@article{1337,
abstract = {We consider the local eigenvalue distribution of large self-adjoint N×N random matrices H=H∗ with centered independent entries. In contrast to previous works the matrix of variances sij=\mathbbmE|hij|2 is not assumed to be stochastic. Hence the density of states is not the Wigner semicircle law. Its possible shapes are described in the companion paper (Ajanki et al. in Quadratic Vector Equations on the Complex Upper Half Plane. arXiv:1506.05095). We show that as N grows, the resolvent, G(z)=(H−z)−1, converges to a diagonal matrix, diag(m(z)), where m(z)=(m1(z),…,mN(z)) solves the vector equation −1/mi(z)=z+∑jsijmj(z) that has been analyzed in Ajanki et al. (Quadratic Vector Equations on the Complex Upper Half Plane. arXiv:1506.05095). We prove a local law down to the smallest spectral resolution scale, and bulk universality for both real symmetric and complex hermitian symmetry classes.},
author = {Ajanki, Oskari H and Erdös, László and Krüger, Torben H},
issn = {01788051},
journal = {Probability Theory and Related Fields},
number = {3-4},
pages = {667 -- 727},
publisher = {Springer},
title = {{Universality for general Wigner-type matrices}},
doi = {10.1007/s00440-016-0740-2},
volume = {169},
year = {2017},
}
@article{1528,
abstract = {We consider N×N Hermitian random matrices H consisting of blocks of size M≥N6/7. The matrix elements are i.i.d. within the blocks, close to a Gaussian in the four moment matching sense, but their distribution varies from block to block to form a block-band structure, with an essential band width M. We show that the entries of the Green’s function G(z)=(H−z)−1 satisfy the local semicircle law with spectral parameter z=E+iη down to the real axis for any η≫N−1, using a combination of the supersymmetry method inspired by Shcherbina (J Stat Phys 155(3): 466–499, 2014) and the Green’s function comparison strategy. Previous estimates were valid only for η≫M−1. The new estimate also implies that the eigenvectors in the middle of the spectrum are fully delocalized.},
author = {Bao, Zhigang and Erdös, László},
issn = {01788051},
journal = {Probability Theory and Related Fields},
number = {3-4},
pages = {673 -- 776},
publisher = {Springer},
title = {{Delocalization for a class of random block band matrices}},
doi = {10.1007/s00440-015-0692-y},
volume = {167},
year = {2017},
}
@article{1010,
abstract = {We prove a local law in the bulk of the spectrum for random Gram matrices XX∗, a generalization of sample covariance matrices, where X is a large matrix with independent, centered entries with arbitrary variances. The limiting eigenvalue density that generalizes the Marchenko-Pastur law is determined by solving a system of nonlinear equations. Our entrywise and averaged local laws are on the optimal scale with the optimal error bounds. They hold both in the square case (hard edge) and in the properly rectangular case (soft edge). In the latter case we also establish a macroscopic gap away from zero in the spectrum of XX∗. },
author = {Alt, Johannes and Erdös, László and Krüger, Torben H},
issn = {10836489},
journal = {Electronic Journal of Probability},
publisher = {Institute of Mathematical Statistics},
title = {{Local law for random Gram matrices}},
doi = {10.1214/17-EJP42},
volume = {22},
year = {2017},
}
@article{1023,
abstract = {We consider products of independent square non-Hermitian random matrices. More precisely, let X1,…, Xn be independent N × N random matrices with independent entries (real or complex with independent real and imaginary parts) with zero mean and variance 1/N. Soshnikov-O’Rourke [19] and Götze-Tikhomirov [15] showed that the empirical spectral distribution of the product of n random matrices with iid entries converges to (equation found). We prove that if the entries of the matrices X1,…, Xn are independent (but not necessarily identically distributed) and satisfy uniform subexponential decay condition, then in the bulk the convergence of the ESD of X1,…, Xn to (0.1) holds up to the scale N–1/2+ε.},
author = {Nemish, Yuriy},
issn = {10836489},
journal = {Electronic Journal of Probability},
publisher = {Institute of Mathematical Statistics},
title = {{Local law for the product of independent non-Hermitian random matrices with independent entries}},
doi = {10.1214/17-EJP38},
volume = {22},
year = {2017},
}
@article{1144,
abstract = {We show that matrix elements of functions of N × N Wigner matrices fluctuate on a scale of order N−1/2 and we identify the limiting fluctuation. Our result holds for any function f of the matrix that has bounded variation thus considerably relaxing the regularity requirement imposed in [7, 11].},
author = {Erdös, László and Schröder, Dominik J},
journal = {Electronic Communications in Probability},
publisher = {Institute of Mathematical Statistics},
title = {{Fluctuations of functions of Wigner matrices}},
doi = {10.1214/16-ECP38},
volume = {21},
year = {2017},
}