@misc{13275, abstract = {We introduce a generic and accessible implementation of an exact diagonalization method for studying few-fermion models. Our aim is to provide a testbed for the newcomers to the field as well as a stepping stone for trying out novel optimizations and approximations. This userguide consists of a description of the algorithm, and several examples in varying orders of sophistication. In particular, we exemplify our routine using an effective-interaction approach that fixes the low-energy physics. We benchmark this approach against the existing data, and show that it is able to deliver state-of-the-art numerical results at a significantly reduced computational cost.}, author = {Rammelmüller, Lukas and Huber, David and Volosniev, Artem}, publisher = {SciPost Foundation}, title = {{Codebase release 1.0 for FermiFCI}}, doi = {10.21468/scipostphyscodeb.12-r1.0}, year = {2023}, } @article{12723, abstract = {Lead halide perovskites enjoy a number of remarkable optoelectronic properties. To explain their origin, it is necessary to study how electromagnetic fields interact with these systems. We address this problem here by studying two classical quantities: Faraday rotation and the complex refractive index in a paradigmatic perovskite CH3NH3PbBr3 in a broad wavelength range. We find that the minimal coupling of electromagnetic fields to the k⋅p Hamiltonian is insufficient to describe the observed data even on the qualitative level. To amend this, we demonstrate that there exists a relevant atomic-level coupling between electromagnetic fields and the spin degree of freedom. This spin-electric coupling allows for quantitative description of a number of previous as well as present experimental data. In particular, we use it here to show that the Faraday effect in lead halide perovskites is dominated by the Zeeman splitting of the energy levels and has a substantial beyond-Becquerel contribution. Finally, we present general symmetry-based phenomenological arguments that in the low-energy limit our effective model includes all basis coupling terms to the electromagnetic field in the linear order.}, author = {Volosniev, Artem and Shiva Kumar, Abhishek and Lorenc, Dusan and Ashourishokri, Younes and Zhumekenov, Ayan A. and Bakr, Osman M. and Lemeshko, Mikhail and Alpichshev, Zhanybek}, issn = {1079-7114}, journal = {Physical Review Letters}, keywords = {General Physics and Astronomy}, number = {10}, publisher = {American Physical Society}, title = {{Spin-electric coupling in lead halide perovskites}}, doi = {10.1103/physrevlett.130.106901}, volume = {130}, year = {2023}, } @article{12724, abstract = {We use general symmetry-based arguments to construct an effective model suitable for studying optical properties of lead halide perovskites. To build the model, we identify an atomic-level interaction between electromagnetic fields and the spin degree of freedom that should be added to a minimally coupled k⋅p Hamiltonian. As a first application, we study two basic optical characteristics of the material: the Verdet constant and the refractive index. Beyond these linear characteristics of the material, the model is suitable for calculating nonlinear effects such as the third-order optical susceptibility. Analysis of this quantity shows that the geometrical properties of the spin-electric term imply isotropic optical response of the system, and that optical anisotropy of lead halide perovskites is a manifestation of hopping of charge carriers. To illustrate this, we discuss third-harmonic generation.}, author = {Volosniev, Artem and Shiva Kumar, Abhishek and Lorenc, Dusan and Ashourishokri, Younes and Zhumekenov, Ayan and Bakr, Osman M. and Lemeshko, Mikhail and Alpichshev, Zhanybek}, issn = {2469-9969}, journal = {Physical Review B}, number = {12}, publisher = {American Physical Society}, title = {{Effective model for studying optical properties of lead halide perovskites}}, doi = {10.1103/physrevb.107.125201}, volume = {107}, year = {2023}, } @article{12788, abstract = {We show that the simplest of existing molecules—closed-shell diatomics not interacting with one another—host topological charges when driven by periodic far-off-resonant laser pulses. A periodically kicked molecular rotor can be mapped onto a “crystalline” lattice in angular momentum space. This allows us to define quasimomenta and the band structure in the Floquet representation, by analogy with the Bloch waves of solid-state physics. Applying laser pulses spaced by 1/3 of the molecular rotational period creates a lattice with three atoms per unit cell with staggered hopping. Within the synthetic dimension of the laser strength, we discover Dirac cones with topological charges. These Dirac cones, topologically protected by reflection and time-reversal symmetry, are reminiscent of (although not equivalent to) that seen in graphene. They—and the corresponding edge states—are broadly tunable by adjusting the laser strength and can be observed in present-day experiments by measuring molecular alignment and populations of rotational levels. This paves the way to study controllable topological physics in gas-phase experiments with small molecules as well as to classify dynamical molecular states by their topological invariants.}, author = {Karle, Volker and Ghazaryan, Areg and Lemeshko, Mikhail}, issn = {1079-7114}, journal = {Physical Review Letters}, number = {10}, publisher = {American Physical Society}, title = {{Topological charges of periodically kicked molecules}}, doi = {10.1103/PhysRevLett.130.103202}, volume = {130}, year = {2023}, } @article{12790, abstract = {Motivated by the recent discoveries of superconductivity in bilayer and trilayer graphene, we theoretically investigate superconductivity and other interaction-driven phases in multilayer graphene stacks. To this end, we study the density of states of multilayer graphene with up to four layers at the single-particle band structure level in the presence of a transverse electric field. Among the considered structures, tetralayer graphene with rhombohedral (ABCA) stacking reaches the highest density of states. We study the phases that can arise in ABCA graphene by tuning the carrier density and transverse electric field. For a broad region of the tuning parameters, the presence of strong Coulomb repulsion leads to a spontaneous spin and valley symmetry breaking via Stoner transitions. Using a model that incorporates the spontaneous spin and valley polarization, we explore the Kohn-Luttinger mechanism for superconductivity driven by repulsive Coulomb interactions. We find that the strongest superconducting instability is in the p-wave channel, and occurs in proximity to the onset of Stoner transitions. Interestingly, we find a range of densities and transverse electric fields where superconductivity develops out of a strongly corrugated, singly connected Fermi surface in each valley, leading to a topologically nontrivial chiral p+ip superconducting state with an even number of copropagating chiral Majorana edge modes. Our work establishes ABCA-stacked tetralayer graphene as a promising platform for observing strongly correlated physics and topological superconductivity.}, author = {Ghazaryan, Areg and Holder, Tobias and Berg, Erez and Serbyn, Maksym}, issn = {2469-9969}, journal = {Physical Review B}, number = {10}, publisher = {American Physical Society}, title = {{Multilayer graphenes as a platform for interaction-driven physics and topological superconductivity}}, doi = {10.1103/PhysRevB.107.104502}, volume = {107}, year = {2023}, }