TY - JOUR
AB - We prove a new central limit theorem (CLT) for the difference of linear eigenvalue statistics of a Wigner random matrix H and its minor H and find that the fluctuation is much smaller than the fluctuations of the individual linear statistics, as a consequence of the strong correlation between the eigenvalues of H and H. In particular, our theorem identifies the fluctuation of Kerov's rectangular Young diagrams, defined by the interlacing eigenvalues ofH and H, around their asymptotic shape, the Vershik'Kerov'Logan'Shepp curve. Young diagrams equipped with the Plancherel measure follow the same limiting shape. For this, algebraically motivated, ensemble a CLT has been obtained in Ivanov and Olshanski [20] which is structurally similar to our result but the variance is different, indicating that the analogy between the two models has its limitations. Moreover, our theorem shows that Borodin's result [7] on the convergence of the spectral distribution of Wigner matrices to a Gaussian free field also holds in derivative sense.
AU - Erdös, László
AU - Schröder, Dominik J
ID - 1012
IS - 10
JF - International Mathematics Research Notices
SN - 10737928
TI - Fluctuations of rectangular young diagrams of interlacing wigner eigenvalues
VL - 2018
ER -
TY - JOUR
AB - Let S be a positivity-preserving symmetric linear operator acting on bounded functions. The nonlinear equation -1/m=z+Sm with a parameter z in the complex upper half-plane ℍ has a unique solution m with values in ℍ. We show that the z-dependence of this solution can be represented as the Stieltjes transforms of a family of probability measures v on ℝ. Under suitable conditions on S, we show that v has a real analytic density apart from finitely many algebraic singularities of degree at most 3. Our motivation comes from large random matrices. The solution m determines the density of eigenvalues of two prominent matrix ensembles: (i) matrices with centered independent entries whose variances are given by S and (ii) matrices with correlated entries with a translation-invariant correlation structure. Our analysis shows that the limiting eigenvalue density has only square root singularities or cubic root cusps; no other singularities occur.
AU - Ajanki, Oskari H
AU - Krüger, Torben H
AU - Erdös, László
ID - 721
IS - 9
JF - Communications on Pure and Applied Mathematics
SN - 00103640
TI - Singularities of solutions to quadratic vector equations on the complex upper half plane
VL - 70
ER -
TY - JOUR
AB - Let A and B be two N by N deterministic Hermitian matrices and let U be an N by N Haar distributed unitary matrix. It is well known that the spectral distribution of the sum H = A + UBU∗ converges weakly to the free additive convolution of the spectral distributions of A and B, as N tends to infinity. We establish the optimal convergence rate in the bulk of the spectrum.
AU - Bao, Zhigang
AU - Erdös, László
AU - Schnelli, Kevin
ID - 733
JF - Advances in Mathematics
TI - Convergence rate for spectral distribution of addition of random matrices
VL - 319
ER -
TY - JOUR
AB - We consider last passage percolation (LPP) models with exponentially distributed random variables, which are linked to the totally asymmetric simple exclusion process (TASEP). The competition interface for LPP was introduced and studied in Ferrari and Pimentel (2005a) for cases where the corresponding exclusion process had a rarefaction fan. Here we consider situations with a shock and determine the law of the fluctuations of the competition interface around its deter- ministic law of large number position. We also study the multipoint distribution of the LPP around the shock, extending our one-point result of Ferrari and Nejjar (2015).
AU - Ferrari, Patrik
AU - Nejjar, Peter
ID - 447
JF - Revista Latino-Americana de Probabilidade e Estatística
TI - Fluctuations of the competition interface in presence of shocks
VL - 9
ER -
TY - JOUR
AB - We prove the universality for the eigenvalue gap statistics in the bulk of the spectrum for band matrices, in the regime where the band width is comparable with the dimension of the matrix, W ~ N. All previous results concerning universality of non-Gaussian random matrices are for mean-field models. By relying on a new mean-field reduction technique, we deduce universality from quantum unique ergodicity for band matrices.
AU - Bourgade, Paul
AU - Erdös, László
AU - Yau, Horng
AU - Yin, Jun
ID - 483
IS - 3
JF - Advances in Theoretical and Mathematical Physics
SN - 10950761
TI - Universality for a class of random band matrices
VL - 21
ER -
TY - JOUR
AB - For large random matrices X with independent, centered entries but not necessarily identical variances, the eigenvalue density of XX* is well-approximated by a deterministic measure on ℝ. We show that the density of this measure has only square and cubic-root singularities away from zero. We also extend the bulk local law in [5] to the vicinity of these singularities.
AU - Alt, Johannes
ID - 550
JF - Electronic Communications in Probability
SN - 1083589X
TI - Singularities of the density of states of random Gram matrices
VL - 22
ER -
TY - BOOK
AB - This book is a concise and self-contained introduction of recent techniques to prove local spectral universality for large random matrices. Random matrix theory is a fast expanding research area, and this book mainly focuses on the methods that the authors participated in developing over the past few years. Many other interesting topics are not included, and neither are several new developments within the framework of these methods. The authors have chosen instead to present key concepts that they believe are the core of these methods and should be relevant for future applications. They keep technicalities to a minimum to make the book accessible to graduate students. With this in mind, they include in this book the basic notions and tools for high-dimensional analysis, such as large deviation, entropy, Dirichlet form, and the logarithmic Sobolev inequality.
AU - Erdös, László
AU - Yau, Horng
ID - 567
SN - 9781470436483
TI - A dynamical approach to random matrix theory
VL - 28
ER -
TY - JOUR
AB - We show that the Dyson Brownian Motion exhibits local universality after a very short time assuming that local rigidity and level repulsion of the eigenvalues hold. These conditions are verified, hence bulk spectral universality is proven, for a large class of Wigner-like matrices, including deformed Wigner ensembles and ensembles with non-stochastic variance matrices whose limiting densities differ from Wigner's semicircle law.
AU - Erdös, László
AU - Schnelli, Kevin
ID - 615
IS - 4
JF - Annales de l'institut Henri Poincare (B) Probability and Statistics
SN - 02460203
TI - Universality for random matrix flows with time dependent density
VL - 53
ER -
TY - JOUR
AB - The eigenvalue distribution of the sum of two large Hermitian matrices, when one of them is conjugated by a Haar distributed unitary matrix, is asymptotically given by the free convolution of their spectral distributions. We prove that this convergence also holds locally in the bulk of the spectrum, down to the optimal scales larger than the eigenvalue spacing. The corresponding eigenvectors are fully delocalized. Similar results hold for the sum of two real symmetric matrices, when one is conjugated by Haar orthogonal matrix.
AU - Bao, Zhigang
AU - Erdös, László
AU - Schnelli, Kevin
ID - 1207
IS - 3
JF - Communications in Mathematical Physics
SN - 00103616
TI - Local law of addition of random matrices on optimal scale
VL - 349
ER -
TY - JOUR
AB - We consider the local eigenvalue distribution of large self-adjoint N×N random matrices H=H∗ with centered independent entries. In contrast to previous works the matrix of variances sij=\mathbbmE|hij|2 is not assumed to be stochastic. Hence the density of states is not the Wigner semicircle law. Its possible shapes are described in the companion paper (Ajanki et al. in Quadratic Vector Equations on the Complex Upper Half Plane. arXiv:1506.05095). We show that as N grows, the resolvent, G(z)=(H−z)−1, converges to a diagonal matrix, diag(m(z)), where m(z)=(m1(z),…,mN(z)) solves the vector equation −1/mi(z)=z+∑jsijmj(z) that has been analyzed in Ajanki et al. (Quadratic Vector Equations on the Complex Upper Half Plane. arXiv:1506.05095). We prove a local law down to the smallest spectral resolution scale, and bulk universality for both real symmetric and complex hermitian symmetry classes.
AU - Ajanki, Oskari H
AU - Erdös, László
AU - Krüger, Torben H
ID - 1337
IS - 3-4
JF - Probability Theory and Related Fields
SN - 01788051
TI - Universality for general Wigner-type matrices
VL - 169
ER -