---
_id: '70'
abstract:
- lang: eng
text: We consider the totally asymmetric simple exclusion process in a critical
scaling parametrized by a≥0, which creates a shock in the particle density of
order aT−1/3, T the observation time. When starting from step initial data, we
provide bounds on the limiting law which in particular imply that in the double
limit lima→∞limT→∞ one recovers the product limit law and the degeneration of
the correlation length observed at shocks of order 1. This result is shown to
apply to a general last-passage percolation model. We also obtain bounds on the
two-point functions of several airy processes.
article_processing_charge: No
article_type: original
author:
- first_name: Peter
full_name: Nejjar, Peter
id: 4BF426E2-F248-11E8-B48F-1D18A9856A87
last_name: Nejjar
citation:
ama: Nejjar P. Transition to shocks in TASEP and decoupling of last passage times.
*Latin American Journal of Probability and Mathematical Statistics*. 2018;15(2):1311-1334.
doi:10.30757/ALEA.v15-49
apa: Nejjar, P. (2018). Transition to shocks in TASEP and decoupling of last passage
times. *Latin American Journal of Probability and Mathematical Statistics*.
ALEA. https://doi.org/10.30757/ALEA.v15-49
chicago: Nejjar, Peter. “Transition to Shocks in TASEP and Decoupling of Last Passage
Times.” *Latin American Journal of Probability and Mathematical Statistics*.
ALEA, 2018. https://doi.org/10.30757/ALEA.v15-49.
ieee: P. Nejjar, “Transition to shocks in TASEP and decoupling of last passage times,”
*Latin American Journal of Probability and Mathematical Statistics*, vol.
15, no. 2. ALEA, pp. 1311–1334, 2018.
ista: Nejjar P. 2018. Transition to shocks in TASEP and decoupling of last passage
times. Latin American Journal of Probability and Mathematical Statistics. 15(2),
1311–1334.
mla: Nejjar, Peter. “Transition to Shocks in TASEP and Decoupling of Last Passage
Times.” *Latin American Journal of Probability and Mathematical Statistics*,
vol. 15, no. 2, ALEA, 2018, pp. 1311–34, doi:10.30757/ALEA.v15-49.
short: P. Nejjar, Latin American Journal of Probability and Mathematical Statistics
15 (2018) 1311–1334.
date_created: 2018-12-11T11:44:28Z
date_published: 2018-10-01T00:00:00Z
date_updated: 2021-01-12T08:11:24Z
day: '01'
ddc:
- '510'
department:
- _id: LaEr
- _id: JaMa
doi: 10.30757/ALEA.v15-49
ec_funded: 1
external_id:
arxiv:
- '1705.08836'
file:
- access_level: open_access
checksum: 2ded46aa284a836a8cbb34133a64f1cb
content_type: application/pdf
creator: kschuh
date_created: 2019-02-14T09:44:10Z
date_updated: 2020-07-14T12:47:46Z
file_id: '5981'
file_name: 2018_ALEA_Nejjar.pdf
file_size: 394851
relation: main_file
file_date_updated: 2020-07-14T12:47:46Z
has_accepted_license: '1'
intvolume: ' 15'
issue: '2'
language:
- iso: eng
month: '10'
oa: 1
oa_version: Published Version
page: 1311-1334
project:
- _id: 258DCDE6-B435-11E9-9278-68D0E5697425
call_identifier: FP7
grant_number: '338804'
name: Random matrices, universality and disordered quantum systems
- _id: 256E75B8-B435-11E9-9278-68D0E5697425
call_identifier: H2020
grant_number: '716117'
name: Optimal Transport and Stochastic Dynamics
publication: Latin American Journal of Probability and Mathematical Statistics
publication_identifier:
issn:
- 1980-0436
publication_status: published
publisher: ALEA
quality_controlled: '1'
scopus_import: 1
status: public
title: Transition to shocks in TASEP and decoupling of last passage times
type: journal_article
user_id: D865714E-FA4E-11E9-B85B-F5C5E5697425
volume: 15
year: '2018'
...
---
_id: '149'
abstract:
- lang: eng
text: The eigenvalue density of many large random matrices is well approximated
by a deterministic measure, the self-consistent density of states. In the present
work, we show this behaviour for several classes of random matrices. In fact,
we establish that, in each of these classes, the self-consistent density of states
approximates the eigenvalue density of the random matrix on all scales slightly
above the typical eigenvalue spacing. For large classes of random matrices, the
self-consistent density of states exhibits several universal features. We prove
that, under suitable assumptions, random Gram matrices and Hermitian random matrices
with decaying correlations have a 1/3-Hölder continuous self-consistent density
of states ρ on R, which is analytic, where it is positive, and has either a square
root edge or a cubic root cusp, where it vanishes. We, thus, extend the validity
of the corresponding result for Wigner-type matrices from [4, 5, 7]. We show that
ρ is determined as the inverse Stieltjes transform of the normalized trace of
the unique solution m(z) to the Dyson equation −m(z) −1 = z − a + S[m(z)] on C
N×N with the constraint Im m(z) ≥ 0. Here, z lies in the complex upper half-plane,
a is a self-adjoint element of C N×N and S is a positivity-preserving operator
on C N×N encoding the first two moments of the random matrix. In order to analyze
a possible limit of ρ for N → ∞ and address some applications in free probability
theory, we also consider the Dyson equation on infinite dimensional von Neumann
algebras. We present two applications to random matrices. We first establish that,
under certain assumptions, large random matrices with independent entries have
a rotationally symmetric self-consistent density of states which is supported
on a centered disk in C. Moreover, it is infinitely often differentiable apart
from a jump on the boundary of this disk. Second, we show edge universality at
all regular (not necessarily extreme) spectral edges for Hermitian random matrices
with decaying correlations.
alternative_title:
- IST Austria Thesis
author:
- first_name: Johannes
full_name: Alt, Johannes
id: 36D3D8B6-F248-11E8-B48F-1D18A9856A87
last_name: Alt
citation:
ama: Alt J. Dyson equation and eigenvalue statistics of random matrices. 2018. doi:10.15479/AT:ISTA:TH_1040
apa: Alt, J. (2018). *Dyson equation and eigenvalue statistics of random matrices*.
IST Austria. https://doi.org/10.15479/AT:ISTA:TH_1040
chicago: Alt, Johannes. “Dyson Equation and Eigenvalue Statistics of Random Matrices.”
IST Austria, 2018. https://doi.org/10.15479/AT:ISTA:TH_1040.
ieee: J. Alt, “Dyson equation and eigenvalue statistics of random matrices,” IST
Austria, 2018.
ista: Alt J. 2018. Dyson equation and eigenvalue statistics of random matrices.
IST Austria.
mla: Alt, Johannes. *Dyson Equation and Eigenvalue Statistics of Random Matrices*.
IST Austria, 2018, doi:10.15479/AT:ISTA:TH_1040.
short: J. Alt, Dyson Equation and Eigenvalue Statistics of Random Matrices, IST
Austria, 2018.
date_created: 2018-12-11T11:44:53Z
date_published: 2018-07-12T00:00:00Z
date_updated: 2021-01-12T08:06:48Z
day: '12'
ddc:
- '515'
- '519'
department:
- _id: LaEr
doi: 10.15479/AT:ISTA:TH_1040
ec_funded: 1
file:
- access_level: open_access
checksum: d4dad55a7513f345706aaaba90cb1bb8
content_type: application/pdf
creator: dernst
date_created: 2019-04-08T13:55:20Z
date_updated: 2020-07-14T12:44:57Z
file_id: '6241'
file_name: 2018_thesis_Alt.pdf
file_size: 5801709
relation: main_file
- access_level: closed
checksum: d73fcf46300dce74c403f2b491148ab4
content_type: application/zip
creator: dernst
date_created: 2019-04-08T13:55:20Z
date_updated: 2020-07-14T12:44:57Z
file_id: '6242'
file_name: 2018_thesis_Alt_source.zip
file_size: 3802059
relation: source_file
file_date_updated: 2020-07-14T12:44:57Z
has_accepted_license: '1'
language:
- iso: eng
license: https://creativecommons.org/licenses/by/4.0/
month: '07'
oa: 1
oa_version: Published Version
page: '456'
project:
- _id: 258DCDE6-B435-11E9-9278-68D0E5697425
call_identifier: FP7
grant_number: '338804'
name: Random matrices, universality and disordered quantum systems
publication_status: published
publisher: IST Austria
publist_id: '7772'
pubrep_id: '1040'
related_material:
record:
- id: '1010'
relation: part_of_dissertation
status: public
- id: '1677'
relation: part_of_dissertation
status: public
- id: '550'
relation: part_of_dissertation
status: public
- id: '566'
relation: part_of_dissertation
status: public
- id: '6183'
relation: part_of_dissertation
status: public
- id: '6184'
relation: part_of_dissertation
status: public
- id: '6240'
relation: part_of_dissertation
status: public
status: public
supervisor:
- first_name: László
full_name: Erdös, László
id: 4DBD5372-F248-11E8-B48F-1D18A9856A87
last_name: Erdös
orcid: 0000-0001-5366-9603
title: Dyson equation and eigenvalue statistics of random matrices
tmp:
image: /images/cc_by.png
legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode
name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0)
short: CC BY (4.0)
type: dissertation
user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87
year: '2018'
...
---
_id: '1012'
abstract:
- lang: eng
text: We prove a new central limit theorem (CLT) for the difference of linear eigenvalue
statistics of a Wigner random matrix H and its minor H and find that the fluctuation
is much smaller than the fluctuations of the individual linear statistics, as
a consequence of the strong correlation between the eigenvalues of H and H. In
particular, our theorem identifies the fluctuation of Kerov's rectangular Young
diagrams, defined by the interlacing eigenvalues ofH and H, around their asymptotic
shape, the Vershik'Kerov'Logan'Shepp curve. Young diagrams equipped with the Plancherel
measure follow the same limiting shape. For this, algebraically motivated, ensemble
a CLT has been obtained in Ivanov and Olshanski [20] which is structurally similar
to our result but the variance is different, indicating that the analogy between
the two models has its limitations. Moreover, our theorem shows that Borodin's
result [7] on the convergence of the spectral distribution of Wigner matrices
to a Gaussian free field also holds in derivative sense.
author:
- first_name: László
full_name: Erdös, László
id: 4DBD5372-F248-11E8-B48F-1D18A9856A87
last_name: Erdös
orcid: 0000-0001-5366-9603
- first_name: Dominik J
full_name: Schröder, Dominik J
id: 408ED176-F248-11E8-B48F-1D18A9856A87
last_name: Schröder
orcid: 0000-0002-2904-1856
citation:
ama: Erdös L, Schröder DJ. Fluctuations of rectangular young diagrams of interlacing
wigner eigenvalues. *International Mathematics Research Notices*. 2018;2018(10):3255-3298.
doi:10.1093/imrn/rnw330
apa: Erdös, L., & Schröder, D. J. (2018). Fluctuations of rectangular young
diagrams of interlacing wigner eigenvalues. *International Mathematics Research
Notices*. Oxford University Press. https://doi.org/10.1093/imrn/rnw330
chicago: Erdös, László, and Dominik J Schröder. “Fluctuations of Rectangular Young
Diagrams of Interlacing Wigner Eigenvalues.” *International Mathematics Research
Notices*. Oxford University Press, 2018. https://doi.org/10.1093/imrn/rnw330.
ieee: L. Erdös and D. J. Schröder, “Fluctuations of rectangular young diagrams of
interlacing wigner eigenvalues,” *International Mathematics Research Notices*,
vol. 2018, no. 10. Oxford University Press, pp. 3255–3298, 2018.
ista: Erdös L, Schröder DJ. 2018. Fluctuations of rectangular young diagrams of
interlacing wigner eigenvalues. International Mathematics Research Notices. 2018(10),
3255–3298.
mla: Erdös, László, and Dominik J. Schröder. “Fluctuations of Rectangular Young
Diagrams of Interlacing Wigner Eigenvalues.” *International Mathematics Research
Notices*, vol. 2018, no. 10, Oxford University Press, 2018, pp. 3255–98, doi:10.1093/imrn/rnw330.
short: L. Erdös, D.J. Schröder, International Mathematics Research Notices 2018
(2018) 3255–3298.
date_created: 2018-12-11T11:49:41Z
date_published: 2018-05-18T00:00:00Z
date_updated: 2021-01-12T08:06:34Z
day: '18'
department:
- _id: LaEr
doi: 10.1093/imrn/rnw330
ec_funded: 1
external_id:
arxiv:
- '1608.05163'
intvolume: ' 2018'
issue: '10'
language:
- iso: eng
main_file_link:
- open_access: '1'
url: https://arxiv.org/abs/1608.05163
month: '05'
oa: 1
oa_version: Preprint
page: 3255-3298
project:
- _id: 258DCDE6-B435-11E9-9278-68D0E5697425
call_identifier: FP7
grant_number: '338804'
name: Random matrices, universality and disordered quantum systems
publication: International Mathematics Research Notices
publication_identifier:
issn:
- '10737928'
publication_status: published
publisher: Oxford University Press
publist_id: '6383'
quality_controlled: '1'
related_material:
record:
- id: '6179'
relation: dissertation_contains
status: public
scopus_import: 1
status: public
title: Fluctuations of rectangular young diagrams of interlacing wigner eigenvalues
type: journal_article
user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87
volume: 2018
year: '2018'
...
---
_id: '721'
abstract:
- lang: eng
text: 'Let S be a positivity-preserving symmetric linear operator acting on bounded
functions. The nonlinear equation -1/m=z+Sm with a parameter z in the complex
upper half-plane ℍ has a unique solution m with values in ℍ. We show that the
z-dependence of this solution can be represented as the Stieltjes transforms of
a family of probability measures v on ℝ. Under suitable conditions on S, we show
that v has a real analytic density apart from finitely many algebraic singularities
of degree at most 3. Our motivation comes from large random matrices. The solution
m determines the density of eigenvalues of two prominent matrix ensembles: (i)
matrices with centered independent entries whose variances are given by S and
(ii) matrices with correlated entries with a translation-invariant correlation
structure. Our analysis shows that the limiting eigenvalue density has only square
root singularities or cubic root cusps; no other singularities occur.'
author:
- first_name: Oskari H
full_name: Ajanki, Oskari H
id: 36F2FB7E-F248-11E8-B48F-1D18A9856A87
last_name: Ajanki
- first_name: Torben H
full_name: Krüger, Torben H
id: 3020C786-F248-11E8-B48F-1D18A9856A87
last_name: Krüger
orcid: 0000-0002-4821-3297
- first_name: László
full_name: Erdös, László
id: 4DBD5372-F248-11E8-B48F-1D18A9856A87
last_name: Erdös
orcid: 0000-0001-5366-9603
citation:
ama: Ajanki OH, Krüger TH, Erdös L. Singularities of solutions to quadratic vector
equations on the complex upper half plane. *Communications on Pure and Applied
Mathematics*. 2017;70(9):1672-1705. doi:10.1002/cpa.21639
apa: Ajanki, O. H., Krüger, T. H., & Erdös, L. (2017). Singularities of solutions
to quadratic vector equations on the complex upper half plane. *Communications
on Pure and Applied Mathematics*. Wiley-Blackwell. https://doi.org/10.1002/cpa.21639
chicago: Ajanki, Oskari H, Torben H Krüger, and László Erdös. “Singularities of
Solutions to Quadratic Vector Equations on the Complex Upper Half Plane.” *Communications
on Pure and Applied Mathematics*. Wiley-Blackwell, 2017. https://doi.org/10.1002/cpa.21639.
ieee: O. H. Ajanki, T. H. Krüger, and L. Erdös, “Singularities of solutions to quadratic
vector equations on the complex upper half plane,” *Communications on Pure and
Applied Mathematics*, vol. 70, no. 9. Wiley-Blackwell, pp. 1672–1705, 2017.
ista: Ajanki OH, Krüger TH, Erdös L. 2017. Singularities of solutions to quadratic
vector equations on the complex upper half plane. Communications on Pure and Applied
Mathematics. 70(9), 1672–1705.
mla: Ajanki, Oskari H., et al. “Singularities of Solutions to Quadratic Vector Equations
on the Complex Upper Half Plane.” *Communications on Pure and Applied Mathematics*,
vol. 70, no. 9, Wiley-Blackwell, 2017, pp. 1672–705, doi:10.1002/cpa.21639.
short: O.H. Ajanki, T.H. Krüger, L. Erdös, Communications on Pure and Applied Mathematics
70 (2017) 1672–1705.
date_created: 2018-12-11T11:48:08Z
date_published: 2017-09-01T00:00:00Z
date_updated: 2021-01-12T08:12:24Z
day: '01'
department:
- _id: LaEr
doi: 10.1002/cpa.21639
ec_funded: 1
intvolume: ' 70'
issue: '9'
language:
- iso: eng
main_file_link:
- open_access: '1'
url: https://arxiv.org/abs/1512.03703
month: '09'
oa: 1
oa_version: Submitted Version
page: 1672 - 1705
project:
- _id: 258DCDE6-B435-11E9-9278-68D0E5697425
call_identifier: FP7
grant_number: '338804'
name: Random matrices, universality and disordered quantum systems
publication: Communications on Pure and Applied Mathematics
publication_identifier:
issn:
- '00103640'
publication_status: published
publisher: Wiley-Blackwell
publist_id: '6959'
quality_controlled: '1'
scopus_import: 1
status: public
title: Singularities of solutions to quadratic vector equations on the complex upper
half plane
type: journal_article
user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87
volume: 70
year: '2017'
...
---
_id: '733'
abstract:
- lang: eng
text: Let A and B be two N by N deterministic Hermitian matrices and let U be an
N by N Haar distributed unitary matrix. It is well known that the spectral distribution
of the sum H = A + UBU∗ converges weakly to the free additive convolution of the
spectral distributions of A and B, as N tends to infinity. We establish the optimal
convergence rate in the bulk of the spectrum.
acknowledgement: Partially supported by ERC Advanced Grant RANMAT No. 338804, Hong
Kong RGC grant ECS 26301517, and the Göran Gustafsson Foundation
author:
- first_name: Zhigang
full_name: Bao, Zhigang
id: 442E6A6C-F248-11E8-B48F-1D18A9856A87
last_name: Bao
orcid: 0000-0003-3036-1475
- first_name: László
full_name: Erdös, László
id: 4DBD5372-F248-11E8-B48F-1D18A9856A87
last_name: Erdös
orcid: 0000-0001-5366-9603
- first_name: Kevin
full_name: Schnelli, Kevin
id: 434AD0AE-F248-11E8-B48F-1D18A9856A87
last_name: Schnelli
orcid: 0000-0003-0954-3231
citation:
ama: Bao Z, Erdös L, Schnelli K. Convergence rate for spectral distribution of addition
of random matrices. *Advances in Mathematics*. 2017;319:251-291. doi:10.1016/j.aim.2017.08.028
apa: Bao, Z., Erdös, L., & Schnelli, K. (2017). Convergence rate for spectral
distribution of addition of random matrices. *Advances in Mathematics*. Academic
Press. https://doi.org/10.1016/j.aim.2017.08.028
chicago: Bao, Zhigang, László Erdös, and Kevin Schnelli. “Convergence Rate for Spectral
Distribution of Addition of Random Matrices.” *Advances in Mathematics*.
Academic Press, 2017. https://doi.org/10.1016/j.aim.2017.08.028.
ieee: Z. Bao, L. Erdös, and K. Schnelli, “Convergence rate for spectral distribution
of addition of random matrices,” *Advances in Mathematics*, vol. 319. Academic
Press, pp. 251–291, 2017.
ista: Bao Z, Erdös L, Schnelli K. 2017. Convergence rate for spectral distribution
of addition of random matrices. Advances in Mathematics. 319, 251–291.
mla: Bao, Zhigang, et al. “Convergence Rate for Spectral Distribution of Addition
of Random Matrices.” *Advances in Mathematics*, vol. 319, Academic Press,
2017, pp. 251–91, doi:10.1016/j.aim.2017.08.028.
short: Z. Bao, L. Erdös, K. Schnelli, Advances in Mathematics 319 (2017) 251–291.
date_created: 2018-12-11T11:48:13Z
date_published: 2017-10-15T00:00:00Z
date_updated: 2021-01-12T08:13:07Z
day: '15'
department:
- _id: LaEr
doi: 10.1016/j.aim.2017.08.028
ec_funded: 1
intvolume: ' 319'
language:
- iso: eng
main_file_link:
- open_access: '1'
url: https://arxiv.org/abs/1606.03076
month: '10'
oa: 1
oa_version: Submitted Version
page: 251 - 291
project:
- _id: 258DCDE6-B435-11E9-9278-68D0E5697425
call_identifier: FP7
grant_number: '338804'
name: Random matrices, universality and disordered quantum systems
publication: Advances in Mathematics
publication_status: published
publisher: Academic Press
publist_id: '6935'
quality_controlled: '1'
scopus_import: 1
status: public
title: Convergence rate for spectral distribution of addition of random matrices
type: journal_article
user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87
volume: 319
year: '2017'
...