects in laser spectroscopy of muonic hydrogen, deuterium, and helium-3
VL - 92
ER -
TY - JOUR
AB - We give a comprehensive introduction into a diagrammatic method that allows for the evaluation of Gutzwiller wave functions in finite spatial dimensions. We discuss in detail some numerical schemes that turned out to be useful in the real-space evaluation of the diagrams. The method is applied to the problem of d-wave superconductivity in a two-dimensional single-band Hubbard model. Here, we discuss in particular the role of long-range contributions in our diagrammatic expansion. We further reconsider our previous analysis on the kinetic energy gain in the superconducting state.
AU - Kaczmarczyk, Jan
AU - Schickling, Tobias
AU - Bünemann, Jörg
ID - 1695
IS - 9
JF - Physica Status Solidi (B): Basic Solid State Physics
TI - Evaluation techniques for Gutzwiller wave functions in finite dimensions
VL - 252
ER -