@article{12831, abstract = {The angulon, a quasiparticle formed by a quantum rotor dressed by the excitations of a many-body bath, can be used to describe an impurity rotating in a fluid or solid environment. Here, we propose a coherent state ansatz in the co-rotating frame, which provides a comprehensive theoretical description of angulons. We reveal the quasiparticle properties, such as energies, quasiparticle weights, and spectral functions, and show that our ansatz yields a persistent decrease in the impurity’s rotational constant due to many-body dressing, which is consistent with experimental observations. From our study, a picture of the angulon emerges as an effective spin interacting with a magnetic field that is self-consistently generated by the molecule’s rotation. Moreover, we discuss rotational spectroscopy, which focuses on the response of rotating molecules to a laser perturbation in the linear response regime. Importantly, we take into account initial-state interactions that have been neglected in prior studies and reveal their impact on the excitation spectrum. To examine the angulon instability regime, we use a single-excitation ansatz and obtain results consistent with experiments, in which a broadening of spectral lines is observed while phonon wings remain highly suppressed due to initial-state interactions.}, author = {Zeng, Zhongda and Yakaboylu, Enderalp and Lemeshko, Mikhail and Shi, Tao and Schmidt, Richard}, issn = {1089-7690}, journal = {The Journal of Chemical Physics}, number = {13}, publisher = {American Institute of Physics}, title = {{Variational theory of angulons and their rotational spectroscopy}}, doi = {10.1063/5.0135893}, volume = {158}, year = {2023}, } @article{12914, abstract = {We numerically study two methods of measuring tunneling times using a quantum clock. In the conventional method using the Larmor clock, we show that the Larmor tunneling time can be shorter for higher tunneling barriers. In the second method, we study the probability of a spin-flip of a particle when it is transmitted through a potential barrier including a spatially rotating field interacting with its spin. According to the adiabatic theorem, the probability depends on the velocity of the particle inside the barrier. It is numerically observed that the probability increases for higher barriers, which is consistent with the result obtained by the Larmor clock. By comparing outcomes for different initial spin states, we suggest that one of the main causes of the apparent decrease in the tunneling time can be the filtering effect occurring at the end of the barrier.}, author = {Suzuki, Fumika and Unruh, William G.}, issn = {2469-9934}, journal = {Physical Review A}, number = {4}, publisher = {American Physical Society}, title = {{Numerical quantum clock simulations for measuring tunneling times}}, doi = {10.1103/PhysRevA.107.042216}, volume = {107}, year = {2023}, } @article{13233, abstract = {We study the impact of finite-range physics on the zero-range-model analysis of three-body recombination in ultracold atoms. We find that temperature dependence of the zero-range parameters can vary from one set of measurements to another as it may be driven by the distribution of error bars in the experiment, and not by the underlying three-body physics. To study finite-temperature effects in three-body recombination beyond the zero-range physics, we introduce and examine a finite-range model based upon a hyperspherical formalism. The systematic error discussed in this Letter may provide a significant contribution to the error bars of measured three-body parameters.}, author = {Agafonova, Sofya and Lemeshko, Mikhail and Volosniev, Artem}, issn = {2469-9934}, journal = {Physical Review A}, number = {6}, publisher = {American Physical Society}, title = {{Finite-range bias in fitting three-body loss to the zero-range model}}, doi = {10.1103/PhysRevA.107.L061304}, volume = {107}, year = {2023}, } @article{13966, abstract = {We present a low-scaling diagrammatic Monte Carlo approach to molecular correlation energies. Using combinatorial graph theory to encode many-body Hugenholtz diagrams, we sample the Møller-Plesset (MPn) perturbation series, obtaining accurate correlation energies up to n=5, with quadratic scaling in the number of basis functions. Our technique reduces the computational complexity of the molecular many-fermion correlation problem, opening up the possibility of low-scaling, accurate stochastic computations for a wide class of many-body systems described by Hugenholtz diagrams.}, author = {Bighin, Giacomo and Ho, Quoc P and Lemeshko, Mikhail and Tscherbul, T. V.}, issn = {2469-9969}, journal = {Physical Review B}, number = {4}, publisher = {American Physical Society}, title = {{Diagrammatic Monte Carlo for electronic correlation in molecules: High-order many-body perturbation theory with low scaling}}, doi = {10.1103/PhysRevB.108.045115}, volume = {108}, year = {2023}, } @article{14320, abstract = {The development of two-dimensional materials has resulted in a diverse range of novel, high-quality compounds with increasing complexity. A key requirement for a comprehensive quantitative theory is the accurate determination of these materials' band structure parameters. However, this task is challenging due to the intricate band structures and the indirect nature of experimental probes. In this work, we introduce a general framework to derive band structure parameters from experimental data using deep neural networks. We applied our method to the penetration field capacitance measurement of trilayer graphene, an effective probe of its density of states. First, we demonstrate that a trained deep network gives accurate predictions for the penetration field capacitance as a function of tight-binding parameters. Next, we use the fast and accurate predictions from the trained network to automatically determine tight-binding parameters directly from experimental data, with extracted parameters being in a good agreement with values in the literature. We conclude by discussing potential applications of our method to other materials and experimental techniques beyond penetration field capacitance.}, author = {Henderson, Paul M and Ghazaryan, Areg and Zibrov, Alexander A. and Young, Andrea F. and Serbyn, Maksym}, issn = {2469-9969}, journal = {Physical Review B}, number = {12}, publisher = {American Physical Society}, title = {{Deep learning extraction of band structure parameters from density of states: A case study on trilayer graphene}}, doi = {10.1103/physrevb.108.125411}, volume = {108}, year = {2023}, }