TY - JOUR AB - We compare recent experimental results [Science 375, 528 (2022)] of the superfluid unitary Fermi gas near the critical temperature with a thermodynamic model based on the elementary excitations of the system. We find good agreement between experimental data and our theory for several quantities such as first sound, second sound, and superfluid fraction. We also show that mode mixing between first and second sound occurs. Finally, we characterize the response amplitude to a density perturbation: Close to the critical temperature both first and second sound can be excited through a density perturbation, whereas at lower temperatures only the first sound mode exhibits a significant response. AU - Bighin, Giacomo AU - Cappellaro, Alberto AU - Salasnich, L. ID - 11592 IS - 6 JF - Physical Review A SN - 2469-9926 TI - Unitary Fermi superfluid near the critical temperature: Thermodynamics and sound modes from elementary excitations VL - 105 ER - TY - JOUR AB - Recently it became possible to study highly excited rotational states of molecules in superfluid helium through nonadiabatic alignment experiments (Cherepanov et al 2021 Phys. Rev. A 104 L061303). This calls for theoretical approaches that go beyond explaining renormalized values of molecular spectroscopic constants, which suffices when only the lowest few rotational states are involved. As the first step in this direction, here we present a basic quantum mechanical model describing highly excited rotational states of molecules in superfluid helium nanodroplets. We show that a linear molecule immersed in a superfluid can be seen as an effective symmetric top, similar to the rotational structure of radicals, such as OH or NO, but with the angular momentum of the superfluid playing the role of the electronic angular momentum in free molecules. The simple theory sheds light onto what happens when the rotational angular momentum of the molecule increases beyond the lowest excited states accessible by infrared spectroscopy. In addition, the model allows to estimate the effective rotational and centrifugal distortion constants for a broad range of species and to explain the crossover between light and heavy molecules in superfluid 4He in terms of the many-body wavefunction structure. Some of the above mentioned insights can be acquired by analyzing a simple 2 × 2 matrix. AU - Cherepanov, Igor AU - Bighin, Giacomo AU - Schouder, Constant A. AU - Chatterley, Adam S. AU - Stapelfeldt, Henrik AU - Lemeshko, Mikhail ID - 11998 IS - 7 JF - New Journal of Physics SN - 1367-2630 TI - A simple model for high rotational excitations of molecules in a superfluid VL - 24 ER - TY - JOUR AB - We study the fate of an impurity in an ultracold heteronuclear Bose mixture, focusing on the experimentally relevant case of a ⁴¹K - ⁸⁷Rb mixture, with the impurity in a ⁴¹K hyperfine state. Our paper provides a comprehensive description of an impurity in a BEC mixture with contact interactions across its phase diagram. We present results for the miscible and immiscible regimes, as well as for the impurity in a self-bound quantum droplet. Here, varying the interactions, we find exotic states where the impurity localizes either at the center or at the surface of the droplet. AU - Bighin, Giacomo AU - Burchianti, A. AU - Minardi, F. AU - Macrì, T. ID - 11997 IS - 2 JF - Physical Review A SN - 2469-9926 TI - Impurity in a heteronuclear two-component Bose mixture VL - 106 ER - TY - JOUR AB - We demonstrate the formation of robust zero-energy modes close to magnetic impurities in the iron-based superconductor FeSe1-z Tez. We find that the Zeeman field generated by the impurity favors a spin-triplet interorbital pairing as opposed to the spin-singlet intraorbital pairing prevalent in the bulk. The preferred spin-triplet pairing preserves time-reversal symmetry and is topological, as robust, topologically protected zero modes emerge at the boundary between regions with different pairing states. Moreover, the zero modes form Kramers doublets that are insensitive to the direction of the spin polarization or to the separation between impurities. We argue that our theoretical results are consistent with recent experimental measurements on FeSe1-z Tez. AU - Ghazaryan, Areg AU - Kirmani, Ammar AU - Fernandes, Rafael M. AU - Ghaemi, Pouyan ID - 12139 IS - 20 JF - Physical Review B SN - 2469-9950 TI - Anomalous Shiba states in topological iron-based superconductors VL - 106 ER - TY - JOUR AB - Methods inspired from machine learning have recently attracted great interest in the computational study of quantum many-particle systems. So far, however, it has proven challenging to deal with microscopic models in which the total number of particles is not conserved. To address this issue, we propose a variant of neural network states, which we term neural coherent states. Taking the Fröhlich impurity model as a case study, we show that neural coherent states can learn the ground state of nonadditive systems very well. In particular, we recover exact diagonalization in all regimes tested and observe substantial improvement over the standard coherent state estimates in the most challenging intermediate-coupling regime. Our approach is generic and does not assume specific details of the system, suggesting wide applications. AU - Rzadkowski, Wojciech AU - Lemeshko, Mikhail AU - Mentink, Johan H. ID - 12150 IS - 15 JF - Physical Review B SN - 2469-9950 TI - Artificial neural network states for nonadditive systems VL - 106 ER -