--- _id: '14663' abstract: - lang: eng text: As a bottleneck in the direct synthesis of hydrogen peroxide, the development of an efficient palladium-based catalyst has garnered great attention. However, elusive active centers and reaction mechanism issues inhibit further optimization of its performance. In this work, advanced microkinetic modeling with the adsorbate–adsorbate interaction and nanoparticle size effect based on first-principles calculations is developed. A full mechanism uncovering the significance of adsorbate–adsorbate interaction is determined on Pd nanoparticles. We demonstrate unambiguously that Pd(100) with main coverage species of O2 and H is beneficial to H2O2 production, being consistent with experimental operando observation, while H2O forms on Pd(111) covered by O species and Pd(211) covered by O and OH species. Kinetic analyses further enable quantitative estimation of the influence of temperature, pressure, and particle size. Large-size Pd nanoparticles are found to achieve a high H2O2 reaction rate when the operating conditions are moderate temperature and higher oxygen partial pressure. We reveal that specific facets of the Pd nanoparticles are crucial factors for their selectivity and activity. Consistent with the experiment, the production of H2O2 is discovered to be more favorable on Pd nanoparticles containing Pd(100) facets. The ratio of H2/O2 induces substantial variations in the coverage of intermediates of O2 and H on Pd(100), resulting in a change in product selectivity. acknowledgement: The authors acknowledge the financial support from the National Natural Science Foundation of China (22008211, 92045303, U21A20298), the National Key Research and Development Project of China (2021YFA1500900, 2022YFE0113800), and Zhejiang Innovation Team (2017R5203). article_processing_charge: Yes (in subscription journal) article_type: original author: - first_name: Jinyan full_name: Zhao, Jinyan last_name: Zhao - first_name: Zihao full_name: Yao, Zihao last_name: Yao - first_name: Rhys full_name: Bunting, Rhys id: 91deeae8-1207-11ec-b130-c194ad5b50c6 last_name: Bunting orcid: 0000-0001-6928-074X - first_name: P. full_name: Hu, P. last_name: Hu - first_name: Jianguo full_name: Wang, Jianguo last_name: Wang citation: ama: Zhao J, Yao Z, Bunting R, Hu P, Wang J. Microkinetic modeling with size-dependent and adsorbate-adsorbate interactions for the direct synthesis of H₂O₂ over Pd nanoparticles. ACS Catalysis. 2023;13(22):15054-15073. doi:10.1021/acscatal.3c03893 apa: Zhao, J., Yao, Z., Bunting, R., Hu, P., & Wang, J. (2023). Microkinetic modeling with size-dependent and adsorbate-adsorbate interactions for the direct synthesis of H₂O₂ over Pd nanoparticles. ACS Catalysis. American Chemical Society. https://doi.org/10.1021/acscatal.3c03893 chicago: Zhao, Jinyan, Zihao Yao, Rhys Bunting, P. Hu, and Jianguo Wang. “Microkinetic Modeling with Size-Dependent and Adsorbate-Adsorbate Interactions for the Direct Synthesis of H₂O₂ over Pd Nanoparticles.” ACS Catalysis. American Chemical Society, 2023. https://doi.org/10.1021/acscatal.3c03893. ieee: J. Zhao, Z. Yao, R. Bunting, P. Hu, and J. Wang, “Microkinetic modeling with size-dependent and adsorbate-adsorbate interactions for the direct synthesis of H₂O₂ over Pd nanoparticles,” ACS Catalysis, vol. 13, no. 22. American Chemical Society, pp. 15054–15073, 2023. ista: Zhao J, Yao Z, Bunting R, Hu P, Wang J. 2023. Microkinetic modeling with size-dependent and adsorbate-adsorbate interactions for the direct synthesis of H₂O₂ over Pd nanoparticles. ACS Catalysis. 13(22), 15054–15073. mla: Zhao, Jinyan, et al. “Microkinetic Modeling with Size-Dependent and Adsorbate-Adsorbate Interactions for the Direct Synthesis of H₂O₂ over Pd Nanoparticles.” ACS Catalysis, vol. 13, no. 22, American Chemical Society, 2023, pp. 15054–73, doi:10.1021/acscatal.3c03893. short: J. Zhao, Z. Yao, R. Bunting, P. Hu, J. Wang, ACS Catalysis 13 (2023) 15054–15073. date_created: 2023-12-10T23:00:59Z date_published: 2023-11-06T00:00:00Z date_updated: 2023-12-11T11:55:35Z day: '06' ddc: - '540' department: - _id: MaIb doi: 10.1021/acscatal.3c03893 file: - access_level: open_access checksum: a97c771077af71ddfb2249e34530895c content_type: application/pdf creator: dernst date_created: 2023-12-11T11:55:09Z date_updated: 2023-12-11T11:55:09Z file_id: '14676' file_name: 2023_ACSCatalysis_.pdf file_size: 14813812 relation: main_file success: 1 file_date_updated: 2023-12-11T11:55:09Z has_accepted_license: '1' intvolume: ' 13' issue: '22' language: - iso: eng license: https://creativecommons.org/licenses/by/4.0/ month: '11' oa: 1 oa_version: Published Version page: 15054-15073 publication: ACS Catalysis publication_identifier: eissn: - 2155-5435 publication_status: published publisher: American Chemical Society quality_controlled: '1' scopus_import: '1' status: public title: Microkinetic modeling with size-dependent and adsorbate-adsorbate interactions for the direct synthesis of H₂O₂ over Pd nanoparticles tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 13 year: '2023' ... --- _id: '14652' abstract: - lang: eng text: In order to demonstrate the stability of newly proposed iridium-based Ir2Cr(In,Sn) and IrRhCr(In,Sn) heusler alloys, we present ab-initio analysis of these alloys by examining various properties to prove their stability. The stability of these alloys can be inferred from different cohesive and formation energies as well as positive phonon frequencies. Their electronic structure results indicate that they are semi-metals in nature. The magnetic moments are computed using the Slater-Pauling formula and exhibit a high value, with the Cr atom contributing the most in all alloys. Mulliken’s charge analysis results show that our alloys contain a range of linkages, mainly ionic and covalent ones. The ductility and mechanical stability of these alloys are confirmed by elastic constants viz. Poisson’s ratio, Pugh’s ratio, and many different types of elastic moduli. article_number: '415539' article_processing_charge: No article_type: original author: - first_name: Shyam Lal full_name: Gupta, Shyam Lal last_name: Gupta - first_name: Saurabh full_name: Singh, Saurabh id: 12d625da-9cb3-11ed-9667-af09d37d3f0a last_name: Singh orcid: 0000-0003-2209-5269 - first_name: Sumit full_name: Kumar, Sumit last_name: Kumar - first_name: Unknown full_name: Anupam, Unknown last_name: Anupam - first_name: Samjeet Singh full_name: Thakur, Samjeet Singh last_name: Thakur - first_name: Ashish full_name: Kumar, Ashish last_name: Kumar - first_name: Sanjay full_name: Panwar, Sanjay last_name: Panwar - first_name: D. full_name: Diwaker, D. last_name: Diwaker citation: ama: 'Gupta SL, Singh S, Kumar S, et al. Ab-initio stability of Iridium based newly proposed full and quaternary heusler alloys. Physica B: Condensed Matter. 2023;674. doi:10.1016/j.physb.2023.415539' apa: 'Gupta, S. L., Singh, S., Kumar, S., Anupam, U., Thakur, S. S., Kumar, A., … Diwaker, D. (2023). Ab-initio stability of Iridium based newly proposed full and quaternary heusler alloys. Physica B: Condensed Matter. Elsevier. https://doi.org/10.1016/j.physb.2023.415539' chicago: 'Gupta, Shyam Lal, Saurabh Singh, Sumit Kumar, Unknown Anupam, Samjeet Singh Thakur, Ashish Kumar, Sanjay Panwar, and D. Diwaker. “Ab-Initio Stability of Iridium Based Newly Proposed Full and Quaternary Heusler Alloys.” Physica B: Condensed Matter. Elsevier, 2023. https://doi.org/10.1016/j.physb.2023.415539.' ieee: 'S. L. Gupta et al., “Ab-initio stability of Iridium based newly proposed full and quaternary heusler alloys,” Physica B: Condensed Matter, vol. 674. Elsevier, 2023.' ista: 'Gupta SL, Singh S, Kumar S, Anupam U, Thakur SS, Kumar A, Panwar S, Diwaker D. 2023. Ab-initio stability of Iridium based newly proposed full and quaternary heusler alloys. Physica B: Condensed Matter. 674, 415539.' mla: 'Gupta, Shyam Lal, et al. “Ab-Initio Stability of Iridium Based Newly Proposed Full and Quaternary Heusler Alloys.” Physica B: Condensed Matter, vol. 674, 415539, Elsevier, 2023, doi:10.1016/j.physb.2023.415539.' short: 'S.L. Gupta, S. Singh, S. Kumar, U. Anupam, S.S. Thakur, A. Kumar, S. Panwar, D. Diwaker, Physica B: Condensed Matter 674 (2023).' date_created: 2023-12-10T23:00:56Z date_published: 2023-11-28T00:00:00Z date_updated: 2023-12-12T08:22:23Z day: '28' department: - _id: MaIb doi: 10.1016/j.physb.2023.415539 intvolume: ' 674' language: - iso: eng month: '11' oa_version: None publication: 'Physica B: Condensed Matter' publication_identifier: issn: - 0921-4526 publication_status: epub_ahead publisher: Elsevier quality_controlled: '1' scopus_import: '1' status: public title: Ab-initio stability of Iridium based newly proposed full and quaternary heusler alloys type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 674 year: '2023' ... --- _id: '13968' abstract: - lang: eng text: The use of multimodal readout mechanisms next to label-free real-time monitoring of biomolecular interactions can provide valuable insight into surface-based reaction mechanisms. To this end, the combination of an electrolyte-gated field-effect transistor (EG-FET) with a fiber optic-coupled surface plasmon resonance (FO-SPR) probe serving as gate electrode has been investigated to deconvolute surface mass and charge density variations associated to surface reactions. However, applying an electrochemical potential on such gold-coated FO-SPR gate electrodes can induce gradual morphological changes of the thin gold film, leading to an irreversible blue-shift of the SPR wavelength and a substantial signal drift. We show that mild annealing leads to optical and electronic signal stabilization (20-fold lower signal drift than as-sputtered fiber optic gates) and improved overall analytical performance characteristics. The thermal treatment prevents morphological changes of the thin gold-film occurring during operation, hence providing reliable and stable data immediately upon gate voltage application. Thus, the readout output of both transducing principles, the optical FO-SPR and electronic EG-FET, stays constant throughout the whole sensing time-window and the long-term effect of thermal treatment is also improved, providing stable signals even after 1 year of storage. Annealing should therefore be considered a necessary modification for applying fiber optic gate electrodes in real-time multimodal investigations of surface reactions at the solid-liquid interface. acknowledged_ssus: - _id: EM-Fac acknowledgement: "This project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie grant agreement No. 813863–BORGES. We further thank the office of the Federal Government of Lower Austria, K3-Group–Culture, Science and Education, for their financial support as part of the project “Responsive Wound Dressing”. We gratefully acknowledge the financial support from the Austrian Research Promotion Agency (FFG; 888067).\r\nWe thank the Electron Microscopy Facility at IST Austria for their support with sputter coating the FO tips and Bernhard Pichler from AIT for software development to facilitate data evaluation." article_number: '1202132' article_processing_charge: Yes article_type: original author: - first_name: Roger full_name: Hasler, Roger last_name: Hasler - first_name: Marie Helene full_name: Steger-Polt, Marie Helene last_name: Steger-Polt - first_name: Ciril full_name: Reiner-Rozman, Ciril last_name: Reiner-Rozman - first_name: Stefan full_name: Fossati, Stefan last_name: Fossati - first_name: Seungho full_name: Lee, Seungho id: BB243B88-D767-11E9-B658-BC13E6697425 last_name: Lee orcid: 0000-0002-6962-8598 - first_name: Patrik full_name: Aspermair, Patrik last_name: Aspermair - first_name: Christoph full_name: Kleber, Christoph last_name: Kleber - first_name: Maria full_name: Ibáñez, Maria id: 43C61214-F248-11E8-B48F-1D18A9856A87 last_name: Ibáñez orcid: 0000-0001-5013-2843 - first_name: Jakub full_name: Dostalek, Jakub last_name: Dostalek - first_name: Wolfgang full_name: Knoll, Wolfgang last_name: Knoll citation: ama: 'Hasler R, Steger-Polt MH, Reiner-Rozman C, et al. Optical and electronic signal stabilization of plasmonic fiber optic gate electrodes: Towards improved real-time dual-mode biosensing. Frontiers in Physics. 2023;11. doi:10.3389/fphy.2023.1202132' apa: 'Hasler, R., Steger-Polt, M. H., Reiner-Rozman, C., Fossati, S., Lee, S., Aspermair, P., … Knoll, W. (2023). Optical and electronic signal stabilization of plasmonic fiber optic gate electrodes: Towards improved real-time dual-mode biosensing. Frontiers in Physics. Frontiers. https://doi.org/10.3389/fphy.2023.1202132' chicago: 'Hasler, Roger, Marie Helene Steger-Polt, Ciril Reiner-Rozman, Stefan Fossati, Seungho Lee, Patrik Aspermair, Christoph Kleber, Maria Ibáñez, Jakub Dostalek, and Wolfgang Knoll. “Optical and Electronic Signal Stabilization of Plasmonic Fiber Optic Gate Electrodes: Towards Improved Real-Time Dual-Mode Biosensing.” Frontiers in Physics. Frontiers, 2023. https://doi.org/10.3389/fphy.2023.1202132.' ieee: 'R. Hasler et al., “Optical and electronic signal stabilization of plasmonic fiber optic gate electrodes: Towards improved real-time dual-mode biosensing,” Frontiers in Physics, vol. 11. Frontiers, 2023.' ista: 'Hasler R, Steger-Polt MH, Reiner-Rozman C, Fossati S, Lee S, Aspermair P, Kleber C, Ibáñez M, Dostalek J, Knoll W. 2023. Optical and electronic signal stabilization of plasmonic fiber optic gate electrodes: Towards improved real-time dual-mode biosensing. Frontiers in Physics. 11, 1202132.' mla: 'Hasler, Roger, et al. “Optical and Electronic Signal Stabilization of Plasmonic Fiber Optic Gate Electrodes: Towards Improved Real-Time Dual-Mode Biosensing.” Frontiers in Physics, vol. 11, 1202132, Frontiers, 2023, doi:10.3389/fphy.2023.1202132.' short: R. Hasler, M.H. Steger-Polt, C. Reiner-Rozman, S. Fossati, S. Lee, P. Aspermair, C. Kleber, M. Ibáñez, J. Dostalek, W. Knoll, Frontiers in Physics 11 (2023). date_created: 2023-08-06T22:01:11Z date_published: 2023-07-14T00:00:00Z date_updated: 2023-12-13T12:04:10Z day: '14' ddc: - '530' department: - _id: MaIb doi: 10.3389/fphy.2023.1202132 external_id: isi: - '001038636400001' file: - access_level: open_access checksum: fb36dda665e57bab006a000bf0faacd5 content_type: application/pdf creator: dernst date_created: 2023-08-07T07:48:11Z date_updated: 2023-08-07T07:48:11Z file_id: '13978' file_name: 2023_FrontiersPhysics_Hasler.pdf file_size: 2421758 relation: main_file success: 1 file_date_updated: 2023-08-07T07:48:11Z has_accepted_license: '1' intvolume: ' 11' isi: 1 language: - iso: eng month: '07' oa: 1 oa_version: Published Version publication: Frontiers in Physics publication_identifier: eissn: - 2296-424X publication_status: published publisher: Frontiers quality_controlled: '1' scopus_import: '1' status: public title: 'Optical and electronic signal stabilization of plasmonic fiber optic gate electrodes: Towards improved real-time dual-mode biosensing' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 11 year: '2023' ... --- _id: '14434' abstract: - lang: eng text: High entropy alloys (HEAs) are highly suitable candidate catalysts for oxygen evolution and reduction reactions (OER/ORR) as they offer numerous parameters for optimizing the electronic structure and catalytic sites. Herein, FeCoNiMoW HEA nanoparticles are synthesized using a solution‐based low‐temperature approach. Such FeCoNiMoW nanoparticles show high entropy properties, subtle lattice distortions, and modulated electronic structure, leading to superior OER performance with an overpotential of 233 mV at 10 mA cm−2 and 276 mV at 100 mA cm−2. Density functional theory calculations reveal the electronic structures of the FeCoNiMoW active sites with an optimized d‐band center position that enables suitable adsorption of OOH* intermediates and reduces the Gibbs free energy barrier in the OER process. Aqueous zinc–air batteries (ZABs) based on this HEA demonstrate a high open circuit potential of 1.59 V, a peak power density of 116.9 mW cm−2, a specific capacity of 857 mAh gZn−1, and excellent stability for over 660 h of continuous charge–discharge cycles. Flexible and solid ZABs are also assembled and tested, displaying excellent charge–discharge performance at different bending angles. This work shows the significance of 4d/5d metal‐modulated electronic structure and optimized adsorption ability to improve the performance of OER/ORR, ZABs, and beyond. acknowledged_ssus: - _id: EM-Fac acknowledgement: The authors acknowledge funding from Generalitat de Catalunya 2021 SGR 01581; the project COMBENERGY, PID2019-105490RB-C32, from the Spanish Ministerio de Ciencia e Innovación; the National Natural Science Foundation of China (22102002); the Anhui Provincial Natural Science Foundation (2108085QE192); Zhejiang Province key research and development project (2023C01191); the Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering (GrantNo.2022-K31); and The Key Research and Development Program of Hebei Province (20314305D). IREC is funded by the CERCA Programme from the Generalitat de Catalunya. L.L.Y. thanks the China Scholarship Council (CSC) for the scholarship support (202008130132). This research was supported by the Scientific Service Units (SSU) of ISTA (Institute of Science and Technology Austria) through resources provided by the Electron Microscopy Facility (EMF). S.L., S.H., and M.I. acknowledge funding by ISTA and the Werner Siemens. article_number: '2303719' article_processing_charge: No article_type: original author: - first_name: Ren full_name: He, Ren last_name: He - first_name: Linlin full_name: Yang, Linlin last_name: Yang - first_name: Yu full_name: Zhang, Yu last_name: Zhang - first_name: Daochuan full_name: Jiang, Daochuan last_name: Jiang - first_name: Seungho full_name: Lee, Seungho id: BB243B88-D767-11E9-B658-BC13E6697425 last_name: Lee orcid: 0000-0002-6962-8598 - first_name: Sharona full_name: Horta, Sharona id: 03a7e858-01b1-11ec-8b71-99ae6c4a05bc last_name: Horta - first_name: Zhifu full_name: Liang, Zhifu last_name: Liang - first_name: Xuan full_name: Lu, Xuan last_name: Lu - first_name: Ahmad full_name: Ostovari Moghaddam, Ahmad last_name: Ostovari Moghaddam - first_name: Junshan full_name: Li, Junshan last_name: Li - first_name: Maria full_name: Ibáñez, Maria id: 43C61214-F248-11E8-B48F-1D18A9856A87 last_name: Ibáñez orcid: 0000-0001-5013-2843 - first_name: Ying full_name: Xu, Ying last_name: Xu - first_name: Yingtang full_name: Zhou, Yingtang last_name: Zhou - first_name: Andreu full_name: Cabot, Andreu last_name: Cabot citation: ama: He R, Yang L, Zhang Y, et al. A 3d‐4d‐5d high entropy alloy as a bifunctional oxygen catalyst for robust aqueous zinc–air batteries. Advanced Materials. 2023. doi:10.1002/adma.202303719 apa: He, R., Yang, L., Zhang, Y., Jiang, D., Lee, S., Horta, S., … Cabot, A. (2023). A 3d‐4d‐5d high entropy alloy as a bifunctional oxygen catalyst for robust aqueous zinc–air batteries. Advanced Materials. Wiley. https://doi.org/10.1002/adma.202303719 chicago: He, Ren, Linlin Yang, Yu Zhang, Daochuan Jiang, Seungho Lee, Sharona Horta, Zhifu Liang, et al. “A 3d‐4d‐5d High Entropy Alloy as a Bifunctional Oxygen Catalyst for Robust Aqueous Zinc–Air Batteries.” Advanced Materials. Wiley, 2023. https://doi.org/10.1002/adma.202303719. ieee: R. He et al., “A 3d‐4d‐5d high entropy alloy as a bifunctional oxygen catalyst for robust aqueous zinc–air batteries,” Advanced Materials. Wiley, 2023. ista: He R, Yang L, Zhang Y, Jiang D, Lee S, Horta S, Liang Z, Lu X, Ostovari Moghaddam A, Li J, Ibáñez M, Xu Y, Zhou Y, Cabot A. 2023. A 3d‐4d‐5d high entropy alloy as a bifunctional oxygen catalyst for robust aqueous zinc–air batteries. Advanced Materials., 2303719. mla: He, Ren, et al. “A 3d‐4d‐5d High Entropy Alloy as a Bifunctional Oxygen Catalyst for Robust Aqueous Zinc–Air Batteries.” Advanced Materials, 2303719, Wiley, 2023, doi:10.1002/adma.202303719. short: R. He, L. Yang, Y. Zhang, D. Jiang, S. Lee, S. Horta, Z. Liang, X. Lu, A. Ostovari Moghaddam, J. Li, M. Ibáñez, Y. Xu, Y. Zhou, A. Cabot, Advanced Materials (2023). date_created: 2023-10-17T10:52:23Z date_published: 2023-07-24T00:00:00Z date_updated: 2023-12-13T13:03:23Z day: '24' department: - _id: MaIb doi: 10.1002/adma.202303719 external_id: isi: - '001083876900001' pmid: - '37487245' isi: 1 keyword: - Mechanical Engineering - Mechanics of Materials - General Materials Science language: - iso: eng month: '07' oa_version: None pmid: 1 project: - _id: 9B8F7476-BA93-11EA-9121-9846C619BF3A name: 'HighTE: The Werner Siemens Laboratory for the High Throughput Discovery of Semiconductors for Waste Heat Recovery' publication: Advanced Materials publication_identifier: issn: - 0935-9648 - 1521-4095 publication_status: epub_ahead publisher: Wiley quality_controlled: '1' status: public title: A 3d‐4d‐5d high entropy alloy as a bifunctional oxygen catalyst for robust aqueous zinc–air batteries type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ... --- _id: '14435' abstract: - lang: eng text: Low‐cost, safe, and environmental‐friendly rechargeable aqueous zinc‐ion batteries (ZIBs) are promising as next‐generation energy storage devices for wearable electronics among other applications. However, sluggish ionic transport kinetics and the unstable electrode structure during ionic insertion/extraction hampers their deployment. Herein,  we propose a new cathode material based on a layered metal chalcogenide (LMC), bismuth telluride (Bi2Te3), coated with polypyrrole (PPy). Taking advantage of the PPy coating, the Bi2Te3@PPy composite presents strong ionic absorption affinity, high oxidation resistance, and high structural stability. The ZIBs based on Bi2Te3@PPy cathodes exhibit high capacities and ultra‐long lifespans of over 5000 cycles. They also present outstanding stability even under bending. In addition,  we analyze here the reaction mechanism using in situ X‐ray diffraction, X‐ray photoelectron spectroscopy, and computational tools and demonstrate that, in the aqueous system, Zn2+ is not inserted into the cathode as previously assumed. In contrast, proton charge storage dominates the process. Overall, this work not only shows the great potential of LMCs as ZIBs cathode materials and the advantages of PPy coating, but also clarifies the charge/discharge mechanism in rechargeable ZIBs based on LMCs. article_number: '2305128' article_processing_charge: No article_type: original author: - first_name: Guifang full_name: Zeng, Guifang last_name: Zeng - first_name: Qing full_name: Sun, Qing last_name: Sun - first_name: Sharona full_name: Horta, Sharona id: 03a7e858-01b1-11ec-8b71-99ae6c4a05bc last_name: Horta - first_name: Shang full_name: Wang, Shang last_name: Wang - first_name: Xuan full_name: Lu, Xuan last_name: Lu - first_name: Chaoyue full_name: Zhang, Chaoyue last_name: Zhang - first_name: Jing full_name: Li, Jing last_name: Li - first_name: Junshan full_name: Li, Junshan last_name: Li - first_name: Lijie full_name: Ci, Lijie last_name: Ci - first_name: Yanhong full_name: Tian, Yanhong last_name: Tian - first_name: Maria full_name: Ibáñez, Maria id: 43C61214-F248-11E8-B48F-1D18A9856A87 last_name: Ibáñez orcid: 0000-0001-5013-2843 - first_name: Andreu full_name: Cabot, Andreu last_name: Cabot citation: ama: 'Zeng G, Sun Q, Horta S, et al. A layered Bi2Te3@PPy cathode for aqueous zinc ion batteries: Mechanism and application in printed flexible batteries. Advanced Materials. doi:10.1002/adma.202305128' apa: 'Zeng, G., Sun, Q., Horta, S., Wang, S., Lu, X., Zhang, C., … Cabot, A. (n.d.). A layered Bi2Te3@PPy cathode for aqueous zinc ion batteries: Mechanism and application in printed flexible batteries. Advanced Materials. Wiley. https://doi.org/10.1002/adma.202305128' chicago: 'Zeng, Guifang, Qing Sun, Sharona Horta, Shang Wang, Xuan Lu, Chaoyue Zhang, Jing Li, et al. “A Layered Bi2Te3@PPy Cathode for Aqueous Zinc Ion Batteries: Mechanism and Application in Printed Flexible Batteries.” Advanced Materials. Wiley, n.d. https://doi.org/10.1002/adma.202305128.' ieee: 'G. Zeng et al., “A layered Bi2Te3@PPy cathode for aqueous zinc ion batteries: Mechanism and application in printed flexible batteries,” Advanced Materials. Wiley.' ista: 'Zeng G, Sun Q, Horta S, Wang S, Lu X, Zhang C, Li J, Li J, Ci L, Tian Y, Ibáñez M, Cabot A. A layered Bi2Te3@PPy cathode for aqueous zinc ion batteries: Mechanism and application in printed flexible batteries. Advanced Materials., 2305128.' mla: 'Zeng, Guifang, et al. “A Layered Bi2Te3@PPy Cathode for Aqueous Zinc Ion Batteries: Mechanism and Application in Printed Flexible Batteries.” Advanced Materials, 2305128, Wiley, doi:10.1002/adma.202305128.' short: G. Zeng, Q. Sun, S. Horta, S. Wang, X. Lu, C. Zhang, J. Li, J. Li, L. Ci, Y. Tian, M. Ibáñez, A. Cabot, Advanced Materials (n.d.). date_created: 2023-10-17T10:53:56Z date_published: 2023-08-09T00:00:00Z date_updated: 2023-12-13T13:03:53Z day: '09' department: - _id: MaIb doi: 10.1002/adma.202305128 external_id: isi: - '001085681000001' pmid: - '37555532' isi: 1 keyword: - Mechanical Engineering - Mechanics of Materials - General Materials Science language: - iso: eng month: '08' oa_version: None pmid: 1 publication: Advanced Materials publication_identifier: eissn: - 1521-4095 issn: - 0935-9648 publication_status: accepted publisher: Wiley quality_controlled: '1' status: public title: 'A layered Bi2Te3@PPy cathode for aqueous zinc ion batteries: Mechanism and application in printed flexible batteries' type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 year: '2023' ...