TY - GEN AB - Asteroseismology has transformed stellar astrophysics. Red giant asteroseismology is a prime example, with oscillation periods and amplitudes that are readily detectable with time-domain space-based telescopes. These oscillations can be used to infer masses, ages and radii for large numbers of stars, providing unique constraints on stellar populations in our galaxy. The cadence, duration, and spatial resolution of the Roman galactic bulge time-domain survey (GBTDS) are well-suited for asteroseismology and will probe an important population not studied by prior missions. We identify photometric precision as a key requirement for realizing the potential of asteroseismology with Roman. A precision of 1 mmag per 15-min cadence or better for saturated stars will enable detections of the populous red clump star population in the Galactic bulge. If the survey efficiency is better than expected, we argue for repeat observations of the same fields to improve photometric precision, or covering additional fields to expand the stellar population reach if the photometric precision for saturated stars is better than 1 mmag. Asteroseismology is relatively insensitive to the timing of the observations during the mission, and the prime red clump targets can be observed in a single 70 day campaign in any given field. Complementary stellar characterization, particularly astrometry tied to the Gaia system, will also dramatically expand the diagnostic power of asteroseismology. We also highlight synergies to Roman GBTDS exoplanet science using transits and microlensing. AU - Huber, Daniel AU - Pinsonneault, Marc AU - Beck, Paul AU - Bedding, Timothy R. AU - Joss Bland-Hawthorn, Joss Bland-Hawthorn AU - Breton, Sylvain N. AU - Bugnet, Lisa Annabelle AU - Chaplin, William J. AU - Garcia, Rafael A. AU - Grunblatt, Samuel K. AU - Guzik, Joyce A. AU - Hekker, Saskia AU - Kawaler, Steven D. AU - Mathis, Stephane AU - Mathur, Savita AU - Metcalfe, Travis AU - Mosser, Benoit AU - Ness, Melissa K. AU - Piro, Anthony L. AU - Serenelli, Aldo AU - Sharma, Sanjib AU - Soderblom, David R. AU - Stassun, Keivan G. AU - Stello, Dennis AU - Tayar, Jamie AU - Belle, Gerard T. van AU - Zinn, Joel C. ID - 13447 T2 - arXiv TI - Asteroseismology with the Roman galactic bulge time-domain survey ER - TY - JOUR AB - Context. Space asteroseismology is revolutionizing our knowledge of the internal structure and dynamics of stars. A breakthrough is ongoing with the recent discoveries of signatures of strong magnetic fields in the core of red giant stars. The key signature for such a detection is the asymmetry these fields induce in the frequency splittings of observed dipolar mixed gravito-acoustic modes. Aims. We investigate the ability of the observed asymmetries of the frequency splittings of dipolar mixed modes to constrain the geometrical properties of deep magnetic fields. Methods. We used the powerful analytical Racah-Wigner algebra used in quantum mechanics to characterize the geometrical couplings of dipolar mixed oscillation modes with various realistically plausible topologies of fossil magnetic fields. We also computed the induced perturbation of their frequencies. Results. First, in the case of an oblique magnetic dipole, we provide the exact analytical expression of the asymmetry as a function of the angle between the rotation and magnetic axes. Its value provides a direct measure of this angle. Second, considering a combination of axisymmetric dipolar and quadrupolar fields, we show how the asymmetry is blind to the unraveling of the relative strength and sign of each component. Finally, in the case of a given multipole, we show that a negative asymmetry is a signature of non-axisymmetric topologies. Conclusions. Asymmetries of dipolar mixed modes provide a key bit of information on the geometrical topology of deep fossil magnetic fields, but this is insufficient on its own. Asteroseismic constraints should therefore be combined with spectropolarimetric observations and numerical simulations, which aim to predict the more probable stable large-scale geometries. AU - Mathis, S. AU - Bugnet, Lisa Annabelle ID - 14256 JF - Astronomy and Astrophysics SN - 0004-6361 TI - Asymmetries of frequency splittings of dipolar mixed modes: A window on the topology of deep magnetic fields VL - 676 ER - TY - JOUR AB - The ages of solar-like stars have been at the center of many studies such as exoplanet characterization or Galactic-archeology. While ages are usually computed from stellar evolution models, relations linking ages to other stellar properties, such as rotation and magnetic activity, have been investigated. With the large catalog of 55,232 rotation periods, Prot, and photometric magnetic activity index, Sph from Kepler data, we have the opportunity to look for such magneto-gyro-chronology relations. Stellar ages are obtained with two stellar evolution codes that include treatment of angular momentum evolution, hence using Prot as input in addition to classical atmospheric parameters. We explore two different ways of predicting stellar ages on three subsamples with spectroscopic observations: solar analogs, late-F and G dwarfs, and K dwarfs. We first perform a Bayesian analysis to derive relations between Sph and ages between 1 and 5 Gyr, and other stellar properties. For late-F and G dwarfs, and K dwarfs, the multivariate regression favors the model with Prot and Sph with median differences of 0.1% and 0.2%, respectively. We also apply Machine Learning techniques with a Random Forest algorithm to predict ages up to 14 Gyr with the same set of input parameters. For late-F, G and K dwarfs together, predicted ages are on average within 5.3% of the model ages and improve to 3.1% when including Prot. These are very promising results for a quick age estimation for solar-like stars with photometric observations, especially with current and future space missions. AU - Mathur, Savita AU - Claytor, Zachary R. AU - Santos, Ângela R. G. AU - García, Rafael A. AU - Amard, Louis AU - Bugnet, Lisa Annabelle AU - Corsaro, Enrico AU - Bonanno, Alfio AU - Breton, Sylvain N. AU - Godoy-Rivera, Diego AU - Pinsonneault, Marc H. AU - van Saders, Jennifer ID - 13443 IS - 2 JF - The Astrophysical Journal KW - Space and Planetary Science KW - Astronomy and Astrophysics SN - 0004-637X TI - Magnetic activity evolution of solar-like stars. I. Sph–age relation derived from Kepler observations VL - 952 ER -