@article{9005, abstract = {Studies on the experimental realization of two-dimensional anyons in terms of quasiparticles have been restricted, so far, to only anyons on the plane. It is known, however, that the geometry and topology of space can have significant effects on quantum statistics for particles moving on it. Here, we have undertaken the first step toward realizing the emerging fractional statistics for particles restricted to move on the sphere instead of on the plane. We show that such a model arises naturally in the context of quantum impurity problems. In particular, we demonstrate a setup in which the lowest-energy spectrum of two linear bosonic or fermionic molecules immersed in a quantum many-particle environment can coincide with the anyonic spectrum on the sphere. This paves the way toward the experimental realization of anyons on the sphere using molecular impurities. Furthermore, since a change in the alignment of the molecules corresponds to the exchange of the particles on the sphere, such a realization reveals a novel type of exclusion principle for molecular impurities, which could also be of use as a powerful technique to measure the statistics parameter. Finally, our approach opens up a simple numerical route to investigate the spectra of many anyons on the sphere. Accordingly, we present the spectrum of two anyons on the sphere in the presence of a Dirac monopole field.}, author = {Brooks, Morris and Lemeshko, Mikhail and Lundholm, D. and Yakaboylu, Enderalp}, issn = {10797114}, journal = {Physical Review Letters}, number = {1}, publisher = {American Physical Society}, title = {{Molecular impurities as a realization of anyons on the two-sphere}}, doi = {10.1103/PhysRevLett.126.015301}, volume = {126}, year = {2021}, } @article{9093, abstract = {We employ the Gross-Pitaevskii equation to study acoustic emission generated in a uniform Bose gas by a static impurity. The impurity excites a sound-wave packet, which propagates through the gas. We calculate the shape of this wave packet in the limit of long wave lengths, and argue that it is possible to extract properties of the impurity by observing this shape. We illustrate here this possibility for a Bose gas with a trapped impurity atom -- an example of a relevant experimental setup. Presented results are general for all one-dimensional systems described by the nonlinear Schrödinger equation and can also be used in nonatomic systems, e.g., to analyze light propagation in nonlinear optical media. Finally, we calculate the shape of the sound-wave packet for a three-dimensional Bose gas assuming a spherically symmetric perturbation.}, author = {Marchukov, Oleksandr and Volosniev, Artem}, issn = {2542-4653}, journal = {SciPost Physics}, number = {2}, publisher = {SciPost Foundation}, title = {{Shape of a sound wave in a weakly-perturbed Bose gas}}, doi = {10.21468/scipostphys.10.2.025}, volume = {10}, year = {2021}, } @article{9606, abstract = {Sound propagation is a macroscopic manifestation of the interplay between the equilibrium thermodynamics and the dynamical transport properties of fluids. Here, for a two-dimensional system of ultracold fermions, we calculate the first and second sound velocities across the whole BCS-BEC crossover, and we analyze the system response to an external perturbation. In the low-temperature regime we reproduce the recent measurements [Phys. Rev. Lett. 124, 240403 (2020)] of the first sound velocity, which, due to the decoupling of density and entropy fluctuations, is the sole mode excited by a density probe. Conversely, a heat perturbation excites only the second sound, which, being sensitive to the superfluid depletion, vanishes in the deep BCS regime and jumps discontinuously to zero at the Berezinskii-Kosterlitz-Thouless superfluid transition. A mixing between the modes occurs only in the finite-temperature BEC regime, where our theory converges to the purely bosonic results.}, author = {Tononi, A. and Cappellaro, Alberto and Bighin, Giacomo and Salasnich, L.}, issn = {24699934}, journal = {Physical Review A}, number = {6}, publisher = {American Physical Society}, title = {{Propagation of first and second sound in a two-dimensional Fermi superfluid}}, doi = {10.1103/PhysRevA.103.L061303}, volume = {103}, year = {2021}, } @article{9679, abstract = {The relative motion of three impenetrable particles on a ring, in our case two identical fermions and one impurity, is isomorphic to a triangular quantum billiard. Depending on the ratio κ of the impurity and fermion masses, the billiards can be integrable or non-integrable (also referred to in the main text as chaotic). To set the stage, we first investigate the energy level distributions of the billiards as a function of 1/κ ∈ [0, 1] and find no evidence of integrable cases beyond the limiting values 1/κ = 1 and 1/κ = 0. Then, we use machine learning tools to analyze properties of probability distributions of individual quantum states. We find that convolutional neural networks can correctly classify integrable and non-integrable states. The decisive features of the wave functions are the normalization and a large number of zero elements, corresponding to the existence of a nodal line. The network achieves typical accuracies of 97%, suggesting that machine learning tools can be used to analyze and classify the morphology of probability densities obtained in theory or experiment.}, author = {Huber, David and Marchukov, Oleksandr V. and Hammer, Hans Werner and Volosniev, Artem}, issn = {13672630}, journal = {New Journal of Physics}, number = {6}, publisher = {IOP Publishing}, title = {{Morphology of three-body quantum states from machine learning}}, doi = {10.1088/1367-2630/ac0576}, volume = {23}, year = {2021}, } @article{9770, abstract = {We study an effective one-dimensional quantum model that includes friction and spin-orbit coupling (SOC), and show that the model exhibits spin polarization when both terms are finite. Most important, strong spin polarization can be observed even for moderate SOC, provided that the friction is strong. Our findings might help to explain the pronounced effect of chirality on spin distribution and transport in chiral molecules. In particular, our model implies static magnetic properties of a chiral molecule, which lead to Shiba-like states when a molecule is placed on a superconductor, in accordance with recent experimental data.}, author = {Volosniev, Artem and Alpern, Hen and Paltiel, Yossi and Millo, Oded and Lemeshko, Mikhail and Ghazaryan, Areg}, issn = {2469-9969}, journal = {Physical Review B}, number = {2}, publisher = {American Physical Society}, title = {{Interplay between friction and spin-orbit coupling as a source of spin polarization}}, doi = {10.1103/physrevb.104.024430}, volume = {104}, year = {2021}, }