@article{9769, abstract = {A few years ago, flow equations were introduced as a technique for calculating the ground-state energies of cold Bose gases with and without impurities. In this paper, we extend this approach to compute observables other than the energy. As an example, we calculate the densities, and phase fluctuations of one-dimensional Bose gases with one and two impurities. For a single mobile impurity, we use flow equations to validate the mean-field results obtained upon the Lee-Low-Pines transformation. We show that the mean-field approximation is accurate for all values of the boson-impurity interaction strength as long as the phase coherence length is much larger than the healing length of the condensate. For two static impurities, we calculate impurity-impurity interactions induced by the Bose gas. We find that leading order perturbation theory fails when boson-impurity interactions are stronger than boson-boson interactions. The mean-field approximation reproduces the flow equation results for all values of the boson-impurity interaction strength as long as boson-boson interactions are weak.}, author = {Brauneis, Fabian and Hammer, Hans-Werner and Lemeshko, Mikhail and Volosniev, Artem}, issn = {2542-4653}, journal = {SciPost Physics}, number = {1}, publisher = {SciPost}, title = {{Impurities in a one-dimensional Bose gas: The flow equation approach}}, doi = {10.21468/scipostphys.11.1.008}, volume = {11}, year = {2021}, } @article{9903, abstract = {Eigenstate thermalization in quantum many-body systems implies that eigenstates at high energy are similar to random vectors. Identifying systems where at least some eigenstates are nonthermal is an outstanding question. In this Letter we show that interacting quantum models that have a nullspace—a degenerate subspace of eigenstates at zero energy (zero modes), which corresponds to infinite temperature, provide a route to nonthermal eigenstates. We analytically show the existence of a zero mode which can be represented as a matrix product state for a certain class of local Hamiltonians. In the more general case we use a subspace disentangling algorithm to generate an orthogonal basis of zero modes characterized by increasing entanglement entropy. We show evidence for an area-law entanglement scaling of the least-entangled zero mode in the broad parameter regime, leading to a conjecture that all local Hamiltonians with the nullspace feature zero modes with area-law entanglement scaling and, as such, break the strong thermalization hypothesis. Finally, we find zero modes in constrained models and propose a setup for observing their experimental signatures.}, author = {Karle, Volker and Serbyn, Maksym and Michailidis, Alexios}, issn = {1079-7114}, journal = {Physical Review Letters}, number = {6}, publisher = {American Physical Society}, title = {{Area-law entangled eigenstates from nullspaces of local Hamiltonians}}, doi = {10.1103/physrevlett.127.060602}, volume = {127}, year = {2021}, } @article{10025, abstract = {Ferromagnetism is most common in transition metal compounds but may also arise in low-density two-dimensional electron systems, with signatures observed in silicon, III-V semiconductor systems, and graphene moiré heterostructures. Here we show that gate-tuned van Hove singularities in rhombohedral trilayer graphene drive the spontaneous ferromagnetic polarization of the electron system into one or more spin- and valley flavors. Using capacitance measurements on graphite-gated van der Waals heterostructures, we find a cascade of density- and electronic displacement field tuned phase transitions marked by negative electronic compressibility. The transitions define the boundaries between phases where quantum oscillations have either four-fold, two-fold, or one-fold degeneracy, associated with a spin and valley degenerate normal metal, spin-polarized `half-metal', and spin and valley polarized `quarter metal', respectively. For electron doping, the salient features are well captured by a phenomenological Stoner model with a valley-anisotropic Hund's coupling, likely arising from interactions at the lattice scale. For hole filling, we observe a richer phase diagram featuring a delicate interplay of broken symmetries and transitions in the Fermi surface topology. Finally, by rotational alignment of a hexagonal boron nitride substrate to induce a moiré superlattice, we find that the superlattice perturbs the preexisting isospin order only weakly, leaving the basic phase diagram intact while catalyzing the formation of topologically nontrivial gapped states whenever itinerant half- or quarter metal states occur at half- or quarter superlattice band filling. Our results show that rhombohedral trilayer graphene is an ideal platform for well-controlled tests of many-body theory and reveal magnetism in moiré materials to be fundamentally itinerant in nature.}, author = {Zhou, Haoxin and Xie, Tian and Ghazaryan, Areg and Holder, Tobias and Ehrets, James R. and Spanton, Eric M. and Taniguchi, Takashi and Watanabe, Kenji and Berg, Erez and Serbyn, Maksym and Young, Andrea F.}, issn = {1476-4687}, journal = {Nature}, keywords = {condensed matter - mesoscale and nanoscale physics, condensed matter - strongly correlated electrons, multidisciplinary}, publisher = {Springer Nature}, title = {{Half and quarter metals in rhombohedral trilayer graphene}}, doi = {10.1038/s41586-021-03938-w}, year = {2021}, } @article{10176, abstract = {We give a combinatorial model for r-spin surfaces with parameterized boundary based on Novak (“Lattice topological field theories in two dimensions,” Ph.D. thesis, Universität Hamburg, 2015). The r-spin structure is encoded in terms of ℤ𝑟-valued indices assigned to the edges of a polygonal decomposition. This combinatorial model is designed for our state-sum construction of two-dimensional topological field theories on r-spin surfaces. We show that an example of such a topological field theory computes the Arf-invariant of an r-spin surface as introduced by Randal-Williams [J. Topol. 7, 155 (2014)] and Geiges et al. [Osaka J. Math. 49, 449 (2012)]. This implies, in particular, that the r-spin Arf-invariant is constant on orbits of the mapping class group, providing an alternative proof of that fact.}, author = {Runkel, Ingo and Szegedy, Lorant}, issn = {00222488}, journal = {Journal of Mathematical Physics}, number = {10}, publisher = {AIP Publishing}, title = {{Topological field theory on r-spin surfaces and the Arf-invariant}}, doi = {10.1063/5.0037826}, volume = {62}, year = {2021}, } @article{10401, abstract = {Theoretical and experimental studies of the interaction between spins and temperature are vital for the development of spin caloritronics, as they dictate the design of future devices. In this work, we propose a two-terminal cold-atom simulator to study that interaction. The proposed quantum simulator consists of strongly interacting atoms that occupy two temperature reservoirs connected by a one-dimensional link. First, we argue that the dynamics in the link can be described using an inhomogeneous Heisenberg spin chain whose couplings are defined by the local temperature. Second, we show the existence of a spin current in a system with a temperature difference by studying the dynamics that follows the spin-flip of an atom in the link. A temperature gradient accelerates the impurity in one direction more than in the other, leading to an overall spin current similar to the spin Seebeck effect.}, author = {Barfknecht, Rafael E. and Foerster, Angela and Zinner, Nikolaj T. and Volosniev, Artem}, issn = {23993650}, journal = {Communications Physics}, number = {1}, publisher = {Springer Nature}, title = {{Generation of spin currents by a temperature gradient in a two-terminal device}}, doi = {10.1038/s42005-021-00753-7}, volume = {4}, year = {2021}, } @article{10628, abstract = {The surface states of 3D topological insulators in general have negligible quantum oscillations (QOs) when the chemical potential is tuned to the Dirac points. In contrast, we find that topological Kondo insulators (TKIs) can support surface states with an arbitrarily large Fermi surface (FS) when the chemical potential is pinned to the Dirac point. We illustrate that these FSs give rise to finite-frequency QOs, which can become comparable to the extremal area of the unhybridized bulk bands. We show that this occurs when the crystal symmetry is lowered from cubic to tetragonal in a minimal two-orbital model. We label such surface modes as 'shadow surface states'. Moreover, we show that the sufficient next-nearest neighbor out-of-plane hybridization leading to shadow surface states can be self-consistently stabilized for tetragonal TKIs. Consequently, shadow surface states provide an important example of high-frequency QOs beyond the context of cubic TKIs.}, author = {Ghazaryan, Areg and Nica, Emilian M. and Erten, Onur and Ghaemi, Pouyan}, issn = {1367-2630}, journal = {New Journal of Physics}, number = {12}, publisher = {IOP Publishing}, title = {{Shadow surface states in topological Kondo insulators}}, doi = {10.1088/1367-2630/ac4124}, volume = {23}, year = {2021}, } @article{10631, abstract = {We combine experimental and theoretical approaches to explore excited rotational states of molecules embedded in helium nanodroplets using CS2 and I2 as examples. Laser-induced nonadiabatic molecular alignment is employed to measure spectral lines for rotational states extending beyond those initially populated at the 0.37 K droplet temperature. We construct a simple quantum-mechanical model, based on a linear rotor coupled to a single-mode bosonic bath, to determine the rotational energy structure in its entirety. The calculated and measured spectral lines are in good agreement. We show that the effect of the surrounding superfluid on molecular rotation can be rationalized by a single quantity, the angular momentum, transferred from the molecule to the droplet.}, author = {Cherepanov, Igor and Bighin, Giacomo and Schouder, Constant A. and Chatterley, Adam S. and Albrechtsen, Simon H. and Muñoz, Alberto Viñas and Christiansen, Lars and Stapelfeldt, Henrik and Lemeshko, Mikhail}, issn = {2469-9934}, journal = {Physical Review A}, number = {6}, publisher = {American Physical Society}, title = {{Excited rotational states of molecules in a superfluid}}, doi = {10.1103/PhysRevA.104.L061303}, volume = {104}, year = {2021}, } @unpublished{10762, abstract = {Methods inspired from machine learning have recently attracted great interest in the computational study of quantum many-particle systems. So far, however, it has proven challenging to deal with microscopic models in which the total number of particles is not conserved. To address this issue, we propose a new variant of neural network states, which we term neural coherent states. Taking the Fröhlich impurity model as a case study, we show that neural coherent states can learn the ground state of non-additive systems very well. In particular, we observe substantial improvement over the standard coherent state estimates in the most challenging intermediate coupling regime. Our approach is generic and does not assume specific details of the system, suggesting wide applications.}, author = {Rzadkowski, Wojciech and Lemeshko, Mikhail and Mentink, Johan H.}, booktitle = {arXiv}, pages = {2105.15193}, title = {{Artificial neural network states for non-additive systems}}, doi = {10.48550/arXiv.2105.15193}, year = {2021}, } @unpublished{10029, abstract = {Superconductor-semiconductor hybrids are platforms for realizing effective p-wave superconductivity. Spin-orbit coupling, combined with the proximity effect, causes the two-dimensional semiconductor to inherit p±ip intraband pairing, and application of magnetic field can then result in transitions to the normal state, partial Bogoliubov Fermi surfaces, or topological phases with Majorana modes. Experimentally probing the hybrid superconductor-semiconductor interface is challenging due to the shunting effect of the conventional superconductor. Consequently, the nature of induced pairing remains an open question. Here, we use the circuit quantum electrodynamics architecture to probe induced superconductivity in a two dimensional Al-InAs hybrid system. We observe a strong suppression of superfluid density and enhanced dissipation driven by magnetic field, which cannot be accounted for by the depairing theory of an s-wave superconductor. These observations are explained by a picture of independent intraband p±ip superconductors giving way to partial Bogoliubov Fermi surfaces, and allow for the first characterization of key properties of the hybrid superconducting system.}, author = {Phan, Duc T and Senior, Jorden L and Ghazaryan, Areg and Hatefipour, M. and Strickland, W. M. and Shabani, J. and Serbyn, Maksym and Higginbotham, Andrew P}, booktitle = {arXiv}, title = {{Breakdown of induced p±ip pairing in a superconductor-semiconductor hybrid}}, year = {2021}, } @article{10134, abstract = {We investigate the effect of coupling between translational and internal degrees of freedom of composite quantum particles on their localization in a random potential. We show that entanglement between the two degrees of freedom weakens localization due to the upper bound imposed on the inverse participation ratio by purity of a quantum state. We perform numerical calculations for a two-particle system bound by a harmonic force in a 1D disordered lattice and a rigid rotor in a 2D disordered lattice. We illustrate that the coupling has a dramatic effect on localization properties, even with a small number of internal states participating in quantum dynamics.}, author = {Suzuki, Fumika and Lemeshko, Mikhail and Zurek, Wojciech H. and Krems, Roman V.}, issn = {1079-7114}, journal = {Physical Review Letters}, keywords = {General Physics and Astronomy}, number = {16}, publisher = {American Physical Society }, title = {{Anderson localization of composite particles}}, doi = {10.1103/physrevlett.127.160602}, volume = {127}, year = {2021}, } @article{7594, abstract = {The concept of the entanglement between spin and orbital degrees of freedom plays a crucial role in our understanding of various phases and exotic ground states in a broad class of materials, including orbitally ordered materials and spin liquids. We investigate how the spin-orbital entanglement in a Mott insulator depends on the value of the spin-orbit coupling of the relativistic origin. To this end, we numerically diagonalize a one-dimensional spin-orbital model with Kugel-Khomskii exchange interactions between spins and orbitals on different sites supplemented by the on-site spin-orbit coupling. In the regime of small spin-orbit coupling with regard to the spin-orbital exchange, the ground state to a large extent resembles the one obtained in the limit of vanishing spin-orbit coupling. On the other hand, for large spin-orbit coupling the ground state can, depending on the model parameters, either still show negligible spin-orbital entanglement or evolve to a highly spin-orbitally-entangled phase with completely distinct properties that are described by an effective XXZ model. The presented results suggest that (i) the spin-orbital entanglement may be induced by large on-site spin-orbit coupling, as found in the 5d transition metal oxides, such as the iridates; (ii) for Mott insulators with weak spin-orbit coupling of Ising type, such as, e.g., the alkali hyperoxides, the effects of the spin-orbit coupling on the ground state can, in the first order of perturbation theory, be neglected.}, author = {Gotfryd, Dorota and Paerschke, Ekaterina and Chaloupka, Jiri and Oles, Andrzej M. and Wohlfeld, Krzysztof}, journal = {Physical Review Research}, number = {1}, publisher = {American Physical Society}, title = {{How spin-orbital entanglement depends on the spin-orbit coupling in a Mott insulator}}, doi = {10.1103/PhysRevResearch.2.013353}, volume = {2}, year = {2020}, } @article{7919, abstract = {We explore the time evolution of two impurities in a trapped one-dimensional Bose gas that follows a change of the boson-impurity interaction. We study the induced impurity-impurity interactions and their effect on the quench dynamics. In particular, we report on the size of the impurity cloud, the impurity-impurity entanglement, and the impurity-impurity correlation function. The presented numerical simulations are based upon the variational multilayer multiconfiguration time-dependent Hartree method for bosons. To analyze and quantify induced impurity-impurity correlations, we employ an effective two-body Hamiltonian with a contact interaction. We show that the effective model consistent with the mean-field attraction of two heavy impurities explains qualitatively our results for weak interactions. Our findings suggest that the quench dynamics in cold-atom systems can be a tool for studying impurity-impurity correlations.}, author = {Mistakidis, S. I. and Volosniev, Artem and Schmelcher, P.}, issn = {2643-1564}, journal = {Physical Review Research}, publisher = {American Physical Society}, title = {{Induced correlations between impurities in a one-dimensional quenched Bose gas}}, doi = {10.1103/physrevresearch.2.023154}, volume = {2}, year = {2020}, } @article{8726, abstract = {Several realistic spin-orbital models for transition metal oxides go beyond the classical expectations and could be understood only by employing the quantum entanglement. Experiments on these materials confirm that spin-orbital entanglement has measurable consequences. Here, we capture the essential features of spin-orbital entanglement in complex quantum matter utilizing 1D spin-orbital model which accommodates SU(2)⊗SU(2) symmetric Kugel-Khomskii superexchange as well as the Ising on-site spin-orbit coupling. Building on the results obtained for full and effective models in the regime of strong spin-orbit coupling, we address the question whether the entanglement found on superexchange bonds always increases when the Ising spin-orbit coupling is added. We show that (i) quantum entanglement is amplified by strong spin-orbit coupling and, surprisingly, (ii) almost classical disentangled states are possible. We complete the latter case by analyzing how the entanglement existing for intermediate values of spin-orbit coupling can disappear for higher values of this coupling.}, author = {Gotfryd, Dorota and Paerschke, Ekaterina and Wohlfeld, Krzysztof and Oleś, Andrzej M.}, issn = {2410-3896}, journal = {Condensed Matter}, number = {3}, publisher = {MDPI}, title = {{Evolution of spin-orbital entanglement with increasing ising spin-orbit coupling}}, doi = {10.3390/condmat5030053}, volume = {5}, year = {2020}, } @article{7882, abstract = {A few-body cluster is a building block of a many-body system in a gas phase provided the temperature at most is of the order of the binding energy of this cluster. Here we illustrate this statement by considering a system of tubes filled with dipolar distinguishable particles. We calculate the partition function, which determines the probability to find a few-body cluster at a given temperature. The input for our calculations—the energies of few-body clusters—is estimated using the harmonic approximation. We first describe and demonstrate the validity of our numerical procedure. Then we discuss the results featuring melting of the zero-temperature many-body state into a gas of free particles and few-body clusters. For temperature higher than its binding energy threshold, the dimers overwhelmingly dominate the ensemble, where the remaining probability is in free particles. At very high temperatures free (harmonic oscillator trap-bound) particle dominance is eventually reached. This structure evolution appears both for one and two particles in each layer providing crucial information about the behavior of ultracold dipolar gases. The investigation addresses the transition region between few- and many-body physics as a function of temperature using a system of ten dipoles in five tubes.}, author = {Armstrong, Jeremy R. and Jensen, Aksel S. and Volosniev, Artem and Zinner, Nikolaj T.}, issn = {22277390}, journal = {Mathematics}, number = {4}, publisher = {MDPI}, title = {{Clusters in separated tubes of tilted dipoles}}, doi = {10.3390/math8040484}, volume = {8}, year = {2020}, } @article{7933, abstract = {We study a mobile quantum impurity, possessing internal rotational degrees of freedom, confined to a ring in the presence of a many-particle bosonic bath. By considering the recently introduced rotating polaron problem, we define the Hamiltonian and examine the energy spectrum. The weak-coupling regime is studied by means of a variational ansatz in the truncated Fock space. The corresponding spectrum indicates that there emerges a coupling between the internal and orbital angular momenta of the impurity as a consequence of the phonon exchange. We interpret the coupling as a phonon-mediated spin-orbit coupling and quantify it by using a correlation function between the internal and the orbital angular momentum operators. The strong-coupling regime is investigated within the Pekar approach, and it is shown that the correlation function of the ground state shows a kink at a critical coupling, that is explained by a sharp transition from the noninteracting state to the states that exhibit strong interaction with the surroundings. The results might find applications in such fields as spintronics or topological insulators where spin-orbit coupling is of crucial importance.}, author = {Maslov, Mikhail and Lemeshko, Mikhail and Yakaboylu, Enderalp}, issn = {24699969}, journal = {Physical Review B}, number = {18}, publisher = {American Physical Society}, title = {{Synthetic spin-orbit coupling mediated by a bosonic environment}}, doi = {10.1103/PhysRevB.101.184104}, volume = {101}, year = {2020}, } @article{8170, abstract = {Alignment of OCS, CS2, and I2 molecules embedded in helium nanodroplets is measured as a function of time following rotational excitation by a nonresonant, comparatively weak ps laser pulse. The distinct peaks in the power spectra, obtained by Fourier analysis, are used to determine the rotational, B, and centrifugal distortion, D, constants. For OCS, B and D match the values known from IR spectroscopy. For CS2 and I2, they are the first experimental results reported. The alignment dynamics calculated from the gas-phase rotational Schrödinger equation, using the experimental in-droplet B and D values, agree in detail with the measurement for all three molecules. The rotational spectroscopy technique for molecules in helium droplets introduced here should apply to a range of molecules and complexes.}, author = {Chatterley, Adam S. and Christiansen, Lars and Schouder, Constant A. and Jørgensen, Anders V. and Shepperson, Benjamin and Cherepanov, Igor and Bighin, Giacomo and Zillich, Robert E. and Lemeshko, Mikhail and Stapelfeldt, Henrik}, issn = {10797114}, journal = {Physical Review Letters}, number = {1}, publisher = {American Physical Society}, title = {{Rotational coherence spectroscopy of molecules in Helium nanodroplets: Reconciling the time and the frequency domains}}, doi = {10.1103/PhysRevLett.125.013001}, volume = {125}, year = {2020}, } @article{8652, abstract = {Nature creates electrons with two values of the spin projection quantum number. In certain applications, it is important to filter electrons with one spin projection from the rest. Such filtering is not trivial, since spin-dependent interactions are often weak, and cannot lead to any substantial effect. Here we propose an efficient spin filter based upon scattering from a two-dimensional crystal, which is made of aligned point magnets. The polarization of the outgoing electron flux is controlled by the crystal, and reaches maximum at specific values of the parameters. In our scheme, polarization increase is accompanied by higher reflectivity of the crystal. High transmission is feasible in scattering from a quantum cavity made of two crystals. Our findings can be used for studies of low-energy spin-dependent scattering from two-dimensional ordered structures made of magnetic atoms or aligned chiral molecules.}, author = {Ghazaryan, Areg and Lemeshko, Mikhail and Volosniev, Artem}, issn = {2399-3650}, journal = {Communications Physics}, publisher = {Springer Nature}, title = {{Filtering spins by scattering from a lattice of point magnets}}, doi = {10.1038/s42005-020-00445-8}, volume = {3}, year = {2020}, } @article{8699, abstract = {In the high spin–orbit-coupled Sr2IrO4, the high sensitivity of the ground state to the details of the local lattice structure shows a large potential for the manipulation of the functional properties by inducing local lattice distortions. We use epitaxial strain to modify the Ir–O bond geometry in Sr2IrO4 and perform momentum-dependent resonant inelastic X-ray scattering (RIXS) at the metal and at the ligand sites to unveil the response of the low-energy elementary excitations. We observe that the pseudospin-wave dispersion for tensile-strained Sr2IrO4 films displays large softening along the [h,0] direction, while along the [h,h] direction it shows hardening. This evolution reveals a renormalization of the magnetic interactions caused by a strain-driven cross-over from anisotropic to isotropic interactions between the magnetic moments. Moreover, we detect dispersive electron–hole pair excitations which shift to lower (higher) energies upon compressive (tensile) strain, manifesting a reduction (increase) in the size of the charge gap. This behavior shows an intimate coupling between charge excitations and lattice distortions in Sr2IrO4, originating from the modified hopping elements between the t2g orbitals. Our work highlights the central role played by the lattice degrees of freedom in determining both the pseudospin and charge excitations of Sr2IrO4 and provides valuable information toward the control of the ground state of complex oxides in the presence of high spin–orbit coupling.}, author = {Paris, Eugenio and Tseng, Yi and Paerschke, Ekaterina and Zhang, Wenliang and Upton, Mary H and Efimenko, Anna and Rolfs, Katharina and McNally, Daniel E and Maurel, Laura and Naamneh, Muntaser and Caputo, Marco and Strocov, Vladimir N and Wang, Zhiming and Casa, Diego and Schneider, Christof W and Pomjakushina, Ekaterina and Wohlfeld, Krzysztof and Radovic, Milan and Schmitt, Thorsten}, issn = {10916490}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {40}, pages = {24764--24770}, publisher = {National Academy of Sciences}, title = {{Strain engineering of the charge and spin-orbital interactions in Sr2IrO4}}, doi = {10.1073/pnas.2012043117}, volume = {117}, year = {2020}, } @article{7968, abstract = {Organic materials are known to feature long spin-diffusion times, originating in a generally small spin–orbit coupling observed in these systems. From that perspective, chiral molecules acting as efficient spin selectors pose a puzzle that attracted a lot of attention in recent years. Here, we revisit the physical origins of chiral-induced spin selectivity (CISS) and propose a simple analytic minimal model to describe it. The model treats a chiral molecule as an anisotropic wire with molecular dipole moments aligned arbitrarily with respect to the wire’s axes and is therefore quite general. Importantly, it shows that the helical structure of the molecule is not necessary to observe CISS and other chiral nonhelical molecules can also be considered as potential candidates for the CISS effect. We also show that the suggested simple model captures the main characteristics of CISS observed in the experiment, without the need for additional constraints employed in the previous studies. The results pave the way for understanding other related physical phenomena where the CISS effect plays an essential role.}, author = {Ghazaryan, Areg and Paltiel, Yossi and Lemeshko, Mikhail}, issn = {1932-7455}, journal = {The Journal of Physical Chemistry C}, number = {21}, pages = {11716--11721}, publisher = {American Chemical Society}, title = {{Analytic model of chiral-induced spin selectivity}}, doi = {10.1021/acs.jpcc.0c02584}, volume = {124}, year = {2020}, } @article{8588, abstract = {Dipolar (or spatially indirect) excitons (IXs) in semiconductor double quantum well (DQW) subjected to an electric field are neutral species with a dipole moment oriented perpendicular to the DQW plane. Here, we theoretically study interactions between IXs in stacked DQW bilayers, where the dipolar coupling can be either attractive or repulsive depending on the relative positions of the particles. By using microscopic band structure calculations to determine the electronic states forming the excitons, we show that the attractive dipolar interaction between stacked IXs deforms their electronic wave function, thereby increasing the inter-DQW interaction energy and making the IX even more electrically polarizable. Many-particle interaction effects are addressed by considering the coupling between a single IX in one of the DQWs to a cloud of IXs in the other DQW, which is modeled either as a closed-packed lattice or as a continuum IX fluid. We find that the lattice model yields IX interlayer binding energies decreasing with increasing lattice density. This behavior is due to the dominating role of the intra-DQW dipolar repulsion, which prevents more than one exciton from entering the attractive region of the inter-DQW coupling. Finally, both models shows that the single IX distorts the distribution of IXs in the adjacent DQW, thus inducing the formation of an IX dipolar polaron (dipolaron). While the interlayer binding energy reduces with IX density for lattice dipolarons, the continuous polaron model predicts a nonmonotonous dependence on density in semiquantitative agreement with a recent experimental study [cf. Hubert et al., Phys. Rev. X 9, 021026 (2019)].}, author = {Hubert, C. and Cohen, K. and Ghazaryan, Areg and Lemeshko, Mikhail and Rapaport, R. and Santos, P. V.}, issn = {2469-9969}, journal = {Physical Review B}, number = {4}, publisher = {American Physical Society}, title = {{Attractive interactions, molecular complexes, and polarons in coupled dipolar exciton fluids}}, doi = {10.1103/physrevb.102.045307}, volume = {102}, year = {2020}, } @article{8769, abstract = {One of the hallmarks of quantum statistics, tightly entwined with the concept of topological phases of matter, is the prediction of anyons. Although anyons are predicted to be realized in certain fractional quantum Hall systems, they have not yet been unambiguously detected in experiment. Here we introduce a simple quantum impurity model, where bosonic or fermionic impurities turn into anyons as a consequence of their interaction with the surrounding many-particle bath. A cloud of phonons dresses each impurity in such a way that it effectively attaches fluxes or vortices to it and thereby converts it into an Abelian anyon. The corresponding quantum impurity model, first, provides a different approach to the numerical solution of the many-anyon problem, along with a concrete perspective of anyons as emergent quasiparticles built from composite bosons or fermions. More importantly, the model paves the way toward realizing anyons using impurities in crystal lattices as well as ultracold gases. In particular, we consider two heavy electrons interacting with a two-dimensional lattice crystal in a magnetic field, and show that when the impurity-bath system is rotated at the cyclotron frequency, impurities behave as anyons as a consequence of the angular momentum exchange between the impurities and the bath. A possible experimental realization is proposed by identifying the statistics parameter in terms of the mean-square distance of the impurities and the magnetization of the impurity-bath system, both of which are accessible to experiment. Another proposed application is impurities immersed in a two-dimensional weakly interacting Bose gas.}, author = {Yakaboylu, Enderalp and Ghazaryan, Areg and Lundholm, D. and Rougerie, N. and Lemeshko, Mikhail and Seiringer, Robert}, issn = {2469-9969}, journal = {Physical Review B}, number = {14}, publisher = {American Physical Society}, title = {{Quantum impurity model for anyons}}, doi = {10.1103/physrevb.102.144109}, volume = {102}, year = {2020}, } @article{8587, abstract = {Inspired by the possibility to experimentally manipulate and enhance chemical reactivity in helium nanodroplets, we investigate the effective interaction and the resulting correlations between two diatomic molecules immersed in a bath of bosons. By analogy with the bipolaron, we introduce the biangulon quasiparticle describing two rotating molecules that align with respect to each other due to the effective attractive interaction mediated by the excitations of the bath. We study this system in different parameter regimes and apply several theoretical approaches to describe its properties. Using a Born–Oppenheimer approximation, we investigate the dependence of the effective intermolecular interaction on the rotational state of the two molecules. In the strong-coupling regime, a product-state ansatz shows that the molecules tend to have a strong alignment in the ground state. To investigate the system in the weak-coupling regime, we apply a one-phonon excitation variational ansatz, which allows us to access the energy spectrum. In comparison to the angulon quasiparticle, the biangulon shows shifted angulon instabilities and an additional spectral instability, where resonant angular momentum transfer between the molecules and the bath takes place. These features are proposed as an experimentally observable signature for the formation of the biangulon quasiparticle. Finally, by using products of single angulon and bare impurity wave functions as basis states, we introduce a diagonalization scheme that allows us to describe the transition from two separated angulons to a biangulon as a function of the distance between the two molecules.}, author = {Li, Xiang and Yakaboylu, Enderalp and Bighin, Giacomo and Schmidt, Richard and Lemeshko, Mikhail and Deuchert, Andreas}, issn = {1089-7690}, journal = {The Journal of Chemical Physics}, keywords = {Physical and Theoretical Chemistry, General Physics and Astronomy}, number = {16}, publisher = {AIP Publishing}, title = {{Intermolecular forces and correlations mediated by a phonon bath}}, doi = {10.1063/1.5144759}, volume = {152}, year = {2020}, } @article{8644, abstract = {Determining the phase diagram of systems consisting of smaller subsystems 'connected' via a tunable coupling is a challenging task relevant for a variety of physical settings. A general question is whether new phases, not present in the uncoupled limit, may arise. We use machine learning and a suitable quasidistance between different points of the phase diagram to study layered spin models, in which the spin variables constituting each of the uncoupled systems (to which we refer as layers) are coupled to each other via an interlayer coupling. In such systems, in general, composite order parameters involving spins of different layers may emerge as a consequence of the interlayer coupling. We focus on the layered Ising and Ashkin–Teller models as a paradigmatic case study, determining their phase diagram via the application of a machine learning algorithm to the Monte Carlo data. Remarkably our technique is able to correctly characterize all the system phases also in the case of hidden order parameters, i.e. order parameters whose expression in terms of the microscopic configurations would require additional preprocessing of the data fed to the algorithm. We correctly retrieve the three known phases of the Ashkin–Teller model with ferromagnetic couplings, including the phase described by a composite order parameter. For the bilayer and trilayer Ising models the phases we find are only the ferromagnetic and the paramagnetic ones. Within the approach we introduce, owing to the construction of convolutional neural networks, naturally suitable for layered image-like data with arbitrary number of layers, no preprocessing of the Monte Carlo data is needed, also with regard to its spatial structure. The physical meaning of our results is discussed and compared with analytical data, where available. Yet, the method can be used without any a priori knowledge of the phases one seeks to find and can be applied to other models and structures.}, author = {Rzadkowski, Wojciech and Defenu, N and Chiacchiera, S and Trombettoni, A and Bighin, Giacomo}, issn = {13672630}, journal = {New Journal of Physics}, number = {9}, publisher = {IOP Publishing}, title = {{Detecting composite orders in layered models via machine learning}}, doi = {10.1088/1367-2630/abae44}, volume = {22}, year = {2020}, } @phdthesis{8958, abstract = {The oft-quoted dictum by Arthur Schawlow: ``A diatomic molecule has one atom too many'' has been disavowed. Inspired by the possibility to experimentally manipulate and enhance chemical reactivity in helium nanodroplets, we investigate the rotation of coupled cold molecules in the presence of a many-body environment. In this thesis, we introduce new variational approaches to quantum impurities and apply them to the Fröhlich polaron - a quasiparticle formed out of an electron (or other point-like impurity) in a polar medium, and to the angulon - a quasiparticle formed out of a rotating molecule in a bosonic bath. With this theoretical toolbox, we reveal the self-localization transition for the angulon quasiparticle. We show that, unlike for polarons, self-localization of angulons occurs at finite impurity-bath coupling already at the mean-field level. The transition is accompanied by the spherical-symmetry breaking of the angulon ground state and a discontinuity in the first derivative of the ground-state energy. Moreover, the type of symmetry breaking is dictated by the symmetry of the microscopic impurity-bath interaction, which leads to a number of distinct self-localized states. For the system containing multiple impurities, by analogy with the bipolaron, we introduce the biangulon quasiparticle describing two rotating molecules that align with respect to each other due to the effective attractive interaction mediated by the excitations of the bath. We study this system from the strong-coupling regime to the weak molecule-bath interaction regime. We show that the molecules tend to have a strong alignment in the ground state, the biangulon shows shifted angulon instabilities and an additional spectral instability, where resonant angular momentum transfer between the molecules and the bath takes place. Finally, we introduce a diagonalization scheme that allows us to describe the transition from two separated angulons to a biangulon as a function of the distance between the two molecules.}, author = {Li, Xiang}, issn = {2663-337X}, pages = {125}, publisher = {Institute of Science and Technology Austria}, title = {{Rotation of coupled cold molecules in the presence of a many-body environment}}, doi = {10.15479/AT:ISTA:8958}, year = {2020}, } @article{7956, abstract = {When short-range attractions are combined with long-range repulsions in colloidal particle systems, complex microphases can emerge. Here, we study a system of isotropic particles, which can form lamellar structures or a disordered fluid phase when temperature is varied. We show that, at equilibrium, the lamellar structure crystallizes, while out of equilibrium, the system forms a variety of structures at different shear rates and temperatures above melting. The shear-induced ordering is analyzed by means of principal component analysis and artificial neural networks, which are applied to data of reduced dimensionality. Our results reveal the possibility of inducing ordering by shear, potentially providing a feasible route to the fabrication of ordered lamellar structures from isotropic particles.}, author = {Pȩkalski, J. and Rzadkowski, Wojciech and Panagiotopoulos, A. Z.}, issn = {10897690}, journal = {The Journal of chemical physics}, number = {20}, publisher = {AIP Publishing}, title = {{Shear-induced ordering in systems with competing interactions: A machine learning study}}, doi = {10.1063/5.0005194}, volume = {152}, year = {2020}, } @article{7428, abstract = {In the superconducting regime of FeTe(1−x)Sex, there exist two types of vortices which are distinguished by the presence or absence of zero-energy states in their core. To understand their origin, we examine the interplay of Zeeman coupling and superconducting pairings in three-dimensional metals with band inversion. Weak Zeeman fields are found to suppress intraorbital spin-singlet pairing, known to localize the states at the ends of the vortices on the surface. On the other hand, an orbital-triplet pairing is shown to be stable against Zeeman interactions, but leads to delocalized zero-energy Majorana modes which extend through the vortex. In contrast, the finite-energy vortex modes remain localized at the vortex ends even when the pairing is of orbital-triplet form. Phenomenologically, this manifests as an observed disappearance of zero-bias peaks within the cores of topological vortices upon an increase of the applied magnetic field. The presence of magnetic impurities in FeTe(1−x)Sex, which are attracted to the vortices, would lead to such Zeeman-induced delocalization of Majorana modes in a fraction of vortices that capture a large enough number of magnetic impurities. Our results provide an explanation for the dichotomy between topological and nontopological vortices recently observed in FeTe(1−x)Sex.}, author = {Ghazaryan, Areg and Lopes, P. L.S. and Hosur, Pavan and Gilbert, Matthew J. and Ghaemi, Pouyan}, issn = {24699969}, journal = {Physical Review B}, number = {2}, publisher = {American Physical Society}, title = {{Effect of Zeeman coupling on the Majorana vortex modes in iron-based topological superconductors}}, doi = {10.1103/PhysRevB.101.020504}, volume = {101}, year = {2020}, } @article{8741, abstract = {In ecology, climate and other fields, (sub)systems have been identified that can transition into a qualitatively different state when a critical threshold or tipping point in a driving process is crossed. An understanding of those tipping elements is of great interest given the increasing influence of humans on the biophysical Earth system. Complex interactions exist between tipping elements, e.g. physical mechanisms connect subsystems of the climate system. Based on earlier work on such coupled nonlinear systems, we systematically assessed the qualitative long-term behaviour of interacting tipping elements. We developed an understanding of the consequences of interactions on the tipping behaviour allowing for tipping cascades to emerge under certain conditions. The (narrative) application of these qualitative results to real-world examples of interacting tipping elements indicates that tipping cascades with profound consequences may occur: the interacting Greenland ice sheet and thermohaline ocean circulation might tip before the tipping points of the isolated subsystems are crossed. The eutrophication of the first lake in a lake chain might propagate through the following lakes without a crossing of their individual critical nutrient input levels. The possibility of emerging cascading tipping dynamics calls for the development of a unified theory of interacting tipping elements and the quantitative analysis of interacting real-world tipping elements.}, author = {Klose, Ann Kristin and Karle, Volker and Winkelmann, Ricarda and Donges, Jonathan F.}, issn = {20545703}, journal = {Royal Society Open Science}, number = {6}, publisher = {The Royal Society}, title = {{Emergence of cascading dynamics in interacting tipping elements of ecology and climate: Cascading dynamics in tipping elements}}, doi = {10.1098/rsos.200599}, volume = {7}, year = {2020}, } @article{6940, abstract = {We study the effect of a linear tunneling coupling between two-dimensional systems, each separately exhibiting the topological Berezinskii-Kosterlitz-Thouless (BKT) transition. In the uncoupled limit, there are two phases: one where the one-body correlation functions are algebraically decaying and the other with exponential decay. When the linear coupling is turned on, a third BKT-paired phase emerges, in which one-body correlations are exponentially decaying, while two-body correlation functions exhibit power-law decay. We perform numerical simulations in the paradigmatic case of two coupled XY models at finite temperature, finding evidences that for any finite value of the interlayer coupling, the BKT-paired phase is present. We provide a picture of the phase diagram using a renormalization group approach.}, author = {Bighin, Giacomo and Defenu, Nicolò and Nándori, István and Salasnich, Luca and Trombettoni, Andrea}, issn = {1079-7114}, journal = {Physical Review Letters}, number = {10}, publisher = {American Physical Society}, title = {{Berezinskii-Kosterlitz-Thouless paired phase in coupled XY models}}, doi = {10.1103/physrevlett.123.100601}, volume = {123}, year = {2019}, } @article{6955, abstract = {We study few-body bound states of charged particles subject to attractive zero-range/short-range plus repulsive Coulomb interparticle forces. The characteristic length scales of the system at zero energy are set by the Coulomb length scale D and the Coulomb-modified effective range r eff. We study shallow bound states of charged particles with D >> r eff and show that these systems obey universal scaling laws different from neutral particles. An accurate description of these states requires both the Coulomb-modified scattering length and the effective range unless the Coulomb interaction is very weak (D -> ). Our findings are relevant for bound states whose spatial extent is significantly larger than the range of the attractive potential. These states enjoy universality – their character is independent of the shape of the short-range potential.}, author = {Schmickler, C.H. and Hammer, H.-W. and Volosniev, Artem}, issn = {0370-2693}, journal = {Physics Letters B}, publisher = {Elsevier}, title = {{Universal physics of bound states of a few charged particles}}, doi = {10.1016/j.physletb.2019.135016}, volume = {798}, year = {2019}, } @article{5886, abstract = {Problems involving quantum impurities, in which one or a few particles are interacting with a macroscopic environment, represent a pervasive paradigm, spanning across atomic, molecular, and condensed-matter physics. In this paper we introduce new variational approaches to quantum impurities and apply them to the Fröhlich polaron–a quasiparticle formed out of an electron (or other point-like impurity) in a polar medium, and to the angulon–a quasiparticle formed out of a rotating molecule in a bosonic bath. We benchmark these approaches against established theories, evaluating their accuracy as a function of the impurity-bath coupling.}, author = {Li, Xiang and Bighin, Giacomo and Yakaboylu, Enderalp and Lemeshko, Mikhail}, issn = {00268976}, journal = {Molecular Physics}, publisher = {Taylor and Francis}, title = {{Variational approaches to quantum impurities: from the Fröhlich polaron to the angulon}}, doi = {10.1080/00268976.2019.1567852}, year = {2019}, } @inproceedings{6646, abstract = {We demonstrate robust retention of valley coherence and its control via polariton pseudospin precession through the optical TE-TM splitting in bilayer WS2 microcavity exciton polaritons at room temperature.}, author = {Khatoniar, Mandeep and Yama, Nicholas and Ghazaryan, Areg and Guddala, Sriram and Ghaemi, Pouyan and Menon, Vinod}, booktitle = {CLEO: Applications and Technology}, isbn = {9781943580576}, location = {San Jose, CA, United States}, publisher = {Optica Publishing Group}, title = {{Room temperature control of valley coherence in bilayer WS2 exciton polaritons}}, doi = {10.1364/cleo_at.2019.jtu2a.52}, year = {2019}, } @article{7190, abstract = {We investigate the ground-state energy of a one-dimensional Fermi gas with two bosonic impurities. We consider spinless fermions with no fermion-fermion interactions. The fermion-impurity and impurity-impurity interactions are modeled with Dirac delta functions. First, we study the case where impurity and fermion have equal masses, and the impurity-impurity two-body interaction is identical to the fermion-impurity interaction, such that the system is solvable with the Bethe ansatz. For attractive interactions, we find that the energy of the impurity-impurity subsystem is below the energy of the bound state that exists without the Fermi gas. We interpret this as a manifestation of attractive boson-boson interactions induced by the fermionic medium, and refer to the impurity-impurity subsystem as an in-medium bound state. For repulsive interactions, we find no in-medium bound states. Second, we construct an effective model to describe these interactions, and compare its predictions to the exact solution. We use this effective model to study nonintegrable systems with unequal masses and/or potentials. We discuss parameter regimes for which impurity-impurity attraction induced by the Fermi gas can lead to the formation of in-medium bound states made of bosons that repel each other in the absence of the Fermi gas.}, author = {Huber, D. and Hammer, H.-W. and Volosniev, Artem}, issn = {2643-1564}, journal = {Physical Review Research}, number = {3}, publisher = {American Physical Society}, title = {{In-medium bound states of two bosonic impurities in a one-dimensional Fermi gas}}, doi = {10.1103/physrevresearch.1.033177}, volume = {1}, year = {2019}, } @article{6092, abstract = {In 1915, Einstein and de Haas and Barnett demonstrated that changing the magnetization of a magnetic material results in mechanical rotation and vice versa. At the microscopic level, this effect governs the transfer between electron spin and orbital angular momentum, and lattice degrees of freedom, understanding which is key for molecular magnets, nano-magneto-mechanics, spintronics, and ultrafast magnetism. Until now, the timescales of electron-to-lattice angular momentum transfer remain unclear, since modeling this process on a microscopic level requires the addition of an infinite amount of quantum angular momenta. We show that this problem can be solved by reformulating it in terms of the recently discovered angulon quasiparticles, which results in a rotationally invariant quantum many-body theory. In particular, we demonstrate that nonperturbative effects take place even if the electron-phonon coupling is weak and give rise to angular momentum transfer on femtosecond timescales.}, author = {Mentink, Johann H and Katsnelson, Mikhail and Lemeshko, Mikhail}, journal = {Physical Review B}, number = {6}, publisher = {American Physical Society}, title = {{Quantum many-body dynamics of the Einstein-de Haas effect}}, doi = {10.1103/PhysRevB.99.064428}, volume = {99}, year = {2019}, } @article{6786, abstract = {Dipolar coupling plays a fundamental role in the interaction between electrically or magnetically polarized species such as magnetic atoms and dipolar molecules in a gas or dipolar excitons in the solid state. Unlike Coulomb or contactlike interactions found in many atomic, molecular, and condensed-matter systems, this interaction is long-ranged and highly anisotropic, as it changes from repulsive to attractive depending on the relative positions and orientation of the dipoles. Because of this unique property, many exotic, symmetry-breaking collective states have been recently predicted for cold dipolar gases, but only a few have been experimentally detected and only in dilute atomic dipolar Bose-Einstein condensates. Here, we report on the first observation of attractive dipolar coupling between excitonic dipoles using a new design of stacked semiconductor bilayers. We show that the presence of a dipolar exciton fluid in one bilayer modifies the spatial distribution and increases the binding energy of excitonic dipoles in a vertically remote layer. The binding energy changes are explained using a many-body polaron model describing the deformation of the exciton cloud due to its interaction with a remote dipolar exciton. The surprising nonmonotonic dependence on the cloud density indicates the important role of dipolar correlations, which is unique to dense, strongly interacting dipolar solid-state systems. Our concept provides a route for the realization of dipolar lattices with strong anisotropic interactions in semiconductor systems, which open the way for the observation of theoretically predicted new and exotic collective phases, as well as for engineering and sensing their collective excitations.}, author = {Hubert, Colin and Baruchi, Yifat and Mazuz-Harpaz, Yotam and Cohen, Kobi and Biermann, Klaus and Lemeshko, Mikhail and West, Ken and Pfeiffer, Loren and Rapaport, Ronen and Santos, Paulo}, issn = {2160-3308}, journal = {Physical Review X}, number = {2}, publisher = {American Physical Society}, title = {{Attractive dipolar coupling between stacked exciton fluids}}, doi = {10.1103/PhysRevX.9.021026}, volume = {9}, year = {2019}, } @article{6632, abstract = {We consider a two-component Bose gas in two dimensions at a low temperature with short-range repulsive interaction. In the coexistence phase where both components are superfluid, interspecies interactions induce a nondissipative drag between the two superfluid flows (Andreev-Bashkin effect). We show that this behavior leads to a modification of the usual Berezinskii-Kosterlitz-Thouless (BKT) transition in two dimensions. We extend the renormalization of the superfluid densities at finite temperature using the renormalization-group approach and find that the vortices of one component have a large influence on the superfluid properties of the other, mediated by the nondissipative drag. The extended BKT flow equations indicate that the occurrence of the vortex unbinding transition in one of the components can induce the breakdown of superfluidity also in the other, leading to a locking phenomenon for the critical temperatures of the two gases.}, author = {Karle, Volker and Defenu, Nicolò and Enss, Tilman}, issn = {24699934}, journal = {Physical Review A}, number = {6}, publisher = {American Physical Society}, title = {{Coupled superfluidity of binary Bose mixtures in two dimensions}}, doi = {10.1103/PhysRevA.99.063627}, volume = {99}, year = {2019}, } @article{7396, abstract = {The angular momentum of molecules, or, equivalently, their rotation in three-dimensional space, is ideally suited for quantum control. Molecular angular momentum is naturally quantized, time evolution is governed by a well-known Hamiltonian with only a few accurately known parameters, and transitions between rotational levels can be driven by external fields from various parts of the electromagnetic spectrum. Control over the rotational motion can be exerted in one-, two-, and many-body scenarios, thereby allowing one to probe Anderson localization, target stereoselectivity of bimolecular reactions, or encode quantum information to name just a few examples. The corresponding approaches to quantum control are pursued within separate, and typically disjoint, subfields of physics, including ultrafast science, cold collisions, ultracold gases, quantum information science, and condensed-matter physics. It is the purpose of this review to present the various control phenomena, which all rely on the same underlying physics, within a unified framework. To this end, recall the Hamiltonian for free rotations, assuming the rigid rotor approximation to be valid, and summarize the different ways for a rotor to interact with external electromagnetic fields. These interactions can be exploited for control—from achieving alignment, orientation, or laser cooling in a one-body framework, steering bimolecular collisions, or realizing a quantum computer or quantum simulator in the many-body setting.}, author = {Koch, Christiane P. and Lemeshko, Mikhail and Sugny, Dominique}, issn = {1539-0756}, journal = {Reviews of Modern Physics}, number = {3}, publisher = {American Physical Society}, title = {{Quantum control of molecular rotation}}, doi = {10.1103/revmodphys.91.035005}, volume = {91}, year = {2019}, } @article{195, abstract = {We demonstrate that identical impurities immersed in a two-dimensional many-particle bath can be viewed as flux-tube-charged-particle composites described by fractional statistics. In particular, we find that the bath manifests itself as an external magnetic flux tube with respect to the impurities, and hence the time-reversal symmetry is broken for the effective Hamiltonian describing the impurities. The emerging flux tube acts as a statistical gauge field after a certain critical coupling. This critical coupling corresponds to the intersection point between the quasiparticle state and the phonon wing, where the angular momentum is transferred from the impurity to the bath. This amounts to a novel configuration with emerging anyons. The proposed setup paves the way to realizing anyons using electrons interacting with superfluid helium or lattice phonons, as well as using atomic impurities in ultracold gases.}, author = {Yakaboylu, Enderalp and Lemeshko, Mikhail}, journal = {Physical Review B - Condensed Matter and Materials Physics}, number = {4}, publisher = {American Physical Society}, title = {{Anyonic statistics of quantum impurities in two dimensions}}, doi = {10.1103/PhysRevB.98.045402}, volume = {98}, year = {2018}, } @article{427, abstract = {We investigate the quantum interference induced shifts between energetically close states in highly charged ions, with the energy structure being observed by laser spectroscopy. In this work, we focus on hyperfine states of lithiumlike heavy-Z isotopes and quantify how much quantum interference changes the observed transition frequencies. The process of photon excitation and subsequent photon decay for the transition 2s→2p→2s is implemented with fully relativistic and full-multipole frameworks, which are relevant for such relativistic atomic systems. We consider the isotopes Pb79+207 and Bi80+209 due to experimental interest, as well as other examples of isotopes with lower Z, namely Pr56+141 and Ho64+165. We conclude that quantum interference can induce shifts up to 11% of the linewidth in the measurable resonances of the considered isotopes, if interference between resonances is neglected. The inclusion of relativity decreases the cross section by 35%, mainly due to the complete retardation form of the electric dipole multipole. However, the contribution of the next higher multipoles (e.g., magnetic quadrupole) to the cross section is negligible. This makes the contribution of relativity and higher-order multipoles to the quantum interference induced shifts a minor effect, even for heavy-Z elements.}, author = {Amaro, Pedro and Loureiro, Ulisses and Safari, Laleh and Fratini, Filippo and Indelicato, Paul and Stöhlker, Thomas and Santos, José}, journal = { Physical Review A - Atomic, Molecular, and Optical Physics}, number = {2}, publisher = {American Physical Society}, title = {{Quantum interference in laser spectroscopy of highly charged lithiumlike ions}}, doi = {10.1103/PhysRevA.97.022510}, volume = {97}, year = {2018}, } @article{5794, abstract = {We present an approach to interacting quantum many-body systems based on the notion of quantum groups, also known as q-deformed Lie algebras. In particular, we show that, if the symmetry of a free quantum particle corresponds to a Lie group G, in the presence of a many-body environment this particle can be described by a deformed group, Gq. Crucially, the single deformation parameter, q, contains all the information about the many-particle interactions in the system. We exemplify our approach by considering a quantum rotor interacting with a bath of bosons, and demonstrate that extracting the value of q from closed-form solutions in the perturbative regime allows one to predict the behavior of the system for arbitrary values of the impurity-bath coupling strength, in good agreement with nonperturbative calculations. Furthermore, the value of the deformation parameter allows one to predict at which coupling strengths rotor-bath interactions result in a formation of a stable quasiparticle. The approach based on quantum groups does not only allow for a drastic simplification of impurity problems, but also provides valuable insights into hidden symmetries of interacting many-particle systems.}, author = {Yakaboylu, Enderalp and Shkolnikov, Mikhail and Lemeshko, Mikhail}, issn = {00319007}, journal = {Physical Review Letters}, number = {25}, publisher = {American Physical Society}, title = {{Quantum groups as hidden symmetries of quantum impurities}}, doi = {10.1103/PhysRevLett.121.255302}, volume = {121}, year = {2018}, } @article{420, abstract = {We analyze the theoretical derivation of the beyond-mean-field equation of state for two-dimensional gas of dilute, ultracold alkali-metal atoms in the Bardeen–Cooper–Schrieffer (BCS) to Bose–Einstein condensate (BEC) crossover. We show that at zero temperature our theory — considering Gaussian fluctuations on top of the mean-field equation of state — is in very good agreement with experimental data. Subsequently, we investigate the superfluid density at finite temperature and its renormalization due to the proliferation of vortex–antivortex pairs. By doing so, we determine the Berezinskii–Kosterlitz–Thouless (BKT) critical temperature — at which the renormalized superfluid density jumps to zero — as a function of the inter-atomic potential strength. We find that the Nelson–Kosterlitz criterion overestimates the BKT temperature with respect to the renormalization group equations, this effect being particularly relevant in the intermediate regime of the crossover.}, author = {Bighin, Giacomo and Salasnich, Luca}, journal = {International Journal of Modern Physics B}, number = {17}, pages = {1840022}, publisher = {World Scientific Publishing}, title = {{Renormalization of the superfluid density in the two-dimensional BCS-BEC crossover}}, doi = {10.1142/S0217979218400222}, volume = {32}, year = {2018}, } @article{294, abstract = {We developed a method to calculate two-photon processes in quantum mechanics that replaces the infinite summation over the intermediate states by a perturbation expansion. This latter consists of a series of commutators that involve position, momentum, and Hamiltonian quantum operators. We analyzed several single- and many-particle cases for which a closed-form solution to the perturbation expansion exists, as well as more complicated cases for which a solution is found by convergence. Throughout the article, Rayleigh and Raman scattering are taken as examples of two-photon processes. The present method provides a clear distinction between the Thomson scattering, regarded as classical scattering, and quantum contributions. Such a distinction lets us derive general results concerning light scattering. Finally, possible extensions to the developed formalism are discussed.}, author = {Fratini, Filippo and Safari, Laleh and Amaro, Pedro and Santos, José}, journal = {Physical Review A - Atomic, Molecular, and Optical Physics}, number = {4}, publisher = {American Physical Society}, title = {{Two-photon processes based on quantum commutators}}, doi = {10.1103/PhysRevA.97.043842}, volume = {97}, year = {2018}, } @article{5983, abstract = {We study a quantum impurity possessing both translational and internal rotational degrees of freedom interacting with a bosonic bath. Such a system corresponds to a “rotating polaron,” which can be used to model, e.g., a rotating molecule immersed in an ultracold Bose gas or superfluid helium. We derive the Hamiltonian of the rotating polaron and study its spectrum in the weak- and strong-coupling regimes using a combination of variational, diagrammatic, and mean-field approaches. We reveal how the coupling between linear and angular momenta affects stable quasiparticle states, and demonstrate that internal rotation leads to an enhanced self-localization in the translational degrees of freedom.}, author = {Yakaboylu, Enderalp and Midya, Bikashkali and Deuchert, Andreas and Leopold, Nikolai K and Lemeshko, Mikhail}, issn = {2469-9969}, journal = {Physical Review B}, number = {22}, publisher = {American Physical Society}, title = {{Theory of the rotating polaron: Spectrum and self-localization}}, doi = {10.1103/physrevb.98.224506}, volume = {98}, year = {2018}, } @article{435, abstract = {It is shown that two fundamentally different phenomena, the bound states in continuum and the spectral singularity (or time-reversed spectral singularity), can occur simultaneously. This can be achieved in a rectangular core dielectric waveguide with an embedded active (or absorbing) layer. In such a system a two-dimensional bound state in a continuum is created in the plane of a waveguide cross section, and it is emitted or absorbed along the waveguide core. The idea can be used for experimental implementation of a laser or a coherent-perfect-absorber for a photonic bound state that resides in a continuous spectrum.}, author = {Midya, Bikashkali and Konotop, Vladimir}, journal = {Optics Letters}, number = {3}, pages = {607 -- 610}, publisher = {Optica Publishing Group}, title = {{Coherent-perfect-absorber and laser for bound states in a continuum}}, doi = {10.1364/OL.43.000607}, volume = {43}, year = {2018}, } @article{415, abstract = {Recently it was shown that a molecule rotating in a quantum solvent can be described in terms of the “angulon” quasiparticle [M. Lemeshko, Phys. Rev. Lett. 118, 095301 (2017)]. Here we extend the angulon theory to the case of molecules possessing an additional spin-1/2 degree of freedom and study the behavior of the system in the presence of a static magnetic field. We show that exchange of angular momentum between the molecule and the solvent can be altered by the field, even though the solvent itself is non-magnetic. In particular, we demonstrate a possibility to control resonant emission of phonons with a given angular momentum using a magnetic field.}, author = {Rzadkowski, Wojciech and Lemeshko, Mikhail}, journal = {The Journal of Chemical Physics}, number = {10}, publisher = {AIP Publishing}, title = {{Effect of a magnetic field on molecule–solvent angular momentum transfer}}, doi = {10.1063/1.5017591}, volume = {148}, year = {2018}, } @article{6339, abstract = {We introduce a diagrammatic Monte Carlo approach to angular momentum properties of quantum many-particle systems possessing a macroscopic number of degrees of freedom. The treatment is based on a diagrammatic expansion that merges the usual Feynman diagrams with the angular momentum diagrams known from atomic and nuclear structure theory, thereby incorporating the non-Abelian algebra inherent to quantum rotations. Our approach is applicable at arbitrary coupling, is free of systematic errors and of finite-size effects, and naturally provides access to the impurity Green function. We exemplify the technique by obtaining an all-coupling solution of the angulon model; however, the method is quite general and can be applied to a broad variety of systems in which particles exchange quantum angular momentum with their many-body environment.}, author = {Bighin, Giacomo and Tscherbul, Timur and Lemeshko, Mikhail}, journal = {Physical Review Letters}, number = {16}, publisher = {American Physical Society}, title = {{Diagrammatic Monte Carlo approach to angular momentum in quantum many-particle systems}}, doi = {10.1103/physrevlett.121.165301}, volume = {121}, year = {2018}, } @article{417, abstract = {We introduce a Diagrammatic Monte Carlo (DiagMC) approach to complex molecular impurities with rotational degrees of freedom interacting with a many-particle environment. The treatment is based on the diagrammatic expansion that merges the usual Feynman diagrams with the angular momentum diagrams known from atomic and nuclear structure theory, thereby incorporating the non-Abelian algebra inherent to quantum rotations. Our approach works at arbitrary coupling, is free of systematic errors and of finite size effects, and naturally provides access to the impurity Green function. We exemplify the technique by obtaining an all-coupling solution of the angulon model, however, the method is quite general and can be applied to a broad variety of quantum impurities possessing angular momentum degrees of freedom. }, author = {Bighin, Giacomo and Tscherbul, Timur and Lemeshko, Mikhail}, journal = {Physical Review Letters}, number = {16}, publisher = {American Physical Society}, title = {{Diagrammatic Monte Carlo approach to rotating molecular impurities}}, doi = {10.1103/PhysRevLett.121.165301}, volume = {121}, year = {2018}, } @inproceedings{313, abstract = {Tunneling of a particle through a potential barrier remains one of the most remarkable quantum phenomena. Owing to advances in laser technology, electric fields comparable to those electrons experience in atoms are readily generated and open opportunities to dynamically investigate the process of electron tunneling through the potential barrier formed by the superposition of both laser and atomic fields. Attosecond-time and angstrom-space resolution of the strong laser-field technique allow to address fundamental questions related to tunneling, which are still open and debated: Which time is spent under the barrier and what momentum is picked up by the particle in the meantime? In this combined experimental and theoretical study we demonstrate that for strong-field ionization the leading quantum mechanical Wigner treatment for the time resolved description of tunneling is valid. We achieve a high sensitivity on the tunneling barrier and unambiguously isolate its effects by performing a differential study of two systems with almost identical tunneling geometry. Moreover, working with a low frequency laser, we essentially limit the non-adiabaticity of the process as a major source of uncertainty. The agreement between experiment and theory implies two substantial corrections with respect to the widely employed quasiclassical treatment: In addition to a non-vanishing longitudinal momentum along the laser field-direction we provide clear evidence for a non-zero tunneling time delay. This addresses also the fundamental question how the transition occurs from the tunnel barrier to free space classical evolution of the ejected electron.}, author = {Camus, Nicolas and Yakaboylu, Enderalp and Fechner, Lutz and Klaiber, Michael and Laux, Martin and Mi, Yonghao and Hatsagortsyan, Karen and Pfeifer, Thomas and Keitel, Cristoph and Moshammer, Robert}, issn = {17426588}, location = {Kazan, Russian Federation}, number = {1}, publisher = {American Physical Society}, title = {{Experimental evidence for Wigner's tunneling time}}, doi = {10.1088/1742-6596/999/1/012004}, volume = {999}, year = {2017}, } @article{6013, abstract = {The first hundred attoseconds of the electron dynamics during strong field tunneling ionization are investigated. We quantify theoretically how the electron’s classical trajectories in the continuum emerge from the tunneling process and test the results with those achieved in parallel from attoclock measurements. An especially high sensitivity on the tunneling barrier is accomplished here by comparing the momentum distributions of two atomic species of slightly deviating atomic potentials (argon and krypton) being ionized under absolutely identical conditions with near-infrared laser pulses (1300 nm). The agreement between experiment and theory provides clear evidence for a nonzero tunneling time delay and a nonvanishing longitudinal momentum of the electron at the “tunnel exit.”}, author = {Camus, Nicolas and Yakaboylu, Enderalp and Fechner, Lutz and Klaiber, Michael and Laux, Martin and Mi, Yonghao and Hatsagortsyan, Karen Z. and Pfeifer, Thomas and Keitel, Christoph H. and Moshammer, Robert}, issn = {1079-7114}, journal = {Physical Review Letters}, number = {2}, publisher = {American Physical Society}, title = {{Experimental evidence for quantum tunneling time}}, doi = {10.1103/PhysRevLett.119.023201}, volume = {119}, year = {2017}, } @inbook{604, abstract = {In several settings of physics and chemistry one has to deal with molecules interacting with some kind of an external environment, be it a gas, a solution, or a crystal surface. Understanding molecular processes in the presence of such a many-particle bath is inherently challenging, and usually requires large-scale numerical computations. Here, we present an alternative approach to the problem, based on the notion of the angulon quasiparticle. We show that molecules rotating inside superfluid helium nanodroplets and Bose–Einstein condensates form angulons, and therefore can be described by straightforward solutions of a simple microscopic Hamiltonian. Casting the problem in the language of angulons allows us not only to greatly simplify it, but also to gain insights into the origins of the observed phenomena and to make predictions for future experimental studies.}, author = {Lemeshko, Mikhail and Schmidt, Richard}, booktitle = {Cold Chemistry: Molecular Scattering and Reactivity Near Absolute Zero }, editor = {Dulieu, Oliver and Osterwalder, Andreas}, issn = {20413181}, pages = {444 -- 495}, publisher = {The Royal Society of Chemistry}, title = {{Molecular impurities interacting with a many-particle environment: From ultracold gases to helium nanodroplets}}, doi = {10.1039/9781782626800-00444}, volume = {11}, year = {2017}, } @article{1162, abstract = {Selected universal experimental properties of high-temperature superconducting (HTS) cuprates have been singled out in the last decade. One of the pivotal challenges in this field is the designation of a consistent interpretation framework within which we can describe quantitatively the universal features of those systems. Here we analyze in a detailed manner the principal experimental data and compare them quantitatively with the approach based on a single-band model of strongly correlated electrons supplemented with strong antiferromagnetic (super)exchange interaction (the so-called t−J−U model). The model rationale is provided by estimating its microscopic parameters on the basis of the three-band approach for the Cu-O plane. We use our original full Gutzwiller wave-function solution by going beyond the renormalized mean-field theory (RMFT) in a systematic manner. Our approach reproduces very well the observed hole doping (δ) dependence of the kinetic-energy gain in the superconducting phase, one of the principal non-Bardeen-Cooper-Schrieffer features of the cuprates. The calculated Fermi velocity in the nodal direction is practically δ-independent and its universal value agrees very well with that determined experimentally. Also, a weak doping dependence of the Fermi wave vector leads to an almost constant value of the effective mass in a pure superconducting phase which is both observed in experiment and reproduced within our approach. An assessment of the currently used models (t−J, Hubbard) is carried out and the results of the canonical RMFT as a zeroth-order solution are provided for comparison to illustrate the necessity of the introduced higher-order contributions.}, author = {Spałek, Jozef and Zegrodnik, Michał and Kaczmarczyk, Jan}, issn = {24699950}, journal = {Physical Review B - Condensed Matter and Materials Physics}, number = {2}, publisher = {American Physical Society}, title = {{Universal properties of high temperature superconductors from real space pairing t-J-U model and its quantitative comparison with experiment}}, doi = {10.1103/PhysRevB.95.024506}, volume = {95}, year = {2017}, }