TY - JOUR
AB - We investigate the quantum interference induced shifts between energetically close states in highly charged ions, with the energy structure being observed by laser spectroscopy. In this work, we focus on hyperfine states of lithiumlike heavy-Z isotopes and quantify how much quantum interference changes the observed transition frequencies. The process of photon excitation and subsequent photon decay for the transition 2s→2p→2s is implemented with fully relativistic and full-multipole frameworks, which are relevant for such relativistic atomic systems. We consider the isotopes Pb79+207 and Bi80+209 due to experimental interest, as well as other examples of isotopes with lower Z, namely Pr56+141 and Ho64+165. We conclude that quantum interference can induce shifts up to 11% of the linewidth in the measurable resonances of the considered isotopes, if interference between resonances is neglected. The inclusion of relativity decreases the cross section by 35%, mainly due to the complete retardation form of the electric dipole multipole. However, the contribution of the next higher multipoles (e.g., magnetic quadrupole) to the cross section is negligible. This makes the contribution of relativity and higher-order multipoles to the quantum interference induced shifts a minor effect, even for heavy-Z elements.
AU - Amaro, Pedro
AU - Loureiro, Ulisses
AU - Safari, Laleh
AU - Fratini, Filippo
AU - Indelicato, Paul
AU - Stöhlker, Thomas
AU - Santos, José
ID - 427
IS - 2
JF - Physical Review A - Atomic, Molecular, and Optical Physics
TI - Quantum interference in laser spectroscopy of highly charged lithiumlike ions
VL - 97
ER -
TY - JOUR
AB - It is shown that two fundamentally different phenomena, the bound states in continuum and the spectral singularity (or time-reversed spectral singularity), can occur simultaneously. This can be achieved in a rectangular core dielectric waveguide with an embedded active (or absorbing) layer. In such a system a two-dimensional bound state in a continuum is created in the plane of a waveguide cross section, and it is emitted or absorbed along the waveguide core. The idea can be used for experimental implementation of a laser or a coherent-perfect-absorber for a photonic bound state that resides in a continuous spectrum.
AU - Midya, Bikashkali
AU - Konotop, Vladimir
ID - 435
IS - 3
JF - Optics Letters
TI - Coherent-perfect-absorber and laser for bound states in a continuum
VL - 43
ER -
TY - JOUR
AB - We present an approach to interacting quantum many-body systems based on the notion of quantum groups, also known as q-deformed Lie algebras. In particular, we show that, if the symmetry of a free quantum particle corresponds to a Lie group G, in the presence of a many-body environment this particle can be described by a deformed group, Gq. Crucially, the single deformation parameter, q, contains all the information about the many-particle interactions in the system. We exemplify our approach by considering a quantum rotor interacting with a bath of bosons, and demonstrate that extracting the value of q from closed-form solutions in the perturbative regime allows one to predict the behavior of the system for arbitrary values of the impurity-bath coupling strength, in good agreement with nonperturbative calculations. Furthermore, the value of the deformation parameter allows one to predict at which coupling strengths rotor-bath interactions result in a formation of a stable quasiparticle. The approach based on quantum groups does not only allow for a drastic simplification of impurity problems, but also provides valuable insights into hidden symmetries of interacting many-particle systems.
AU - Yakaboylu, Enderalp
AU - Shkolnikov, Mikhail
AU - Lemeshko, Mikhail
ID - 5794
IS - 25
JF - Physical Review Letters
SN - 00319007
TI - Quantum groups as hidden symmetries of quantum impurities
VL - 121
ER -
TY - JOUR
AB - We study a quantum impurity possessing both translational and internal rotational degrees of freedom interacting with a bosonic bath. Such a system corresponds to a “rotating polaron,” which can be used to model, e.g., a rotating molecule immersed in an ultracold Bose gas or superfluid helium. We derive the Hamiltonian of the rotating polaron and study its spectrum in the weak- and strong-coupling regimes using a combination of variational, diagrammatic, and mean-field approaches. We reveal how the coupling between linear and angular momenta affects stable quasiparticle states, and demonstrate that internal rotation leads to an enhanced self-localization in the translational degrees of freedom.
AU - Yakaboylu, Enderalp
AU - Midya, Bikashkali
AU - Deuchert, Andreas
AU - Leopold, Nikolai K
AU - Lemeshko, Mikhail
ID - 5983
IS - 22
JF - Physical Review B
SN - 2469-9950
TI - Theory of the rotating polaron: Spectrum and self-localization
VL - 98
ER -
TY - JOUR
AB - We developed a method to calculate two-photon processes in quantum mechanics that replaces the infinite summation over the intermediate states by a perturbation expansion. This latter consists of a series of commutators that involve position, momentum, and Hamiltonian quantum operators. We analyzed several single- and many-particle cases for which a closed-form solution to the perturbation expansion exists, as well as more complicated cases for which a solution is found by convergence. Throughout the article, Rayleigh and Raman scattering are taken as examples of two-photon processes. The present method provides a clear distinction between the Thomson scattering, regarded as classical scattering, and quantum contributions. Such a distinction lets us derive general results concerning light scattering. Finally, possible extensions to the developed formalism are discussed.
AU - Fratini, Filippo
AU - Safari, Laleh
AU - Amaro, Pedro
AU - Santos, José
ID - 294
IS - 4
JF - Physical Review A - Atomic, Molecular, and Optical Physics
TI - Two-photon processes based on quantum commutators
VL - 97
ER -