@article{12831, abstract = {The angulon, a quasiparticle formed by a quantum rotor dressed by the excitations of a many-body bath, can be used to describe an impurity rotating in a fluid or solid environment. Here, we propose a coherent state ansatz in the co-rotating frame, which provides a comprehensive theoretical description of angulons. We reveal the quasiparticle properties, such as energies, quasiparticle weights, and spectral functions, and show that our ansatz yields a persistent decrease in the impurity’s rotational constant due to many-body dressing, which is consistent with experimental observations. From our study, a picture of the angulon emerges as an effective spin interacting with a magnetic field that is self-consistently generated by the molecule’s rotation. Moreover, we discuss rotational spectroscopy, which focuses on the response of rotating molecules to a laser perturbation in the linear response regime. Importantly, we take into account initial-state interactions that have been neglected in prior studies and reveal their impact on the excitation spectrum. To examine the angulon instability regime, we use a single-excitation ansatz and obtain results consistent with experiments, in which a broadening of spectral lines is observed while phonon wings remain highly suppressed due to initial-state interactions.}, author = {Zeng, Zhongda and Yakaboylu, Enderalp and Lemeshko, Mikhail and Shi, Tao and Schmidt, Richard}, issn = {1089-7690}, journal = {The Journal of Chemical Physics}, number = {13}, publisher = {American Institute of Physics}, title = {{Variational theory of angulons and their rotational spectroscopy}}, doi = {10.1063/5.0135893}, volume = {158}, year = {2023}, } @article{12914, abstract = {We numerically study two methods of measuring tunneling times using a quantum clock. In the conventional method using the Larmor clock, we show that the Larmor tunneling time can be shorter for higher tunneling barriers. In the second method, we study the probability of a spin-flip of a particle when it is transmitted through a potential barrier including a spatially rotating field interacting with its spin. According to the adiabatic theorem, the probability depends on the velocity of the particle inside the barrier. It is numerically observed that the probability increases for higher barriers, which is consistent with the result obtained by the Larmor clock. By comparing outcomes for different initial spin states, we suggest that one of the main causes of the apparent decrease in the tunneling time can be the filtering effect occurring at the end of the barrier.}, author = {Suzuki, Fumika and Unruh, William G.}, issn = {2469-9934}, journal = {Physical Review A}, number = {4}, publisher = {American Physical Society}, title = {{Numerical quantum clock simulations for measuring tunneling times}}, doi = {10.1103/PhysRevA.107.042216}, volume = {107}, year = {2023}, } @article{13233, abstract = {We study the impact of finite-range physics on the zero-range-model analysis of three-body recombination in ultracold atoms. We find that temperature dependence of the zero-range parameters can vary from one set of measurements to another as it may be driven by the distribution of error bars in the experiment, and not by the underlying three-body physics. To study finite-temperature effects in three-body recombination beyond the zero-range physics, we introduce and examine a finite-range model based upon a hyperspherical formalism. The systematic error discussed in this Letter may provide a significant contribution to the error bars of measured three-body parameters.}, author = {Agafonova, Sofya and Lemeshko, Mikhail and Volosniev, Artem}, issn = {2469-9934}, journal = {Physical Review A}, number = {6}, publisher = {American Physical Society}, title = {{Finite-range bias in fitting three-body loss to the zero-range model}}, doi = {10.1103/PhysRevA.107.L061304}, volume = {107}, year = {2023}, } @article{13966, abstract = {We present a low-scaling diagrammatic Monte Carlo approach to molecular correlation energies. Using combinatorial graph theory to encode many-body Hugenholtz diagrams, we sample the Møller-Plesset (MPn) perturbation series, obtaining accurate correlation energies up to n=5, with quadratic scaling in the number of basis functions. Our technique reduces the computational complexity of the molecular many-fermion correlation problem, opening up the possibility of low-scaling, accurate stochastic computations for a wide class of many-body systems described by Hugenholtz diagrams.}, author = {Bighin, Giacomo and Ho, Quoc P and Lemeshko, Mikhail and Tscherbul, T. V.}, issn = {2469-9969}, journal = {Physical Review B}, number = {4}, publisher = {American Physical Society}, title = {{Diagrammatic Monte Carlo for electronic correlation in molecules: High-order many-body perturbation theory with low scaling}}, doi = {10.1103/PhysRevB.108.045115}, volume = {108}, year = {2023}, } @article{14320, abstract = {The development of two-dimensional materials has resulted in a diverse range of novel, high-quality compounds with increasing complexity. A key requirement for a comprehensive quantitative theory is the accurate determination of these materials' band structure parameters. However, this task is challenging due to the intricate band structures and the indirect nature of experimental probes. In this work, we introduce a general framework to derive band structure parameters from experimental data using deep neural networks. We applied our method to the penetration field capacitance measurement of trilayer graphene, an effective probe of its density of states. First, we demonstrate that a trained deep network gives accurate predictions for the penetration field capacitance as a function of tight-binding parameters. Next, we use the fast and accurate predictions from the trained network to automatically determine tight-binding parameters directly from experimental data, with extracted parameters being in a good agreement with values in the literature. We conclude by discussing potential applications of our method to other materials and experimental techniques beyond penetration field capacitance.}, author = {Henderson, Paul M and Ghazaryan, Areg and Zibrov, Alexander A. and Young, Andrea F. and Serbyn, Maksym}, issn = {2469-9969}, journal = {Physical Review B}, number = {12}, publisher = {American Physical Society}, title = {{Deep learning extraction of band structure parameters from density of states: A case study on trilayer graphene}}, doi = {10.1103/physrevb.108.125411}, volume = {108}, year = {2023}, } @article{14321, abstract = {We demonstrate the possibility of a coupling between the magnetization direction of a ferromagnet and the tilting angle of adsorbed achiral molecules. To illustrate the mechanism of the coupling, we analyze a minimal Stoner model that includes Rashba spin–orbit coupling due to the electric field on the surface of the ferromagnet. The proposed mechanism allows us to study magnetic anisotropy of the system with an extended Stoner–Wohlfarth model and argue that adsorbed achiral molecules can change magnetocrystalline anisotropy of the substrate. Our research aims to motivate further experimental studies of the current-free chirality induced spin selectivity effect involving both enantiomers.}, author = {Al Hyder, Ragheed and Cappellaro, Alberto and Lemeshko, Mikhail and Volosniev, Artem}, issn = {1089-7690}, journal = {The Journal of Chemical Physics}, keywords = {Physical and Theoretical Chemistry, General Physics and Astronomy}, number = {10}, publisher = {AIP Publishing}, title = {{Achiral dipoles on a ferromagnet can affect its magnetization direction}}, doi = {10.1063/5.0165806}, volume = {159}, year = {2023}, } @article{12836, abstract = {Coherent control and manipulation of quantum degrees of freedom such as spins forms the basis of emerging quantum technologies. In this context, the robust valley degree of freedom and the associated valley pseudospin found in two-dimensional transition metal dichalcogenides is a highly attractive platform. Valley polarization and coherent superposition of valley states have been observed in these systems even up to room temperature. Control of valley coherence is an important building block for the implementation of valley qubit. Large magnetic fields or high-power lasers have been used in the past to demonstrate the control (initialization and rotation) of the valley coherent states. Here, the control of layer–valley coherence via strong coupling of valley excitons in bilayer WS2 to microcavity photons is demonstrated by exploiting the pseudomagnetic field arising in optical cavities owing to the transverse electric–transverse magnetic (TE–TM)mode splitting. The use of photonic structures to generate pseudomagnetic fields which can be used to manipulate exciton-polaritons presents an attractive approach to control optical responses without the need for large magnets or high-intensity optical pump powers.}, author = {Khatoniar, Mandeep and Yama, Nicholas and Ghazaryan, Areg and Guddala, Sriram and Ghaemi, Pouyan and Majumdar, Kausik and Menon, Vinod}, issn = {2195-1071}, journal = {Advanced Optical Materials}, number = {13}, publisher = {Wiley}, title = {{Optical manipulation of Layer–Valley coherence via strong exciton–photon coupling in microcavities}}, doi = {10.1002/adom.202202631}, volume = {11}, year = {2023}, } @article{14037, abstract = {Traditionally, nuclear spin is not considered to affect biological processes. Recently, this has changed as isotopic fractionation that deviates from classical mass dependence was reported both in vitro and in vivo. In these cases, the isotopic effect correlates with the nuclear magnetic spin. Here, we show nuclear spin effects using stable oxygen isotopes (16O, 17O, and 18O) in two separate setups: an artificial dioxygen production system and biological aquaporin channels in cells. We observe that oxygen dynamics in chiral environments (in particular its transport) depend on nuclear spin, suggesting future applications for controlled isotope separation to be used, for instance, in NMR. To demonstrate the mechanism behind our findings, we formulate theoretical models based on a nuclear-spin-enhanced switch between electronic spin states. Accounting for the role of nuclear spin in biology can provide insights into the role of quantum effects in living systems and help inspire the development of future biotechnology solutions.}, author = {Vardi, Ofek and Maroudas-Sklare, Naama and Kolodny, Yuval and Volosniev, Artem and Saragovi, Amijai and Galili, Nir and Ferrera, Stav and Ghazaryan, Areg and Yuran, Nir and Affek, Hagit P. and Luz, Boaz and Goldsmith, Yonaton and Keren, Nir and Yochelis, Shira and Halevy, Itay and Lemeshko, Mikhail and Paltiel, Yossi}, issn = {1091-6490}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {32}, publisher = {National Academy of Sciences}, title = {{Nuclear spin effects in biological processes}}, doi = {10.1073/pnas.2300828120}, volume = {120}, year = {2023}, } @article{14486, abstract = {We present a minimal model of ferroelectric large polarons, which are suggested as one of the mechanisms responsible for the unique charge transport properties of hybrid perovskites. We demonstrate that short-ranged charge–rotor interactions lead to long-range ferroelectric ordering of rotors, which strongly affects the carrier mobility. In the nonperturbative regime, where our theory cannot be reduced to any of the earlier models, we reveal that the polaron is characterized by large coherence length and a roughly tenfold increase of the effective mass as compared to the bare mass. These results are in good agreement with other theoretical predictions for ferroelectric polarons. Our model establishes a general phenomenological framework for ferroelectric polarons providing the starting point for future studies of their role in the transport properties of hybrid organic-inorganic perovskites.}, author = {Koutentakis, Georgios and Ghazaryan, Areg and Lemeshko, Mikhail}, issn = {2643-1564}, journal = {Physical Review Research}, number = {4}, publisher = {American Physical Society}, title = {{Rotor lattice model of ferroelectric large polarons}}, doi = {10.1103/PhysRevResearch.5.043016}, volume = {5}, year = {2023}, } @article{14513, abstract = {Cold atomic gases have become a paradigmatic system for exploring fundamental physics, which at the same time allows for applications in quantum technologies. The accelerating developments in the field have led to a highly advanced set of engineering techniques that, for example, can tune interactions, shape the external geometry, select among a large set of atomic species with different properties, or control the number of atoms. In particular, it is possible to operate in lower dimensions and drive atomic systems into the strongly correlated regime. In this review, we discuss recent advances in few-body cold atom systems confined in low dimensions from a theoretical viewpoint. We mainly focus on bosonic systems in one dimension and provide an introduction to the static properties before we review the state-of-the-art research into quantum dynamical processes stimulated by the presence of correlations. Besides discussing the fundamental physical phenomena arising in these systems, we also provide an overview of the calculational and numerical tools and methods that are commonly used, thus delivering a balanced and comprehensive overview of the field. We conclude by giving an outlook on possible future directions that are interesting to explore in these correlated systems.}, author = {Mistakidis, S. I. and Volosniev, Artem and Barfknecht, R. E. and Fogarty, T. and Busch, Th and Foerster, A. and Schmelcher, P. and Zinner, N. T.}, issn = {0370-1573}, journal = {Physics Reports}, pages = {1--108}, publisher = {Elsevier}, title = {{Few-body Bose gases in low dimensions - A laboratory for quantum dynamics}}, doi = {10.1016/j.physrep.2023.10.004}, volume = {1042}, year = {2023}, } @article{14658, abstract = {We investigate spin-charge separation of a spin- 1 2 Fermi system confined in a triple well where multiple bands are occupied. We assume that our finite fermionic system is close to fully spin polarized while being doped by a hole and an impurity fermion with opposite spin. Our setup involves ferromagnetic couplings among the particles in different bands, leading to the development of strong spin-transport correlations in an intermediate interaction regime. Interactions are then strong enough to lift the degeneracy among singlet and triplet spin configurations in the well of the spin impurity but not strong enough to prohibit hole-induced magnetic excitations to the singlet state. Despite the strong spin-hole correlations, the system exhibits spin-charge deconfinement allowing for long-range entanglement of the spatial and spin degrees of freedom.}, author = {Becker, J. M. and Koutentakis, Georgios and Schmelcher, P.}, issn = {2643-1564}, journal = {Physical Review Research}, number = {4}, publisher = {American Physical Society}, title = {{Spin-charge correlations in finite one-dimensional multiband Fermi systems}}, doi = {10.1103/PhysRevResearch.5.043039}, volume = {5}, year = {2023}, } @article{14650, abstract = {We study the out-of-equilibrium quantum dynamics of dipolar polarons, i.e., impurities immersed in a dipolar Bose-Einstein condensate, after a quench of the impurity-boson interaction. We show that the dipolar nature of the condensate and of the impurity results in anisotropic relaxation dynamics, in particular, anisotropic dressing of the polaron. More relevantly for cold-atom setups, quench dynamics is strongly affected by the interplay between dipolar anisotropy and trap geometry. Our findings pave the way for simulating impurities in anisotropic media utilizing experiments with dipolar mixtures.}, author = {Volosniev, Artem and Bighin, Giacomo and Santos, Luis and Peña Ardila, Luisllu A.}, issn = {2542-4653}, journal = {SciPost Physics}, keywords = {General Physics and Astronomy}, number = {6}, publisher = {SciPost Foundation}, title = {{Non-equilibrium dynamics of dipolar polarons}}, doi = {10.21468/scipostphys.15.6.232}, volume = {15}, year = {2023}, } @article{13278, abstract = {We present a numerical analysis of spin-1/2 fermions in a one-dimensional harmonic potential in the presence of a magnetic point-like impurity at the center of the trap. The model represents a few-body analogue of a magnetic impurity in the vicinity of an s-wave superconductor. Already for a few particles we find a ground-state level crossing between sectors with different fermion parities. We interpret this crossing as a few-body precursor of a quantum phase transition, which occurs when the impurity "breaks" a Cooper pair. This picture is further corroborated by analyzing density-density correlations in momentum space. Finally, we discuss how the system may be realized with existing cold-atoms platforms.}, author = {Rammelmüller, Lukas and Huber, David and Čufar, Matija and Brand, Joachim and Hammer, Hans-Werner and Volosniev, Artem}, issn = {2542-4653}, journal = {SciPost Physics}, keywords = {General Physics and Astronomy}, number = {1}, publisher = {SciPost Foundation}, title = {{Magnetic impurity in a one-dimensional few-fermion system}}, doi = {10.21468/scipostphys.14.1.006}, volume = {14}, year = {2023}, } @article{14246, abstract = {The model of a ring threaded by the Aharonov-Bohm flux underlies our understanding of a coupling between gauge potentials and matter. The typical formulation of the model is based upon a single particle picture, and should be extended when interactions with other particles become relevant. Here, we illustrate such an extension for a particle in an Aharonov-Bohm ring subject to interactions with a weakly interacting Bose gas. We show that the ground state of the system can be described using the Bose-polaron concept—a particle dressed by interactions with a bosonic environment. We connect the energy spectrum to the effective mass of the polaron, and demonstrate how to change currents in the system by tuning boson-particle interactions. Our results suggest the Aharonov-Bohm ring as a platform for studying coherence and few- to many-body crossover of quasi-particles that arise from an impurity immersed in a medium.}, author = {Brauneis, Fabian and Ghazaryan, Areg and Hammer, Hans-Werner and Volosniev, Artem}, issn = {2399-3650}, journal = {Communications Physics}, keywords = {General Physics and Astronomy}, publisher = {Springer Nature}, title = {{Emergence of a Bose polaron in a small ring threaded by the Aharonov-Bohm flux}}, doi = {10.1038/s42005-023-01281-2}, volume = {6}, year = {2023}, } @article{14238, abstract = {We demonstrate that a sodium dimer, Na2(13Σ+u), residing on the surface of a helium nanodroplet, can be set into rotation by a nonresonant 1.0 ps infrared laser pulse. The time-dependent degree of alignment measured, exhibits a periodic, gradually decreasing structure that deviates qualitatively from that expected for gas-phase dimers. Comparison to alignment dynamics calculated from the time-dependent rotational Schrödinger equation shows that the deviation is due to the alignment dependent interaction between the dimer and the droplet surface. This interaction confines the dimer to the tangential plane of the droplet surface at the point where it resides and is the reason that the observed alignment dynamics is also well described by a 2D quantum rotor model.}, author = {Kranabetter, Lorenz and Kristensen, Henrik H. and Ghazaryan, Areg and Schouder, Constant A. and Chatterley, Adam S. and Janssen, Paul and Jensen, Frank and Zillich, Robert E. and Lemeshko, Mikhail and Stapelfeldt, Henrik}, issn = {1079-7114}, journal = {Physical Review Letters}, number = {5}, publisher = {American Physical Society}, title = {{Nonadiabatic laser-induced alignment dynamics of molecules on a surface}}, doi = {10.1103/PhysRevLett.131.053201}, volume = {131}, year = {2023}, } @article{14756, abstract = {We prove the r-spin cobordism hypothesis in the setting of (weak) 2-categories for every positive integer r: the 2-groupoid of 2-dimensional fully extended r-spin TQFTs with given target is equivalent to the homotopy fixed points of an induced Spin 2r -action. In particular, such TQFTs are classified by fully dualisable objects together with a trivialisation of the rth power of their Serre automorphisms. For r=1, we recover the oriented case (on which our proof builds), while ordinary spin structures correspond to r=2. To construct examples, we explicitly describe Spin 2r​-homotopy fixed points in the equivariant completion of any symmetric monoidal 2-category. We also show that every object in a 2-category of Landau–Ginzburg models gives rise to fully extended spin TQFTs and that half of these do not factor through the oriented bordism 2-category.}, author = {Carqueville, Nils and Szegedy, Lorant}, issn = {1663-487X}, journal = {Quantum Topology}, keywords = {Geometry and Topology, Mathematical Physics}, number = {3}, pages = {467--532}, publisher = {European Mathematical Society}, title = {{Fully extended r-spin TQFTs}}, doi = {10.4171/qt/193}, volume = {14}, year = {2023}, } @article{10845, abstract = {We study an impurity with a resonance level whose position coincides with the Fermi energy of the surrounding Fermi gas. An impurity causes a rapid variation of the scattering phase shift for fermions at the Fermi surface, introducing a new characteristic length scale into the problem. We investigate manifestations of this length scale in the self-energy of the impurity and in the density of the bath. Our calculations reveal a model-independent deformation of the density of the Fermi gas, which is determined by the width of the resonance. To provide a broader picture, we investigate time evolution of the density in quench dynamics, and study the behavior of the system at finite temperatures. Finally, we briefly discuss implications of our findings for the Fermi-polaron problem.}, author = {Maslov, Mikhail and Lemeshko, Mikhail and Volosniev, Artem}, issn = {2643-1564}, journal = {Physical Review Research}, publisher = {American Physical Society}, title = {{Impurity with a resonance in the vicinity of the Fermi energy}}, doi = {10.1103/PhysRevResearch.4.013160}, volume = {4}, year = {2022}, } @article{10771, abstract = {A critical overview of the theory of the chirality-induced spin selectivity (CISS) effect, that is, phenomena in which the chirality of molecular species imparts significant spin selectivity to various electron processes, is provided. Based on discussions in a recently held workshop, and further work published since, the status of CISS effects—in electron transmission, electron transport, and chemical reactions—is reviewed. For each, a detailed discussion of the state-of-the-art in theoretical understanding is provided and remaining challenges and research opportunities are identified.}, author = {Evers, Ferdinand and Aharony, Amnon and Bar-Gill, Nir and Entin-Wohlman, Ora and Hedegård, Per and Hod, Oded and Jelinek, Pavel and Kamieniarz, Grzegorz and Lemeshko, Mikhail and Michaeli, Karen and Mujica, Vladimiro and Naaman, Ron and Paltiel, Yossi and Refaely-Abramson, Sivan and Tal, Oren and Thijssen, Jos and Thoss, Michael and Van Ruitenbeek, Jan M. and Venkataraman, Latha and Waldeck, David H. and Yan, Binghai and Kronik, Leeor}, issn = {15214095}, journal = {Advanced Materials}, number = {13}, publisher = {Wiley}, title = {{Theory of chirality induced spin selectivity: Progress and challenges}}, doi = {10.1002/adma.202106629}, volume = {34}, year = {2022}, } @article{11552, abstract = {Rotational dynamics of D2 molecules inside helium nanodroplets is induced by a moderately intense femtosecond pump pulse and measured as a function of time by recording the yield of HeD+ ions, created through strong-field dissociative ionization with a delayed femtosecond probe pulse. The yield oscillates with a period of 185 fs, reflecting field-free rotational wave packet dynamics, and the oscillation persists for more than 500 periods. Within the experimental uncertainty, the rotational constant BHe of the in-droplet D2 molecule, determined by Fourier analysis, is the same as Bgas for an isolated D2 molecule. Our observations show that the D2 molecules inside helium nanodroplets essentially rotate as free D2 molecules.}, author = {Qiang, Junjie and Zhou, Lianrong and Lu, Peifen and Lin, Kang and Ma, Yongzhe and Pan, Shengzhe and Lu, Chenxu and Jiang, Wenyu and Sun, Fenghao and Zhang, Wenbin and Li, Hui and Gong, Xiaochun and Averbukh, Ilya Sh and Prior, Yehiam and Schouder, Constant A. and Stapelfeldt, Henrik and Cherepanov, Igor and Lemeshko, Mikhail and Jäger, Wolfgang and Wu, Jian}, issn = {10797114}, journal = {Physical Review Letters}, number = {24}, publisher = {American Physical Society}, title = {{Femtosecond rotational dynamics of D2 molecules in superfluid helium nanodroplets}}, doi = {10.1103/PhysRevLett.128.243201}, volume = {128}, year = {2022}, } @article{11590, abstract = {We investigate the ground-state properties of weakly repulsive one-dimensional bosons in the presence of an attractive zero-range impurity potential. First, we derive mean-field solutions to the problem on a finite ring for the two asymptotic cases: (i) all bosons are bound to the impurity and (ii) all bosons are in a scattering state. Moreover, we derive the critical line that separates these regimes in the parameter space. In the thermodynamic limit, this critical line determines the maximum number of bosons that can be bound by the impurity potential, forming an artificial atom. Second, we validate the mean-field results using the flow equation approach and the multi-layer multi-configuration time-dependent Hartree method for atomic mixtures. While beyond-mean-field effects destroy long-range order in the Bose gas, the critical boson number is unaffected. Our findings are important for understanding such artificial atoms in low-density Bose gases with static and mobile impurities.}, author = {Brauneis, Fabian and Backert, Timothy G. and Mistakidis, Simeon I. and Lemeshko, Mikhail and Hammer, Hans Werner and Volosniev, Artem}, issn = {1367-2630}, journal = {New Journal of Physics}, number = {6}, publisher = {IOP Publishing}, title = {{Artificial atoms from cold bosons in one dimension}}, doi = {10.1088/1367-2630/ac78d8}, volume = {24}, year = {2022}, }