---
_id: '5971'
abstract:
- lang: eng
text: "We consider a Wigner-type ensemble, i.e. large hermitian N×N random matrices
H=H∗ with centered independent entries and with a general matrix of variances
Sxy=\U0001D53C∣∣Hxy∣∣2. The norm of H is asymptotically given by the maximum of
the support of the self-consistent density of states. We establish a bound on
this maximum in terms of norms of powers of S that substantially improves the
earlier bound 2∥S∥1/2∞ given in [O. Ajanki, L. Erdős and T. Krüger, Universality
for general Wigner-type matrices, Prob. Theor. Rel. Fields169 (2017) 667–727].
The key element of the proof is an effective Markov chain approximation for the
contributions of the weighted Dyck paths appearing in the iterative solution of
the corresponding Dyson equation."
article_number: '1950009'
author:
- first_name: László
full_name: Erdös, László
id: 4DBD5372-F248-11E8-B48F-1D18A9856A87
last_name: Erdös
orcid: 0000-0001-5366-9603
- first_name: Peter
full_name: Mühlbacher, Peter
last_name: Mühlbacher
citation:
ama: 'Erdös L, Mühlbacher P. Bounds on the norm of Wigner-type random matrices.
*Random matrices: Theory and applications*. 2018. doi:10.1142/s2010326319500096'
apa: 'Erdös, L., & Mühlbacher, P. (2018). Bounds on the norm of Wigner-type
random matrices. *Random Matrices: Theory and Applications*. World Scientific
Publishing. https://doi.org/10.1142/s2010326319500096'
chicago: 'Erdös, László, and Peter Mühlbacher. “Bounds on the Norm of Wigner-Type
Random Matrices.” *Random Matrices: Theory and Applications*. World Scientific
Publishing, 2018. https://doi.org/10.1142/s2010326319500096.'
ieee: 'L. Erdös and P. Mühlbacher, “Bounds on the norm of Wigner-type random matrices,”
*Random matrices: Theory and applications*. World Scientific Publishing,
2018.'
ista: 'Erdös L, Mühlbacher P. 2018. Bounds on the norm of Wigner-type random matrices.
Random matrices: Theory and applications., 1950009.'
mla: 'Erdös, László, and Peter Mühlbacher. “Bounds on the Norm of Wigner-Type Random
Matrices.” *Random Matrices: Theory and Applications*, 1950009, World Scientific
Publishing, 2018, doi:10.1142/s2010326319500096.'
short: 'L. Erdös, P. Mühlbacher, Random Matrices: Theory and Applications (2018).'
date_created: 2019-02-13T10:40:54Z
date_published: 2018-09-26T00:00:00Z
date_updated: 2021-01-12T08:05:25Z
day: '26'
department:
- _id: LaEr
doi: 10.1142/s2010326319500096
ec_funded: 1
external_id:
arxiv:
- '1802.05175'
language:
- iso: eng
main_file_link:
- open_access: '1'
url: https://arxiv.org/abs/1802.05175
month: '09'
oa: 1
oa_version: Preprint
project:
- _id: 258DCDE6-B435-11E9-9278-68D0E5697425
call_identifier: FP7
grant_number: '338804'
name: Random matrices, universality and disordered quantum systems
publication: 'Random matrices: Theory and applications'
publication_identifier:
issn:
- 2010-3263
- 2010-3271
publication_status: published
publisher: World Scientific Publishing
quality_controlled: '1'
scopus_import: 1
status: public
title: Bounds on the norm of Wigner-type random matrices
type: journal_article
user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87
year: '2018'
...
---
_id: '6183'
abstract:
- lang: eng
text: "We study the unique solution $m$ of the Dyson equation \\[ -m(z)^{-1} = z
- a\r\n+ S[m(z)] \\] on a von Neumann algebra $\\mathcal{A}$ with the constraint\r\n$\\mathrm{Im}\\,m\\geq
0$. Here, $z$ lies in the complex upper half-plane, $a$ is\r\na self-adjoint element
of $\\mathcal{A}$ and $S$ is a positivity-preserving\r\nlinear operator on $\\mathcal{A}$.
We show that $m$ is the Stieltjes transform\r\nof a compactly supported $\\mathcal{A}$-valued
measure on $\\mathbb{R}$. Under\r\nsuitable assumptions, we establish that this
measure has a uniformly\r\n$1/3$-H\\\"{o}lder continuous density with respect
to the Lebesgue measure, which\r\nis supported on finitely many intervals, called
bands. In fact, the density is\r\nanalytic inside the bands with a square-root
growth at the edges and internal\r\ncubic root cusps whenever the gap between
two bands vanishes. The shape of\r\nthese singularities is universal and no other
singularity may occur. We give a\r\nprecise asymptotic description of $m$ near
the singular points. These\r\nasymptotics generalize the analysis at the regular
edges given in the companion\r\npaper on the Tracy-Widom universality for the
edge eigenvalue statistics for\r\ncorrelated random matrices [arXiv:1804.07744]
and they play a key role in the\r\nproof of the Pearcey universality at the cusp
for Wigner-type matrices\r\n[arXiv:1809.03971,arXiv:1811.04055]. We also extend
the finite dimensional band\r\nmass formula from [arXiv:1804.07744] to the von
Neumann algebra setting by\r\nshowing that the spectral mass of the bands is topologically
rigid under\r\ndeformations and we conclude that these masses are quantized in
some important\r\ncases."
article_number: '1804.07752'
article_processing_charge: No
author:
- first_name: Johannes
full_name: Alt, Johannes
id: 36D3D8B6-F248-11E8-B48F-1D18A9856A87
last_name: Alt
- first_name: László
full_name: Erdös, László
id: 4DBD5372-F248-11E8-B48F-1D18A9856A87
last_name: Erdös
orcid: 0000-0001-5366-9603
- first_name: Torben H
full_name: Krüger, Torben H
id: 3020C786-F248-11E8-B48F-1D18A9856A87
last_name: Krüger
orcid: 0000-0002-4821-3297
citation:
ama: 'Alt J, Erdös L, Krüger TH. The Dyson equation with linear self-energy: Spectral
bands, edges and cusps. *arXiv*.'
apa: 'Alt, J., Erdös, L., & Krüger, T. H. (n.d.). The Dyson equation with linear
self-energy: Spectral bands, edges and cusps. *arXiv*.'
chicago: 'Alt, Johannes, László Erdös, and Torben H Krüger. “The Dyson Equation
with Linear Self-Energy: Spectral Bands, Edges and Cusps.” *ArXiv*, n.d.'
ieee: 'J. Alt, L. Erdös, and T. H. Krüger, “The Dyson equation with linear self-energy:
Spectral bands, edges and cusps,” *arXiv*. .'
ista: 'Alt J, Erdös L, Krüger TH. The Dyson equation with linear self-energy: Spectral
bands, edges and cusps. arXiv, 1804.07752.'
mla: 'Alt, Johannes, et al. “The Dyson Equation with Linear Self-Energy: Spectral
Bands, Edges and Cusps.” *ArXiv*, 1804.07752.'
short: J. Alt, L. Erdös, T.H. Krüger, ArXiv (n.d.).
date_created: 2019-03-28T09:20:06Z
date_published: 2018-04-20T00:00:00Z
date_updated: 2021-01-12T08:06:36Z
day: '20'
department:
- _id: LaEr
external_id:
arxiv:
- '1804.07752'
language:
- iso: eng
main_file_link:
- open_access: '1'
url: https://arxiv.org/abs/1804.07752
month: '04'
oa: 1
oa_version: Preprint
publication: arXiv
publication_status: submitted
related_material:
record:
- id: '149'
relation: dissertation_contains
status: public
status: public
title: 'The Dyson equation with linear self-energy: Spectral bands, edges and cusps'
type: preprint
user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87
year: '2018'
...
---
_id: '690'
abstract:
- lang: eng
text: We consider spectral properties and the edge universality of sparse random
matrices, the class of random matrices that includes the adjacency matrices of
the Erdős–Rényi graph model G(N, p). We prove a local law for the eigenvalue density
up to the spectral edges. Under a suitable condition on the sparsity, we also
prove that the rescaled extremal eigenvalues exhibit GOE Tracy–Widom fluctuations
if a deterministic shift of the spectral edge due to the sparsity is included.
For the adjacency matrix of the Erdős–Rényi graph this establishes the Tracy–Widom
fluctuations of the second largest eigenvalue when p is much larger than N−2/3
with a deterministic shift of order (Np)−1.
article_number: 543-616
author:
- first_name: Jii
full_name: Lee, Jii
last_name: Lee
- first_name: Kevin
full_name: Schnelli, Kevin
id: 434AD0AE-F248-11E8-B48F-1D18A9856A87
last_name: Schnelli
orcid: 0000-0003-0954-3231
citation:
ama: Lee J, Schnelli K. Local law and Tracy–Widom limit for sparse random matrices.
*Probability Theory and Related Fields*. 2018;171(1-2). doi:10.1007/s00440-017-0787-8
apa: Lee, J., & Schnelli, K. (2018). Local law and Tracy–Widom limit for sparse
random matrices. *Probability Theory and Related Fields*. Springer. https://doi.org/10.1007/s00440-017-0787-8
chicago: Lee, Jii, and Kevin Schnelli. “Local Law and Tracy–Widom Limit for Sparse
Random Matrices.” *Probability Theory and Related Fields*. Springer, 2018.
https://doi.org/10.1007/s00440-017-0787-8.
ieee: J. Lee and K. Schnelli, “Local law and Tracy–Widom limit for sparse random
matrices,” *Probability Theory and Related Fields*, vol. 171, no. 1–2. Springer,
2018.
ista: Lee J, Schnelli K. 2018. Local law and Tracy–Widom limit for sparse random
matrices. Probability Theory and Related Fields. 171(1–2), 543–616.
mla: Lee, Jii, and Kevin Schnelli. “Local Law and Tracy–Widom Limit for Sparse Random
Matrices.” *Probability Theory and Related Fields*, vol. 171, no. 1–2, 543–616,
Springer, 2018, doi:10.1007/s00440-017-0787-8.
short: J. Lee, K. Schnelli, Probability Theory and Related Fields 171 (2018).
date_created: 2018-12-11T11:47:56Z
date_published: 2018-06-14T00:00:00Z
date_updated: 2021-01-12T08:09:33Z
day: '14'
department:
- _id: LaEr
doi: 10.1007/s00440-017-0787-8
ec_funded: 1
external_id:
arxiv:
- '1605.08767'
intvolume: ' 171'
issue: 1-2
language:
- iso: eng
main_file_link:
- open_access: '1'
url: https://arxiv.org/abs/1605.08767
month: '06'
oa: 1
oa_version: Preprint
project:
- _id: 258DCDE6-B435-11E9-9278-68D0E5697425
call_identifier: FP7
grant_number: '338804'
name: Random matrices, universality and disordered quantum systems
publication: Probability Theory and Related Fields
publication_status: published
publisher: Springer
publist_id: '7017'
quality_controlled: '1'
scopus_import: 1
status: public
title: Local law and Tracy–Widom limit for sparse random matrices
type: journal_article
user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87
volume: 171
year: '2018'
...
---
_id: '70'
abstract:
- lang: eng
text: We consider the totally asymmetric simple exclusion process in a critical
scaling parametrized by a≥0, which creates a shock in the particle density of
order aT−1/3, T the observation time. When starting from step initial data, we
provide bounds on the limiting law which in particular imply that in the double
limit lima→∞limT→∞ one recovers the product limit law and the degeneration of
the correlation length observed at shocks of order 1. This result is shown to
apply to a general last-passage percolation model. We also obtain bounds on the
two-point functions of several airy processes.
article_processing_charge: No
article_type: original
author:
- first_name: Peter
full_name: Nejjar, Peter
id: 4BF426E2-F248-11E8-B48F-1D18A9856A87
last_name: Nejjar
citation:
ama: Nejjar P. Transition to shocks in TASEP and decoupling of last passage times.
*Latin American Journal of Probability and Mathematical Statistics*. 2018;15(2):1311-1334.
doi:10.30757/ALEA.v15-49
apa: Nejjar, P. (2018). Transition to shocks in TASEP and decoupling of last passage
times. *Latin American Journal of Probability and Mathematical Statistics*.
ALEA. https://doi.org/10.30757/ALEA.v15-49
chicago: Nejjar, Peter. “Transition to Shocks in TASEP and Decoupling of Last Passage
Times.” *Latin American Journal of Probability and Mathematical Statistics*.
ALEA, 2018. https://doi.org/10.30757/ALEA.v15-49.
ieee: P. Nejjar, “Transition to shocks in TASEP and decoupling of last passage times,”
*Latin American Journal of Probability and Mathematical Statistics*, vol.
15, no. 2. ALEA, pp. 1311–1334, 2018.
ista: Nejjar P. 2018. Transition to shocks in TASEP and decoupling of last passage
times. Latin American Journal of Probability and Mathematical Statistics. 15(2),
1311–1334.
mla: Nejjar, Peter. “Transition to Shocks in TASEP and Decoupling of Last Passage
Times.” *Latin American Journal of Probability and Mathematical Statistics*,
vol. 15, no. 2, ALEA, 2018, pp. 1311–34, doi:10.30757/ALEA.v15-49.
short: P. Nejjar, Latin American Journal of Probability and Mathematical Statistics
15 (2018) 1311–1334.
date_created: 2018-12-11T11:44:28Z
date_published: 2018-10-01T00:00:00Z
date_updated: 2021-01-12T08:11:24Z
day: '01'
ddc:
- '510'
department:
- _id: LaEr
- _id: JaMa
doi: 10.30757/ALEA.v15-49
ec_funded: 1
external_id:
arxiv:
- '1705.08836'
file:
- access_level: open_access
checksum: 2ded46aa284a836a8cbb34133a64f1cb
content_type: application/pdf
creator: kschuh
date_created: 2019-02-14T09:44:10Z
date_updated: 2020-07-14T12:47:46Z
file_id: '5981'
file_name: 2018_ALEA_Nejjar.pdf
file_size: 394851
relation: main_file
file_date_updated: 2020-07-14T12:47:46Z
has_accepted_license: '1'
intvolume: ' 15'
issue: '2'
language:
- iso: eng
month: '10'
oa: 1
oa_version: Published Version
page: 1311-1334
project:
- _id: 258DCDE6-B435-11E9-9278-68D0E5697425
call_identifier: FP7
grant_number: '338804'
name: Random matrices, universality and disordered quantum systems
- _id: 256E75B8-B435-11E9-9278-68D0E5697425
call_identifier: H2020
grant_number: '716117'
name: Optimal Transport and Stochastic Dynamics
publication: Latin American Journal of Probability and Mathematical Statistics
publication_identifier:
issn:
- 1980-0436
publication_status: published
publisher: ALEA
quality_controlled: '1'
scopus_import: 1
status: public
title: Transition to shocks in TASEP and decoupling of last passage times
type: journal_article
user_id: D865714E-FA4E-11E9-B85B-F5C5E5697425
volume: 15
year: '2018'
...
---
_id: '149'
abstract:
- lang: eng
text: The eigenvalue density of many large random matrices is well approximated
by a deterministic measure, the self-consistent density of states. In the present
work, we show this behaviour for several classes of random matrices. In fact,
we establish that, in each of these classes, the self-consistent density of states
approximates the eigenvalue density of the random matrix on all scales slightly
above the typical eigenvalue spacing. For large classes of random matrices, the
self-consistent density of states exhibits several universal features. We prove
that, under suitable assumptions, random Gram matrices and Hermitian random matrices
with decaying correlations have a 1/3-Hölder continuous self-consistent density
of states ρ on R, which is analytic, where it is positive, and has either a square
root edge or a cubic root cusp, where it vanishes. We, thus, extend the validity
of the corresponding result for Wigner-type matrices from [4, 5, 7]. We show that
ρ is determined as the inverse Stieltjes transform of the normalized trace of
the unique solution m(z) to the Dyson equation −m(z) −1 = z − a + S[m(z)] on C
N×N with the constraint Im m(z) ≥ 0. Here, z lies in the complex upper half-plane,
a is a self-adjoint element of C N×N and S is a positivity-preserving operator
on C N×N encoding the first two moments of the random matrix. In order to analyze
a possible limit of ρ for N → ∞ and address some applications in free probability
theory, we also consider the Dyson equation on infinite dimensional von Neumann
algebras. We present two applications to random matrices. We first establish that,
under certain assumptions, large random matrices with independent entries have
a rotationally symmetric self-consistent density of states which is supported
on a centered disk in C. Moreover, it is infinitely often differentiable apart
from a jump on the boundary of this disk. Second, we show edge universality at
all regular (not necessarily extreme) spectral edges for Hermitian random matrices
with decaying correlations.
alternative_title:
- IST Austria Thesis
author:
- first_name: Johannes
full_name: Alt, Johannes
id: 36D3D8B6-F248-11E8-B48F-1D18A9856A87
last_name: Alt
citation:
ama: Alt J. Dyson equation and eigenvalue statistics of random matrices. 2018. doi:10.15479/AT:ISTA:TH_1040
apa: Alt, J. (2018). *Dyson equation and eigenvalue statistics of random matrices*.
IST Austria. https://doi.org/10.15479/AT:ISTA:TH_1040
chicago: Alt, Johannes. “Dyson Equation and Eigenvalue Statistics of Random Matrices.”
IST Austria, 2018. https://doi.org/10.15479/AT:ISTA:TH_1040.
ieee: J. Alt, “Dyson equation and eigenvalue statistics of random matrices,” IST
Austria, 2018.
ista: Alt J. 2018. Dyson equation and eigenvalue statistics of random matrices.
IST Austria.
mla: Alt, Johannes. *Dyson Equation and Eigenvalue Statistics of Random Matrices*.
IST Austria, 2018, doi:10.15479/AT:ISTA:TH_1040.
short: J. Alt, Dyson Equation and Eigenvalue Statistics of Random Matrices, IST
Austria, 2018.
date_created: 2018-12-11T11:44:53Z
date_published: 2018-07-12T00:00:00Z
date_updated: 2021-01-12T08:06:48Z
day: '12'
ddc:
- '515'
- '519'
department:
- _id: LaEr
doi: 10.15479/AT:ISTA:TH_1040
ec_funded: 1
file:
- access_level: open_access
checksum: d4dad55a7513f345706aaaba90cb1bb8
content_type: application/pdf
creator: dernst
date_created: 2019-04-08T13:55:20Z
date_updated: 2020-07-14T12:44:57Z
file_id: '6241'
file_name: 2018_thesis_Alt.pdf
file_size: 5801709
relation: main_file
- access_level: closed
checksum: d73fcf46300dce74c403f2b491148ab4
content_type: application/zip
creator: dernst
date_created: 2019-04-08T13:55:20Z
date_updated: 2020-07-14T12:44:57Z
file_id: '6242'
file_name: 2018_thesis_Alt_source.zip
file_size: 3802059
relation: source_file
file_date_updated: 2020-07-14T12:44:57Z
has_accepted_license: '1'
language:
- iso: eng
license: https://creativecommons.org/licenses/by/4.0/
month: '07'
oa: 1
oa_version: Published Version
page: '456'
project:
- _id: 258DCDE6-B435-11E9-9278-68D0E5697425
call_identifier: FP7
grant_number: '338804'
name: Random matrices, universality and disordered quantum systems
publication_status: published
publisher: IST Austria
publist_id: '7772'
pubrep_id: '1040'
related_material:
record:
- id: '1010'
relation: part_of_dissertation
status: public
- id: '1677'
relation: part_of_dissertation
status: public
- id: '550'
relation: part_of_dissertation
status: public
- id: '566'
relation: part_of_dissertation
status: public
- id: '6183'
relation: part_of_dissertation
status: public
- id: '6184'
relation: part_of_dissertation
status: public
- id: '6240'
relation: part_of_dissertation
status: public
status: public
supervisor:
- first_name: László
full_name: Erdös, László
id: 4DBD5372-F248-11E8-B48F-1D18A9856A87
last_name: Erdös
orcid: 0000-0001-5366-9603
title: Dyson equation and eigenvalue statistics of random matrices
tmp:
image: /images/cc_by.png
legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode
name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0)
short: CC BY (4.0)
type: dissertation
user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87
year: '2018'
...
---
_id: '1012'
abstract:
- lang: eng
text: We prove a new central limit theorem (CLT) for the difference of linear eigenvalue
statistics of a Wigner random matrix H and its minor H and find that the fluctuation
is much smaller than the fluctuations of the individual linear statistics, as
a consequence of the strong correlation between the eigenvalues of H and H. In
particular, our theorem identifies the fluctuation of Kerov's rectangular Young
diagrams, defined by the interlacing eigenvalues ofH and H, around their asymptotic
shape, the Vershik'Kerov'Logan'Shepp curve. Young diagrams equipped with the Plancherel
measure follow the same limiting shape. For this, algebraically motivated, ensemble
a CLT has been obtained in Ivanov and Olshanski [20] which is structurally similar
to our result but the variance is different, indicating that the analogy between
the two models has its limitations. Moreover, our theorem shows that Borodin's
result [7] on the convergence of the spectral distribution of Wigner matrices
to a Gaussian free field also holds in derivative sense.
author:
- first_name: László
full_name: Erdös, László
id: 4DBD5372-F248-11E8-B48F-1D18A9856A87
last_name: Erdös
orcid: 0000-0001-5366-9603
- first_name: Dominik J
full_name: Schröder, Dominik J
id: 408ED176-F248-11E8-B48F-1D18A9856A87
last_name: Schröder
orcid: 0000-0002-2904-1856
citation:
ama: Erdös L, Schröder DJ. Fluctuations of rectangular young diagrams of interlacing
wigner eigenvalues. *International Mathematics Research Notices*. 2018;2018(10):3255-3298.
doi:10.1093/imrn/rnw330
apa: Erdös, L., & Schröder, D. J. (2018). Fluctuations of rectangular young
diagrams of interlacing wigner eigenvalues. *International Mathematics Research
Notices*. Oxford University Press. https://doi.org/10.1093/imrn/rnw330
chicago: Erdös, László, and Dominik J Schröder. “Fluctuations of Rectangular Young
Diagrams of Interlacing Wigner Eigenvalues.” *International Mathematics Research
Notices*. Oxford University Press, 2018. https://doi.org/10.1093/imrn/rnw330.
ieee: L. Erdös and D. J. Schröder, “Fluctuations of rectangular young diagrams of
interlacing wigner eigenvalues,” *International Mathematics Research Notices*,
vol. 2018, no. 10. Oxford University Press, pp. 3255–3298, 2018.
ista: Erdös L, Schröder DJ. 2018. Fluctuations of rectangular young diagrams of
interlacing wigner eigenvalues. International Mathematics Research Notices. 2018(10),
3255–3298.
mla: Erdös, László, and Dominik J. Schröder. “Fluctuations of Rectangular Young
Diagrams of Interlacing Wigner Eigenvalues.” *International Mathematics Research
Notices*, vol. 2018, no. 10, Oxford University Press, 2018, pp. 3255–98, doi:10.1093/imrn/rnw330.
short: L. Erdös, D.J. Schröder, International Mathematics Research Notices 2018
(2018) 3255–3298.
date_created: 2018-12-11T11:49:41Z
date_published: 2018-05-18T00:00:00Z
date_updated: 2021-01-12T08:06:34Z
day: '18'
department:
- _id: LaEr
doi: 10.1093/imrn/rnw330
ec_funded: 1
external_id:
arxiv:
- '1608.05163'
intvolume: ' 2018'
issue: '10'
language:
- iso: eng
main_file_link:
- open_access: '1'
url: https://arxiv.org/abs/1608.05163
month: '05'
oa: 1
oa_version: Preprint
page: 3255-3298
project:
- _id: 258DCDE6-B435-11E9-9278-68D0E5697425
call_identifier: FP7
grant_number: '338804'
name: Random matrices, universality and disordered quantum systems
publication: International Mathematics Research Notices
publication_identifier:
issn:
- '10737928'
publication_status: published
publisher: Oxford University Press
publist_id: '6383'
quality_controlled: '1'
related_material:
record:
- id: '6179'
relation: dissertation_contains
status: public
scopus_import: 1
status: public
title: Fluctuations of rectangular young diagrams of interlacing wigner eigenvalues
type: journal_article
user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87
volume: 2018
year: '2018'
...
---
_id: '721'
abstract:
- lang: eng
text: 'Let S be a positivity-preserving symmetric linear operator acting on bounded
functions. The nonlinear equation -1/m=z+Sm with a parameter z in the complex
upper half-plane ℍ has a unique solution m with values in ℍ. We show that the
z-dependence of this solution can be represented as the Stieltjes transforms of
a family of probability measures v on ℝ. Under suitable conditions on S, we show
that v has a real analytic density apart from finitely many algebraic singularities
of degree at most 3. Our motivation comes from large random matrices. The solution
m determines the density of eigenvalues of two prominent matrix ensembles: (i)
matrices with centered independent entries whose variances are given by S and
(ii) matrices with correlated entries with a translation-invariant correlation
structure. Our analysis shows that the limiting eigenvalue density has only square
root singularities or cubic root cusps; no other singularities occur.'
author:
- first_name: Oskari H
full_name: Ajanki, Oskari H
id: 36F2FB7E-F248-11E8-B48F-1D18A9856A87
last_name: Ajanki
- first_name: Torben H
full_name: Krüger, Torben H
id: 3020C786-F248-11E8-B48F-1D18A9856A87
last_name: Krüger
orcid: 0000-0002-4821-3297
- first_name: László
full_name: Erdös, László
id: 4DBD5372-F248-11E8-B48F-1D18A9856A87
last_name: Erdös
orcid: 0000-0001-5366-9603
citation:
ama: Ajanki OH, Krüger TH, Erdös L. Singularities of solutions to quadratic vector
equations on the complex upper half plane. *Communications on Pure and Applied
Mathematics*. 2017;70(9):1672-1705. doi:10.1002/cpa.21639
apa: Ajanki, O. H., Krüger, T. H., & Erdös, L. (2017). Singularities of solutions
to quadratic vector equations on the complex upper half plane. *Communications
on Pure and Applied Mathematics*. Wiley-Blackwell. https://doi.org/10.1002/cpa.21639
chicago: Ajanki, Oskari H, Torben H Krüger, and László Erdös. “Singularities of
Solutions to Quadratic Vector Equations on the Complex Upper Half Plane.” *Communications
on Pure and Applied Mathematics*. Wiley-Blackwell, 2017. https://doi.org/10.1002/cpa.21639.
ieee: O. H. Ajanki, T. H. Krüger, and L. Erdös, “Singularities of solutions to quadratic
vector equations on the complex upper half plane,” *Communications on Pure and
Applied Mathematics*, vol. 70, no. 9. Wiley-Blackwell, pp. 1672–1705, 2017.
ista: Ajanki OH, Krüger TH, Erdös L. 2017. Singularities of solutions to quadratic
vector equations on the complex upper half plane. Communications on Pure and Applied
Mathematics. 70(9), 1672–1705.
mla: Ajanki, Oskari H., et al. “Singularities of Solutions to Quadratic Vector Equations
on the Complex Upper Half Plane.” *Communications on Pure and Applied Mathematics*,
vol. 70, no. 9, Wiley-Blackwell, 2017, pp. 1672–705, doi:10.1002/cpa.21639.
short: O.H. Ajanki, T.H. Krüger, L. Erdös, Communications on Pure and Applied Mathematics
70 (2017) 1672–1705.
date_created: 2018-12-11T11:48:08Z
date_published: 2017-09-01T00:00:00Z
date_updated: 2021-01-12T08:12:24Z
day: '01'
department:
- _id: LaEr
doi: 10.1002/cpa.21639
ec_funded: 1
intvolume: ' 70'
issue: '9'
language:
- iso: eng
main_file_link:
- open_access: '1'
url: https://arxiv.org/abs/1512.03703
month: '09'
oa: 1
oa_version: Submitted Version
page: 1672 - 1705
project:
- _id: 258DCDE6-B435-11E9-9278-68D0E5697425
call_identifier: FP7
grant_number: '338804'
name: Random matrices, universality and disordered quantum systems
publication: Communications on Pure and Applied Mathematics
publication_identifier:
issn:
- '00103640'
publication_status: published
publisher: Wiley-Blackwell
publist_id: '6959'
quality_controlled: '1'
scopus_import: 1
status: public
title: Singularities of solutions to quadratic vector equations on the complex upper
half plane
type: journal_article
user_id: 4435EBFC-F248-11E8-B48F-1D18A9856A87
volume: 70
year: '2017'
...
---
_id: '733'
abstract:
- lang: eng
text: Let A and B be two N by N deterministic Hermitian matrices and let U be an
N by N Haar distributed unitary matrix. It is well known that the spectral distribution
of the sum H = A + UBU∗ converges weakly to the free additive convolution of the
spectral distributions of A and B, as N tends to infinity. We establish the optimal
convergence rate in the bulk of the spectrum.
acknowledgement: Partially supported by ERC Advanced Grant RANMAT No. 338804, Hong
Kong RGC grant ECS 26301517, and the Göran Gustafsson Foundation
author:
- first_name: Zhigang
full_name: Bao, Zhigang
id: 442E6A6C-F248-11E8-B48F-1D18A9856A87
last_name: Bao
orcid: 0000-0003-3036-1475
- first_name: László
full_name: Erdös, László
id: 4DBD5372-F248-11E8-B48F-1D18A9856A87
last_name: Erdös
orcid: 0000-0001-5366-9603
- first_name: Kevin
full_name: Schnelli, Kevin
id: 434AD0AE-F248-11E8-B48F-1D18A9856A87
last_name: Schnelli
orcid: 0000-0003-0954-3231
citation:
ama: Bao Z, Erdös L, Schnelli K. Convergence rate for spectral distribution of addition
of random matrices. *Advances in Mathematics*. 2017;319:251-291. doi:10.1016/j.aim.2017.08.028
apa: Bao, Z., Erdös, L., & Schnelli, K. (2017). Convergence rate for spectral
distribution of addition of random matrices. *Advances in Mathematics*. Academic
Press. https://doi.org/10.1016/j.aim.2017.08.028
chicago: Bao, Zhigang, László Erdös, and Kevin Schnelli. “Convergence Rate for Spectral
Distribution of Addition of Random Matrices.” *Advances in Mathematics*.
Academic Press, 2017. https://doi.org/10.1016/j.aim.2017.08.028.
ieee: Z. Bao, L. Erdös, and K. Schnelli, “Convergence rate for spectral distribution
of addition of random matrices,” *Advances in Mathematics*, vol. 319. Academic
Press, pp. 251–291, 2017.
ista: Bao Z, Erdös L, Schnelli K. 2017. Convergence rate for spectral distribution
of addition of random matrices. Advances in Mathematics. 319, 251–291.
mla: Bao, Zhigang, et al. “Convergence Rate for Spectral Distribution of Addition
of Random Matrices.” *Advances in Mathematics*, vol. 319, Academic Press,
2017, pp. 251–91, doi:10.1016/j.aim.2017.08.028.
short: Z. Bao, L. Erdös, K. Schnelli, Advances in Mathematics 319 (2017) 251–291.
date_created: 2018-12-11T11:48:13Z
date_published: 2017-10-15T00:00:00Z
date_updated: 2021-01-12T08:13:07Z
day: '15'
department:
- _id: LaEr
doi: 10.1016/j.aim.2017.08.028
ec_funded: 1
intvolume: ' 319'
language:
- iso: eng
main_file_link:
- open_access: '1'
url: https://arxiv.org/abs/1606.03076
month: '10'
oa: 1
oa_version: Submitted Version
page: 251 - 291
project:
- _id: 258DCDE6-B435-11E9-9278-68D0E5697425
call_identifier: FP7
grant_number: '338804'
name: Random matrices, universality and disordered quantum systems
publication: Advances in Mathematics
publication_status: published
publisher: Academic Press
publist_id: '6935'
quality_controlled: '1'
scopus_import: 1
status: public
title: Convergence rate for spectral distribution of addition of random matrices
type: journal_article
user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87
volume: 319
year: '2017'
...
---
_id: '483'
abstract:
- lang: eng
text: We prove the universality for the eigenvalue gap statistics in the bulk of
the spectrum for band matrices, in the regime where the band width is comparable
with the dimension of the matrix, W ~ N. All previous results concerning universality
of non-Gaussian random matrices are for mean-field models. By relying on a new
mean-field reduction technique, we deduce universality from quantum unique ergodicity
for band matrices.
author:
- first_name: Paul
full_name: Bourgade, Paul
last_name: Bourgade
- first_name: László
full_name: Erdös, László
id: 4DBD5372-F248-11E8-B48F-1D18A9856A87
last_name: Erdös
orcid: 0000-0001-5366-9603
- first_name: Horng
full_name: Yau, Horng
last_name: Yau
- first_name: Jun
full_name: Yin, Jun
last_name: Yin
citation:
ama: Bourgade P, Erdös L, Yau H, Yin J. Universality for a class of random band
matrices. *Advances in Theoretical and Mathematical Physics*. 2017;21(3):739-800.
doi:10.4310/ATMP.2017.v21.n3.a5
apa: Bourgade, P., Erdös, L., Yau, H., & Yin, J. (2017). Universality for a
class of random band matrices. *Advances in Theoretical and Mathematical Physics*.
International Press. https://doi.org/10.4310/ATMP.2017.v21.n3.a5
chicago: Bourgade, Paul, László Erdös, Horng Yau, and Jun Yin. “Universality for
a Class of Random Band Matrices.” *Advances in Theoretical and Mathematical
Physics*. International Press, 2017. https://doi.org/10.4310/ATMP.2017.v21.n3.a5.
ieee: P. Bourgade, L. Erdös, H. Yau, and J. Yin, “Universality for a class of random
band matrices,” *Advances in Theoretical and Mathematical Physics*, vol.
21, no. 3. International Press, pp. 739–800, 2017.
ista: Bourgade P, Erdös L, Yau H, Yin J. 2017. Universality for a class of random
band matrices. Advances in Theoretical and Mathematical Physics. 21(3), 739–800.
mla: Bourgade, Paul, et al. “Universality for a Class of Random Band Matrices.”
*Advances in Theoretical and Mathematical Physics*, vol. 21, no. 3, International
Press, 2017, pp. 739–800, doi:10.4310/ATMP.2017.v21.n3.a5.
short: P. Bourgade, L. Erdös, H. Yau, J. Yin, Advances in Theoretical and Mathematical
Physics 21 (2017) 739–800.
date_created: 2018-12-11T11:46:43Z
date_published: 2017-08-25T00:00:00Z
date_updated: 2021-01-12T08:00:57Z
day: '25'
department:
- _id: LaEr
doi: 10.4310/ATMP.2017.v21.n3.a5
ec_funded: 1
intvolume: ' 21'
issue: '3'
language:
- iso: eng
main_file_link:
- open_access: '1'
url: https://arxiv.org/abs/1602.02312
month: '08'
oa: 1
oa_version: Submitted Version
page: 739 - 800
project:
- _id: 258DCDE6-B435-11E9-9278-68D0E5697425
call_identifier: FP7
grant_number: '338804'
name: Random matrices, universality and disordered quantum systems
publication: Advances in Theoretical and Mathematical Physics
publication_identifier:
issn:
- '10950761'
publication_status: published
publisher: International Press
publist_id: '7337'
quality_controlled: '1'
scopus_import: 1
status: public
title: Universality for a class of random band matrices
type: journal_article
user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87
volume: 21
year: '2017'
...
---
_id: '550'
abstract:
- lang: eng
text: For large random matrices X with independent, centered entries but not necessarily
identical variances, the eigenvalue density of XX* is well-approximated by a deterministic
measure on ℝ. We show that the density of this measure has only square and cubic-root
singularities away from zero. We also extend the bulk local law in [5] to the
vicinity of these singularities.
article_number: '63'
author:
- first_name: Johannes
full_name: Alt, Johannes
id: 36D3D8B6-F248-11E8-B48F-1D18A9856A87
last_name: Alt
citation:
ama: Alt J. Singularities of the density of states of random Gram matrices. *Electronic
Communications in Probability*. 2017;22. doi:10.1214/17-ECP97
apa: Alt, J. (2017). Singularities of the density of states of random Gram matrices.
*Electronic Communications in Probability*. Institute of Mathematical Statistics.
https://doi.org/10.1214/17-ECP97
chicago: Alt, Johannes. “Singularities of the Density of States of Random Gram Matrices.”
*Electronic Communications in Probability*. Institute of Mathematical Statistics,
2017. https://doi.org/10.1214/17-ECP97.
ieee: J. Alt, “Singularities of the density of states of random Gram matrices,”
*Electronic Communications in Probability*, vol. 22. Institute of Mathematical
Statistics, 2017.
ista: Alt J. 2017. Singularities of the density of states of random Gram matrices.
Electronic Communications in Probability. 22, 63.
mla: Alt, Johannes. “Singularities of the Density of States of Random Gram Matrices.”
*Electronic Communications in Probability*, vol. 22, 63, Institute of Mathematical
Statistics, 2017, doi:10.1214/17-ECP97.
short: J. Alt, Electronic Communications in Probability 22 (2017).
date_created: 2018-12-11T11:47:07Z
date_published: 2017-11-21T00:00:00Z
date_updated: 2021-01-12T08:02:34Z
day: '21'
ddc:
- '539'
department:
- _id: LaEr
doi: 10.1214/17-ECP97
ec_funded: 1
file:
- access_level: open_access
checksum: 0ec05303a0de190de145654237984c79
content_type: application/pdf
creator: system
date_created: 2018-12-12T10:08:04Z
date_updated: 2020-07-14T12:47:00Z
file_id: '4663'
file_name: IST-2018-926-v1+1_euclid.ecp.1511233247.pdf
file_size: 470876
relation: main_file
file_date_updated: 2020-07-14T12:47:00Z
has_accepted_license: '1'
intvolume: ' 22'
language:
- iso: eng
month: '11'
oa: 1
oa_version: Published Version
project:
- _id: 258DCDE6-B435-11E9-9278-68D0E5697425
call_identifier: FP7
grant_number: '338804'
name: Random matrices, universality and disordered quantum systems
publication: Electronic Communications in Probability
publication_identifier:
issn:
- 1083589X
publication_status: published
publisher: Institute of Mathematical Statistics
publist_id: '7265'
pubrep_id: '926'
quality_controlled: '1'
related_material:
record:
- id: '149'
relation: dissertation_contains
status: public
scopus_import: 1
status: public
title: Singularities of the density of states of random Gram matrices
tmp:
image: /images/cc_by.png
legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode
name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0)
short: CC BY (4.0)
type: journal_article
user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87
volume: 22
year: '2017'
...