TY - JOUR
AB - We introduce a Diagrammatic Monte Carlo (DiagMC) approach to complex molecular impurities with rotational degrees of freedom interacting with a many-particle environment. The treatment is based on the diagrammatic expansion that merges the usual Feynman diagrams with the angular momentum diagrams known from atomic and nuclear structure theory, thereby incorporating the non-Abelian algebra inherent to quantum rotations. Our approach works at arbitrary coupling, is free of systematic errors and of finite size effects, and naturally provides access to the impurity Green function. We exemplify the technique by obtaining an all-coupling solution of the angulon model, however, the method is quite general and can be applied to a broad variety of quantum impurities possessing angular momentum degrees of freedom.
AU - Bighin, Giacomo
AU - Tscherbul, Timur
AU - Lemeshko, Mikhail
ID - 417
IS - 16
JF - Physical Review Letters
TI - Diagrammatic Monte Carlo approach to rotating molecular impurities
VL - 121
ER -
TY - JOUR
AB - We analyze the theoretical derivation of the beyond-mean-field equation of state for two-dimensional gas of dilute, ultracold alkali-metal atoms in the Bardeen–Cooper–Schrieffer (BCS) to Bose–Einstein condensate (BEC) crossover. We show that at zero temperature our theory — considering Gaussian fluctuations on top of the mean-field equation of state — is in very good agreement with experimental data. Subsequently, we investigate the superfluid density at finite temperature and its renormalization due to the proliferation of vortex–antivortex pairs. By doing so, we determine the Berezinskii–Kosterlitz–Thouless (BKT) critical temperature — at which the renormalized superfluid density jumps to zero — as a function of the inter-atomic potential strength. We find that the Nelson–Kosterlitz criterion overestimates the BKT temperature with respect to the renormalization group equations, this effect being particularly relevant in the intermediate regime of the crossover.
AU - Bighin, Giacomo
AU - Salasnich, Luca
ID - 420
IS - 17
JF - International Journal of Modern Physics B
TI - Renormalization of the superfluid density in the two-dimensional BCS-BEC crossover
VL - 32
ER -
TY - JOUR
AB - We investigate the quantum interference induced shifts between energetically close states in highly charged ions, with the energy structure being observed by laser spectroscopy. In this work, we focus on hyperfine states of lithiumlike heavy-Z isotopes and quantify how much quantum interference changes the observed transition frequencies. The process of photon excitation and subsequent photon decay for the transition 2s→2p→2s is implemented with fully relativistic and full-multipole frameworks, which are relevant for such relativistic atomic systems. We consider the isotopes Pb79+207 and Bi80+209 due to experimental interest, as well as other examples of isotopes with lower Z, namely Pr56+141 and Ho64+165. We conclude that quantum interference can induce shifts up to 11% of the linewidth in the measurable resonances of the considered isotopes, if interference between resonances is neglected. The inclusion of relativity decreases the cross section by 35%, mainly due to the complete retardation form of the electric dipole multipole. However, the contribution of the next higher multipoles (e.g., magnetic quadrupole) to the cross section is negligible. This makes the contribution of relativity and higher-order multipoles to the quantum interference induced shifts a minor effect, even for heavy-Z elements.
AU - Amaro, Pedro
AU - Loureiro, Ulisses
AU - Safari, Laleh
AU - Fratini, Filippo
AU - Indelicato, Paul
AU - Stöhlker, Thomas
AU - Santos, José
ID - 427
IS - 2
JF - Physical Review A - Atomic, Molecular, and Optical Physics
TI - Quantum interference in laser spectroscopy of highly charged lithiumlike ions
VL - 97
ER -
TY - JOUR
AB - It is shown that two fundamentally different phenomena, the bound states in continuum and the spectral singularity (or time-reversed spectral singularity), can occur simultaneously. This can be achieved in a rectangular core dielectric waveguide with an embedded active (or absorbing) layer. In such a system a two-dimensional bound state in a continuum is created in the plane of a waveguide cross section, and it is emitted or absorbed along the waveguide core. The idea can be used for experimental implementation of a laser or a coherent-perfect-absorber for a photonic bound state that resides in a continuous spectrum.
AU - Midya, Bikashkali
AU - Konotop, Vladimir
ID - 435
IS - 3
JF - Optics Letters
TI - Coherent-perfect-absorber and laser for bound states in a continuum
VL - 43
ER -
TY - JOUR
AB - The first hundred attoseconds of the electron dynamics during strong field tunneling ionization are investigated. We quantify theoretically how the electron’s classical trajectories in the continuum emerge from the tunneling process and test the results with those achieved in parallel from attoclock measurements. An especially high sensitivity on the tunneling barrier is accomplished here by comparing the momentum distributions of two atomic species of slightly deviating atomic potentials (argon and krypton) being ionized under absolutely identical conditions with near-infrared laser pulses (1300 nm). The agreement between experiment and theory provides clear evidence for a nonzero tunneling time delay and a nonvanishing longitudinal momentum of the electron at the “tunnel exit.”
AU - Camus, Nicolas
AU - Yakaboylu, Enderalp
AU - Fechner, Lutz
AU - Klaiber, Michael
AU - Laux, Martin
AU - Mi, Yonghao
AU - Hatsagortsyan, Karen Z.
AU - Pfeifer, Thomas
AU - Keitel, Christoph H.
AU - Moshammer, Robert
ID - 6013
IS - 2
JF - Physical Review Letters
SN - 0031-9007
TI - Experimental evidence for quantum tunneling time
VL - 119
ER -
TY - CHAP
AB - In several settings of physics and chemistry one has to deal with molecules interacting with some kind of an external environment, be it a gas, a solution, or a crystal surface. Understanding molecular processes in the presence of such a many-particle bath is inherently challenging, and usually requires large-scale numerical computations. Here, we present an alternative approach to the problem, based on the notion of the angulon quasiparticle. We show that molecules rotating inside superfluid helium nanodroplets and Bose–Einstein condensates form angulons, and therefore can be described by straightforward solutions of a simple microscopic Hamiltonian. Casting the problem in the language of angulons allows us not only to greatly simplify it, but also to gain insights into the origins of the observed phenomena and to make predictions for future experimental studies.
AU - Lemeshko, Mikhail
AU - Schmidt, Richard
ED - Dulieu, Oliver
ED - Osterwalder, Andreas
ID - 604
SN - 20413181
T2 - Cold Chemistry: Molecular Scattering and Reactivity Near Absolute Zero
TI - Molecular impurities interacting with a many-particle environment: From ultracold gases to helium nanodroplets
VL - 11
ER -
TY - JOUR
AB - Vortices are commonly observed in the context of classical hydrodynamics: from whirlpools after stirring the coffee in a cup to a violent atmospheric phenomenon such as a tornado, all classical vortices are characterized by an arbitrary circulation value of the local velocity field. On the other hand the appearance of vortices with quantized circulation represents one of the fundamental signatures of macroscopic quantum phenomena. In two-dimensional superfluids quantized vortices play a key role in determining finite-temperature properties, as the superfluid phase and the normal state are separated by a vortex unbinding transition, the Berezinskii-Kosterlitz-Thouless transition. Very recent experiments with two-dimensional superfluid fermions motivate the present work: we present theoretical results based on the renormalization group showing that the universal jump of the superfluid density and the critical temperature crucially depend on the interaction strength, providing a strong benchmark for forthcoming investigations.
AU - Bighin, Giacomo
AU - Salasnich, Luca
ID - 1015
JF - Scientific Reports
SN - 20452322
TI - Vortices and antivortices in two-dimensional ultracold Fermi gases
VL - 7
ER -
TY - JOUR
AB - Signatures of the Coulomb corrections in the photoelectron momentum distribution during laser-induced ionization of atoms or ions in tunneling and multiphoton regimes are investigated analytically in the case of a one-dimensional problem. A high-order Coulomb-corrected strong-field approximation is applied, where the exact continuum state in the S matrix is approximated by the eikonal Coulomb-Volkov state including the second-order corrections to the eikonal. Although without high-order corrections our theory coincides with the known analytical R-matrix (ARM) theory, we propose a simplified procedure for the matrix element derivation. Rather than matching the eikonal Coulomb-Volkov wave function with the bound state as in the ARM theory to remove the Coulomb singularity, we calculate the matrix element via the saddle-point integration method by time as well as by coordinate, and in this way avoiding the Coulomb singularity. The momentum shift in the photoelectron momentum distribution with respect to the ARM theory due to high-order corrections is analyzed for tunneling and multiphoton regimes. The relation of the quantum corrections to the tunneling delay time is discussed.
AU - Klaiber, Michael
AU - Daněk, Jiří
AU - Yakaboylu, Enderalp
AU - Hatsagortsyan, Karen
AU - Keitel, Christoph
ID - 1076
IS - 2
JF - Physical Review A - Atomic, Molecular, and Optical Physics
SN - 24699926
TI - Strong-field ionization via a high-order Coulomb-corrected strong-field approximation
VL - 95
ER -
TY - JOUR
AB - Rotation of molecules embedded in He nanodroplets is explored by a combination of fs laser-induced alignment experiments and angulon quasiparticle theory. We demonstrate that at low fluence of the fs alignment pulse, the molecule and its solvation shell can be set into coherent collective rotation lasting long enough to form revivals. With increasing fluence, however, the revivals disappear -- instead, rotational dynamics as rapid as for an isolated molecule is observed during the first few picoseconds. Classical calculations trace this phenomenon to transient decoupling of the molecule from its He shell. Our results open novel opportunities for studying non-equilibrium solute-solvent dynamics and quantum thermalization.
AU - Shepperson, Benjamin
AU - Søndergaard, Anders
AU - Christiansen, Lars
AU - Kaczmarczyk, Jan
AU - Zillich, Robert
AU - Lemeshko, Mikhail
AU - Stapelfeldt, Henrik
ID - 1109
IS - 20
JF - Physical Review Letters
TI - Laser-induced rotation of iodine molecules in helium nanodroplets: Revivals and breaking-free
VL - 118
ER -
TY - JOUR
AB - Understanding the behavior of molecules interacting with superfluid helium represents a formidable challenge and, in general, requires approaches relying on large-scale numerical simulations. Here we demonstrate that experimental data collected over the last 20 years provide evidence that molecules immersed in superfluid helium form recently-predicted angulon quasiparticles [Phys. Rev. Lett. 114, 203001 (2015)]. Most importantly, casting the many-body problem in terms of angulons amounts to a drastic simplification and yields effective molecular moments of inertia as straightforward analytic solutions of a simple microscopic Hamiltonian. The outcome of the angulon theory is in good agreement with experiment for a broad range of molecular impurities, from heavy to medium-mass to light species. These results pave the way to understanding molecular rotation in liquid and crystalline phases in terms of the angulon quasiparticle.
AU - Lemeshko, Mikhail
ID - 1119
IS - 9
JF - Physical Review Letters
SN - 00319007
TI - Quasiparticle approach to molecules interacting with quantum solvents
VL - 118
ER -
TY - JOUR
AB - The existence of a self-localization transition in the polaron problem has been under an active debate ever since Landau suggested it 83 years ago. Here we reveal the self-localization transition for the rotational analogue of the polaron -- the angulon quasiparticle. We show that, unlike for the polarons, self-localization of angulons occurs at finite impurity-bath coupling already at the mean-field level. The transition is accompanied by the spherical-symmetry breaking of the angulon ground state and a discontinuity in the first derivative of the ground-state energy. Moreover, the type of the symmetry breaking is dictated by the symmetry of the microscopic impurity-bath interaction, which leads to a number of distinct self-localized states. The predicted effects can potentially be addressed in experiments on cold molecules trapped in superfluid helium droplets and ultracold quantum gases, as well as on electronic excitations in solids and Bose-Einstein condensates.
AU - Li, Xiang
AU - Seiringer, Robert
AU - Lemeshko, Mikhail
ID - 1120
IS - 3
JF - Physical Review A
SN - 24699926
TI - Angular self-localization of impurities rotating in a bosonic bath
VL - 95
ER -
TY - JOUR
AB - It is a common knowledge that an effective interaction of a quantum impurity with an electromagnetic field can be screened by surrounding charge carriers, whether mobile or static. Here we demonstrate that very strong, "anomalous" screening can take place in the presence of a neutral, weakly polarizable environment, due to an exchange of orbital angular momentum between the impurity and the bath. Furthermore, we show that it is possible to generalize all phenomena related to isolated impurities in an external field to the case when a many-body environment is present, by casting the problem in terms of the angulon quasiparticle. As a result, the relevant observables such as the effective Rabi frequency, geometric phase, and impurity spatial alignment are straightforward to evaluate in terms of a single parameter: the angular-momentum-dependent screening factor.
AU - Yakaboylu, Enderalp
AU - Lemeshko, Mikhail
ID - 1133
IS - 8
JF - Physical Review Letters
SN - 00319007
TI - Anomalous screening of quantum impurities by a neutral environment
VL - 118
ER -
TY - JOUR
AB - Selected universal experimental properties of high-temperature superconducting (HTS) cuprates have been singled out in the last decade. One of the pivotal challenges in this field is the designation of a consistent interpretation framework within which we can describe quantitatively the universal features of those systems. Here we analyze in a detailed manner the principal experimental data and compare them quantitatively with the approach based on a single-band model of strongly correlated electrons supplemented with strong antiferromagnetic (super)exchange interaction (the so-called t−J−U model). The model rationale is provided by estimating its microscopic parameters on the basis of the three-band approach for the Cu-O plane. We use our original full Gutzwiller wave-function solution by going beyond the renormalized mean-field theory (RMFT) in a systematic manner. Our approach reproduces very well the observed hole doping (δ) dependence of the kinetic-energy gain in the superconducting phase, one of the principal non-Bardeen-Cooper-Schrieffer features of the cuprates. The calculated Fermi velocity in the nodal direction is practically δ-independent and its universal value agrees very well with that determined experimentally. Also, a weak doping dependence of the Fermi wave vector leads to an almost constant value of the effective mass in a pure superconducting phase which is both observed in experiment and reproduced within our approach. An assessment of the currently used models (t−J, Hubbard) is carried out and the results of the canonical RMFT as a zeroth-order solution are provided for comparison to illustrate the necessity of the introduced higher-order contributions.
AU - Spałek, Jozef
AU - Zegrodnik, Michał
AU - Kaczmarczyk, Jan
ID - 1162
IS - 2
JF - Physical Review B - Condensed Matter and Materials Physics
SN - 24699950
TI - Universal properties of high temperature superconductors from real space pairing t-J-U model and its quantitative comparison with experiment
VL - 95
ER -
TY - JOUR
AB - We investigate the effect of the electron-hole (e-h) symmetry breaking on d-wave superconductivity induced by non-local effects of correlations in the generalized Hubbard model. The symmetry breaking is introduced in a two-fold manner: by the next-to-nearest neighbor hopping of electrons and by the charge-bond interaction - the off-diagonal term of the Coulomb potential. Both terms lead to a pronounced asymmetry of the superconducting order parameter. The next-to-nearest neighbor hopping enhances superconductivity for h-doping, while diminishes it for e-doping. The charge-bond interaction alone leads to the opposite effect and, additionally, to the kinetic-energy gain upon condensation in the underdoped regime. With both terms included, with similar amplitudes, the height of the superconducting dome and the critical doping remain in favor of h-doping. The influence of the charge-bond interaction on deviations from symmetry of the shape of the gap at the Fermi surface in the momentum space is briefly discussed.
AU - Wysokiński, Marcin
AU - Kaczmarczyk, Jan
ID - 1163
IS - 8
JF - Journal of Physics: Condensed Matter
SN - 09538984
TI - Unconventional superconductivity in generalized Hubbard model role of electron–hole symmetry breaking terms
VL - 29
ER -
TY - JOUR
AB - We reveal the existence of continuous families of guided single-mode solitons in planar waveguides with weakly nonlinear active core and absorbing boundaries. Stable propagation of TE and TM-polarized solitons is accompanied by attenuation of all other modes, i.e., the waveguide features properties of conservative and dissipative systems. If the linear spectrum of the waveguide possesses exceptional points, which occurs in the case of TM polarization, an originally focusing (defocusing) material nonlinearity may become effectively defocusing (focusing). This occurs due to the geometric phase of the carried eigenmode when the surface impedance encircles the exceptional point. In its turn, the change of the effective nonlinearity ensures the existence of dark (bright) solitons in spite of focusing (defocusing) Kerr nonlinearity of the core. The existence of an exceptional point can also result in anomalous enhancement of the effective nonlinearity. In terms of practical applications, the nonlinearity of the reported waveguide can be manipulated by controlling the properties of the absorbing cladding.
AU - Midya, Bikashkali
AU - Konotop, Vladimir
ID - 939
IS - 3
JF - Physical Review Letters
SN - 00319007
TI - Waveguides with absorbing boundaries: Nonlinearity controlled by an exceptional point and solitons
VL - 119
ER -
TY - JOUR
AB - The formation of vortices is usually considered to be the main mechanism of angular momentum disposal in superfluids. Recently, it was predicted that a superfluid can acquire angular momentum via an alternative, microscopic route -- namely, through interaction with rotating impurities, forming so-called `angulon quasiparticles' [Phys. Rev. Lett. 114, 203001 (2015)]. The angulon instabilities correspond to transfer of a small number of angular momentum quanta from the impurity to the superfluid, as opposed to vortex instabilities, where angular momentum is quantized in units of ℏ per atom. Furthermore, since conventional impurities (such as molecules) represent three-dimensional (3D) rotors, the angular momentum transferred is intrinsically 3D as well, as opposed to a merely planar rotation which is inherent to vortices. Herein we show that the angulon theory can explain the anomalous broadening of the spectroscopic lines observed for CH 3 and NH 3 molecules in superfluid helium nanodroplets, thereby providing a fingerprint of the emerging angulon instabilities in experiment.
AU - Cherepanov, Igor
AU - Lemeshko, Mikhail
ID - 994
IS - 3
JF - Physical Review Materials
TI - Fingerprints of angulon instabilities in the spectra of matrix-isolated molecules
VL - 1
ER -
TY - JOUR
AB - Recently it was shown that an impurity exchanging orbital angular momentum with a surrounding bath can be described in terms of the angulon quasiparticle [Phys. Rev. Lett. 118, 095301 (2017)]. The angulon consists of a quantum rotor dressed by a many-particle field of boson excitations, and can be formed out of, for example, a molecule or a nonspherical atom in superfluid helium, or out of an electron coupled to lattice phonons or a Bose condensate. Here we develop an approach to the angulon based on the path-integral formalism, which sets the ground for a systematic, perturbative treatment of the angulon problem. The resulting perturbation series can be interpreted in terms of Feynman diagrams, from which, in turn, one can derive a set of diagrammatic rules. These rules extend the machinery of the graphical theory of angular momentum - well known from theoretical atomic spectroscopy - to the case where an environment with an infinite number of degrees of freedom is present. In particular, we show that each diagram can be interpreted as a 'skeleton', which enforces angular momentum conservation, dressed by an additional many-body contribution. This connection between the angulon theory and the graphical theory of angular momentum is particularly important as it allows to systematically and substantially simplify the analytical representation of each diagram. In order to exemplify the technique, we calculate the 1- and 2-loop contributions to the angulon self-energy, the spectral function, and the quasiparticle weight. The diagrammatic theory we develop paves the way to investigate next-to-leading order quantities in a more compact way compared to the variational approaches.
AU - Bighin, Giacomo
AU - Lemeshko, Mikhail
ID - 995
IS - 8
JF - Physical Review B - Condensed Matter and Materials Physics
SN - 24699950
TI - Diagrammatic approach to orbital quantum impurities interacting with a many-particle environment
VL - 96
ER -
TY - JOUR
AB - Iodine (I 2 ) molecules embedded in He nanodroplets are aligned by a 160 ps long laser pulse. The highest degree of alignment, occurring at the peak of the pulse and quantified by ⟨cos 2 θ 2D ⟩ , is measured as a function of the laser intensity. The results are well described by ⟨cos 2 θ 2D ⟩ calculated for a gas of isolated molecules each with an effective rotational constant of 0.6 times the gas-phase value, and at a temperature of 0.4 K. Theoretical analysis using the angulon quasiparticle to describe rotating molecules in superfluid helium rationalizes why the alignment mechanism is similar to that of isolated molecules with an effective rotational constant. A major advantage of molecules in He droplets is that their 0.4 K temperature leads to stronger alignment than what can generally be achieved for gas phase molecules -- here demonstrated by a direct comparison of the droplet results to measurements on a ∼ 1 K supersonic beam of isolated molecules. This point is further illustrated for more complex system by measurements on 1,4-diiodobenzene and 1,4-dibromobenzene. For all three molecular species studied the highest values of ⟨cos 2 θ 2D ⟩ achieved in He droplets exceed 0.96.
AU - Shepperson, Benjamin
AU - Chatterley, Adam
AU - Søndergaard, Anders
AU - Christiansen, Lars
AU - Lemeshko, Mikhail
AU - Stapelfeldt, Henrik
ID - 996
IS - 1
JF - The Journal of Chemical Physics
SN - 00219606
TI - Strongly aligned molecules inside helium droplets in the near-adiabatic regime
VL - 147
ER -
TY - JOUR
AB - Recently it was shown that molecules rotating in superfluid helium can be described in terms of the angulon quasiparticles (Phys. Rev. Lett. 118, 095301 (2017)). Here we demonstrate that in the experimentally realized regime the angulon can be seen as a point charge on a 2-sphere interacting with a gauge field of a non-abelian magnetic monopole. Unlike in several other settings, the gauge fields of the angulon problem emerge in the real coordinate space, as opposed to the momentum space or some effective parameter space. Furthermore, we find a topological transition associated with making the monopole abelian, which takes place in the vicinity of the previously reported angulon instabilities. These results pave the way for studying topological phenomena in experiments on molecules trapped in superfluid helium nanodroplets, as well as on other realizations of orbital impurity problems.
AU - Yakaboylu, Enderalp
AU - Deuchert, Andreas
AU - Lemeshko, Mikhail
ID - 997
IS - 23
JF - APS Physics, Physical Review Letters
SN - 00319007
TI - Emergence of non-abelian magnetic monopoles in a quantum impurity problem
VL - 119
ER -
TY - CONF
AB - Tunneling of a particle through a potential barrier remains one of the most remarkable quantum phenomena. Owing to advances in laser technology, electric fields comparable to those electrons experience in atoms are readily generated and open opportunities to dynamically investigate the process of electron tunneling through the potential barrier formed by the superposition of both laser and atomic fields. Attosecond-time and angstrom-space resolution of the strong laser-field technique allow to address fundamental questions related to tunneling, which are still open and debated: Which time is spent under the barrier and what momentum is picked up by the particle in the meantime? In this combined experimental and theoretical study we demonstrate that for strong-field ionization the leading quantum mechanical Wigner treatment for the time resolved description of tunneling is valid. We achieve a high sensitivity on the tunneling barrier and unambiguously isolate its effects by performing a differential study of two systems with almost identical tunneling geometry. Moreover, working with a low frequency laser, we essentially limit the non-adiabaticity of the process as a major source of uncertainty. The agreement between experiment and theory implies two substantial corrections with respect to the widely employed quasiclassical treatment: In addition to a non-vanishing longitudinal momentum along the laser field-direction we provide clear evidence for a non-zero tunneling time delay. This addresses also the fundamental question how the transition occurs from the tunnel barrier to free space classical evolution of the ejected electron.
AU - Camus, Nicolas
AU - Yakaboylu, Enderalp
AU - Fechner, Lutz
AU - Klaiber, Michael
AU - Laux, Martin
AU - Mi, Yonghao
AU - Hatsagortsyan, Karen
AU - Pfeifer, Thomas
AU - Keitel, Cristoph
AU - Moshammer, Robert
ID - 313
IS - 1
SN - 17426588
TI - Experimental evidence for Wigner's tunneling time
VL - 999
ER -