@article{7594,
abstract = {The concept of the entanglement between spin and orbital degrees of freedom plays a crucial role in our understanding of various phases and exotic ground states in a broad class of materials, including orbitally ordered materials and spin liquids. We investigate how the spin-orbital entanglement in a Mott insulator depends on the value of the spin-orbit coupling of the relativistic origin. To this end, we numerically diagonalize a one-dimensional spin-orbital model with Kugel-Khomskii exchange interactions between spins and orbitals on different sites supplemented by the on-site spin-orbit coupling. In the regime of small spin-orbit coupling with regard to the spin-orbital exchange, the ground state to a large extent resembles the one obtained in the limit of vanishing spin-orbit coupling. On the other hand, for large spin-orbit coupling the ground state can, depending on the model parameters, either still show negligible spin-orbital entanglement or evolve to a highly spin-orbitally-entangled phase with completely distinct properties that are described by an effective XXZ model. The presented results suggest that (i) the spin-orbital entanglement may be induced by large on-site spin-orbit coupling, as found in the 5d transition metal oxides, such as the iridates; (ii) for Mott insulators with weak spin-orbit coupling of Ising type, such as, e.g., the alkali hyperoxides, the effects of the spin-orbit coupling on the ground state can, in the first order of perturbation theory, be neglected.},
author = {Gotfryd, Dorota and Paerschke, Ekaterina and Chaloupka, Jiri and Oles, Andrzej M. and Wohlfeld, Krzysztof},
journal = {Physical Review Research},
number = {1},
publisher = {American Physical Society},
title = {{How spin-orbital entanglement depends on the spin-orbit coupling in a Mott insulator}},
doi = {10.1103/PhysRevResearch.2.013353},
volume = {2},
year = {2020},
}
@article{7882,
abstract = {A few-body cluster is a building block of a many-body system in a gas phase provided the temperature at most is of the order of the binding energy of this cluster. Here we illustrate this statement by considering a system of tubes filled with dipolar distinguishable particles. We calculate the partition function, which determines the probability to find a few-body cluster at a given temperature. The input for our calculations—the energies of few-body clusters—is estimated using the harmonic approximation. We first describe and demonstrate the validity of our numerical procedure. Then we discuss the results featuring melting of the zero-temperature many-body state into a gas of free particles and few-body clusters. For temperature higher than its binding energy threshold, the dimers overwhelmingly dominate the ensemble, where the remaining probability is in free particles. At very high temperatures free (harmonic oscillator trap-bound) particle dominance is eventually reached. This structure evolution appears both for one and two particles in each layer providing crucial information about the behavior of ultracold dipolar gases. The investigation addresses the transition region between few- and many-body physics as a function of temperature using a system of ten dipoles in five tubes.},
author = {Armstrong, Jeremy R. and Jensen, Aksel S. and Volosniev, Artem and Zinner, Nikolaj T.},
issn = {22277390},
journal = {Mathematics},
number = {4},
publisher = {MDPI},
title = {{Clusters in separated tubes of tilted dipoles}},
doi = {10.3390/math8040484},
volume = {8},
year = {2020},
}
@article{7919,
abstract = {We explore the time evolution of two impurities in a trapped one-dimensional Bose gas that follows a change of the boson-impurity interaction. We study the induced impurity-impurity interactions and their effect on the quench dynamics. In particular, we report on the size of the impurity cloud, the impurity-impurity entanglement, and the impurity-impurity correlation function. The presented numerical simulations are based upon the variational multilayer multiconfiguration time-dependent Hartree method for bosons. To analyze and quantify induced impurity-impurity correlations, we employ an effective two-body Hamiltonian with a contact interaction. We show that the effective model consistent with the mean-field attraction of two heavy impurities explains qualitatively our results for weak interactions. Our findings suggest that the quench dynamics in cold-atom systems can be a tool for studying impurity-impurity correlations.},
author = {Mistakidis, S. I. and Volosniev, Artem and Schmelcher, P.},
issn = {2643-1564},
journal = {Physical Review Research},
publisher = {American Physical Society},
title = {{Induced correlations between impurities in a one-dimensional quenched Bose gas}},
doi = {10.1103/physrevresearch.2.023154},
volume = {2},
year = {2020},
}
@article{7933,
abstract = {We study a mobile quantum impurity, possessing internal rotational degrees of freedom, confined to a ring in the presence of a many-particle bosonic bath. By considering the recently introduced rotating polaron problem, we define the Hamiltonian and examine the energy spectrum. The weak-coupling regime is studied by means of a variational ansatz in the truncated Fock space. The corresponding spectrum indicates that there emerges a coupling between the internal and orbital angular momenta of the impurity as a consequence of the phonon exchange. We interpret the coupling as a phonon-mediated spin-orbit coupling and quantify it by using a correlation function between the internal and the orbital angular momentum operators. The strong-coupling regime is investigated within the Pekar approach, and it is shown that the correlation function of the ground state shows a kink at a critical coupling, that is explained by a sharp transition from the noninteracting state to the states that exhibit strong interaction with the surroundings. The results might find applications in such fields as spintronics or topological insulators where spin-orbit coupling is of crucial importance.},
author = {Maslov, Mikhail and Lemeshko, Mikhail and Yakaboylu, Enderalp},
issn = {24699969},
journal = {Physical Review B},
number = {18},
publisher = {American Physical Society},
title = {{Synthetic spin-orbit coupling mediated by a bosonic environment}},
doi = {10.1103/PhysRevB.101.184104},
volume = {101},
year = {2020},
}
@phdthesis{8958,
abstract = {The oft-quoted dictum by Arthur Schawlow: ``A diatomic molecule has one atom too many'' has been disavowed. Inspired by the possibility to experimentally manipulate and enhance chemical reactivity in helium nanodroplets, we investigate the rotation of coupled cold molecules in the presence of a many-body environment.
In this thesis, we introduce new variational approaches to quantum impurities and apply them to the Fröhlich polaron - a quasiparticle formed out of an electron (or other point-like impurity) in a polar medium, and to the angulon - a quasiparticle formed out of a rotating molecule in a bosonic bath.
With this theoretical toolbox, we reveal the self-localization transition for the angulon quasiparticle. We show that, unlike for polarons, self-localization of angulons occurs at finite impurity-bath coupling already at the mean-field level. The transition is accompanied by the spherical-symmetry breaking of the angulon ground state and a discontinuity in the first derivative of the ground-state energy. Moreover, the type of symmetry breaking is dictated by the symmetry of the microscopic impurity-bath interaction, which leads to a number of distinct self-localized states.
For the system containing multiple impurities, by analogy with the bipolaron, we introduce the biangulon quasiparticle describing two rotating molecules that align with respect to each other due to the effective attractive interaction mediated by the excitations of the bath. We study this system from the strong-coupling regime to the weak molecule-bath interaction regime. We show that the molecules tend to have a strong alignment in the ground state, the biangulon shows shifted angulon instabilities and an additional spectral instability, where resonant angular momentum transfer between the molecules and the bath takes place. Finally, we introduce a diagonalization scheme that allows us to describe the transition from two separated angulons to a biangulon as a function of the distance between the two molecules.},
author = {Li, Xiang},
issn = {2663-337X},
pages = {125},
publisher = {IST Austria},
title = {{Rotation of coupled cold molecules in the presence of a many-body environment}},
doi = {10.15479/AT:ISTA:8958},
year = {2020},
}
@article{7190,
abstract = {We investigate the ground-state energy of a one-dimensional Fermi gas with two bosonic impurities. We consider spinless fermions with no fermion-fermion interactions. The fermion-impurity and impurity-impurity interactions are modeled with Dirac delta functions. First, we study the case where impurity and fermion have equal masses, and the impurity-impurity two-body interaction is identical to the fermion-impurity interaction, such that the system is solvable with the Bethe ansatz. For attractive interactions, we find that the energy of the impurity-impurity subsystem is below the energy of the bound state that exists without the Fermi gas. We interpret this as a manifestation of attractive boson-boson interactions induced by the fermionic medium, and refer to the impurity-impurity subsystem as an in-medium bound state. For repulsive interactions, we find no in-medium bound states. Second, we construct an effective model to describe these interactions, and compare its predictions to the exact solution. We use this effective model to study nonintegrable systems with unequal masses and/or potentials. We discuss parameter regimes for which impurity-impurity attraction induced by the Fermi gas can lead to the formation of in-medium bound states made of bosons that repel each other in the absence of the Fermi gas.},
author = {Huber, D. and Hammer, H.-W. and Volosniev, Artem},
issn = {2643-1564},
journal = {Physical Review Research},
number = {3},
publisher = {APS},
title = {{In-medium bound states of two bosonic impurities in a one-dimensional Fermi gas}},
doi = {10.1103/physrevresearch.1.033177},
volume = {1},
year = {2019},
}
@article{7396,
abstract = {The angular momentum of molecules, or, equivalently, their rotation in three-dimensional space, is ideally suited for quantum control. Molecular angular momentum is naturally quantized, time evolution is governed by a well-known Hamiltonian with only a few accurately known parameters, and transitions between rotational levels can be driven by external fields from various parts of the electromagnetic spectrum. Control over the rotational motion can be exerted in one-, two-, and many-body scenarios, thereby allowing one to probe Anderson localization, target stereoselectivity of bimolecular reactions, or encode quantum information to name just a few examples. The corresponding approaches to quantum control are pursued within separate, and typically disjoint, subfields of physics, including ultrafast science, cold collisions, ultracold gases, quantum information science, and condensed-matter physics. It is the purpose of this review to present the various control phenomena, which all rely on the same underlying physics, within a unified framework. To this end, recall the Hamiltonian for free rotations, assuming the rigid rotor approximation to be valid, and summarize the different ways for a rotor to interact with external electromagnetic fields. These interactions can be exploited for control—from achieving alignment, orientation, or laser cooling in a one-body framework, steering bimolecular collisions, or realizing a quantum computer or quantum simulator in the many-body setting.},
author = {Koch, Christiane P. and Lemeshko, Mikhail and Sugny, Dominique},
issn = {0034-6861},
journal = {Reviews of Modern Physics},
number = {3},
publisher = {APS},
title = {{Quantum control of molecular rotation}},
doi = {10.1103/revmodphys.91.035005},
volume = {91},
year = {2019},
}
@article{5886,
abstract = {Problems involving quantum impurities, in which one or a few particles are interacting with a macroscopic environment, represent a pervasive paradigm, spanning across atomic, molecular, and condensed-matter physics. In this paper we introduce new variational approaches to quantum impurities and apply them to the Fröhlich polaron–a quasiparticle formed out of an electron (or other point-like impurity) in a polar medium, and to the angulon–a quasiparticle formed out of a rotating molecule in a bosonic bath. We benchmark these approaches against established theories, evaluating their accuracy as a function of the impurity-bath coupling.},
author = {Li, Xiang and Bighin, Giacomo and Yakaboylu, Enderalp and Lemeshko, Mikhail},
issn = {00268976},
journal = {Molecular Physics},
publisher = {Taylor and Francis},
title = {{Variational approaches to quantum impurities: from the Fröhlich polaron to the angulon}},
doi = {10.1080/00268976.2019.1567852},
year = {2019},
}
@article{6092,
abstract = {In 1915, Einstein and de Haas and Barnett demonstrated that changing the magnetization of a magnetic material results in mechanical rotation and vice versa. At the microscopic level, this effect governs the transfer between electron spin and orbital angular momentum, and lattice degrees of freedom, understanding which is key for molecular magnets, nano-magneto-mechanics, spintronics, and ultrafast magnetism. Until now, the timescales of electron-to-lattice angular momentum transfer remain unclear, since modeling this process on a microscopic level requires the addition of an infinite amount of quantum angular momenta. We show that this problem can be solved by reformulating it in terms of the recently discovered angulon quasiparticles, which results in a rotationally invariant quantum many-body theory. In particular, we demonstrate that nonperturbative effects take place even if the electron-phonon coupling is weak and give rise to angular momentum transfer on femtosecond timescales.},
author = {Mentink, Johann H and Katsnelson, Mikhail and Lemeshko, Mikhail},
journal = {Physical Review B},
number = {6},
publisher = {APS},
title = {{Quantum many-body dynamics of the Einstein-de Haas effect}},
doi = {10.1103/PhysRevB.99.064428},
volume = {99},
year = {2019},
}
@article{6632,
abstract = {We consider a two-component Bose gas in two dimensions at a low temperature with short-range repulsive interaction. In the coexistence phase where both components are superfluid, interspecies interactions induce a nondissipative drag between the two superfluid flows (Andreev-Bashkin effect). We show that this behavior leads to a modification of the usual Berezinskii-Kosterlitz-Thouless (BKT) transition in two dimensions. We extend the renormalization of the superfluid densities at finite temperature using the renormalization-group approach and find that the vortices of one component have a large influence on the superfluid properties of the other, mediated by the nondissipative drag. The extended BKT flow equations indicate that the occurrence of the vortex unbinding transition in one of the components can induce the breakdown of superfluidity also in the other, leading to a locking phenomenon for the critical temperatures of the two gases.},
author = {Karle, Volker and Defenu, Nicolò and Enss, Tilman},
issn = {24699934},
journal = {Physical Review A},
number = {6},
publisher = {APS},
title = {{Coupled superfluidity of binary Bose mixtures in two dimensions}},
doi = {10.1103/PhysRevA.99.063627},
volume = {99},
year = {2019},
}