@article{7512,
abstract = {We consider general self-adjoint polynomials in several independent random matrices whose entries are centered and have the same variance. We show that under certain conditions the local law holds up to the optimal scale, i.e., the eigenvalue density on scales just above the eigenvalue spacing follows the global density of states which is determined by free probability theory. We prove that these conditions hold for general homogeneous polynomials of degree two and for symmetrized products of independent matrices with i.i.d. entries, thus establishing the optimal bulk local law for these classes of ensembles. In particular, we generalize a similar result of Anderson for anticommutator. For more general polynomials our conditions are effectively checkable numerically.},
author = {Erdös, László and Krüger, Torben H and Nemish, Yuriy},
issn = {10960783},
journal = {Journal of Functional Analysis},
number = {12},
publisher = {Elsevier},
title = {{Local laws for polynomials of Wigner matrices}},
doi = {10.1016/j.jfa.2020.108507},
volume = {278},
year = {2020},
}
@article{7618,
abstract = {This short note aims to study quantum Hellinger distances investigated recently by Bhatia et al. (Lett Math Phys 109:1777–1804, 2019) with a particular emphasis on barycenters. We introduce the family of generalized quantum Hellinger divergences that are of the form ϕ(A,B)=Tr((1−c)A+cB−AσB), where σ is an arbitrary Kubo–Ando mean, and c∈(0,1) is the weight of σ. We note that these divergences belong to the family of maximal quantum f-divergences, and hence are jointly convex, and satisfy the data processing inequality. We derive a characterization of the barycenter of finitely many positive definite operators for these generalized quantum Hellinger divergences. We note that the characterization of the barycenter as the weighted multivariate 1/2-power mean, that was claimed in Bhatia et al. (2019), is true in the case of commuting operators, but it is not correct in the general case. },
author = {Pitrik, Jozsef and Virosztek, Daniel},
issn = {1573-0530},
journal = {Letters in Mathematical Physics},
number = {8},
pages = {2039--2052},
publisher = {Springer Nature},
title = {{Quantum Hellinger distances revisited}},
doi = {10.1007/s11005-020-01282-0},
volume = {110},
year = {2020},
}
@article{6184,
abstract = {We prove edge universality for a general class of correlated real symmetric or complex Hermitian Wigner matrices with arbitrary expectation. Our theorem also applies to internal edges of the self-consistent density of states. In particular, we establish a strong form of band rigidity which excludes mismatches between location and label of eigenvalues close to internal edges in these general models.},
author = {Alt, Johannes and Erdös, László and Krüger, Torben H and Schröder, Dominik J},
journal = {Annals of Probability},
number = {2},
pages = {963--1001},
publisher = {Project Euclid},
title = {{Correlated random matrices: Band rigidity and edge universality}},
volume = {48},
year = {2020},
}
@article{6185,
abstract = {For complex Wigner-type matrices, i.e. Hermitian random matrices with independent, not necessarily identically distributed entries above the diagonal, we show that at any cusp singularity of the limiting eigenvalue distribution the local eigenvalue statistics are universal and form a Pearcey process. Since the density of states typically exhibits only square root or cubic root cusp singularities, our work complements previous results on the bulk and edge universality and it thus completes the resolution of the Wigner–Dyson–Mehta universality conjecture for the last remaining universality type in the complex Hermitian class. Our analysis holds not only for exact cusps, but approximate cusps as well, where an extended Pearcey process emerges. As a main technical ingredient we prove an optimal local law at the cusp for both symmetry classes. This result is also the key input in the companion paper (Cipolloni et al. in Pure Appl Anal, 2018. arXiv:1811.04055) where the cusp universality for real symmetric Wigner-type matrices is proven. The novel cusp fluctuation mechanism is also essential for the recent results on the spectral radius of non-Hermitian random matrices (Alt et al. in Spectral radius of random matrices with independent entries, 2019. arXiv:1907.13631), and the non-Hermitian edge universality (Cipolloni et al. in Edge universality for non-Hermitian random matrices, 2019. arXiv:1908.00969).},
author = {Erdös, László and Krüger, Torben H and Schröder, Dominik J},
issn = {1432-0916},
journal = {Communications in Mathematical Physics},
pages = {1203--1278},
publisher = {Springer Nature},
title = {{Cusp universality for random matrices I: Local law and the complex Hermitian case}},
doi = {10.1007/s00220-019-03657-4},
volume = {378},
year = {2020},
}
@article{6488,
abstract = {We prove a central limit theorem for the difference of linear eigenvalue statistics of a sample covariance matrix W˜ and its minor W. We find that the fluctuation of this difference is much smaller than those of the individual linear statistics, as a consequence of the strong correlation between the eigenvalues of W˜ and W. Our result identifies the fluctuation of the spatial derivative of the approximate Gaussian field in the recent paper by Dumitru and Paquette. Unlike in a similar result for Wigner matrices, for sample covariance matrices, the fluctuation may entirely vanish.},
author = {Cipolloni, Giorgio and Erdös, László},
issn = {20103271},
journal = {Random Matrices: Theory and Application},
number = {3},
publisher = {World Scientific Publishing},
title = {{Fluctuations for differences of linear eigenvalue statistics for sample covariance matrices}},
doi = {10.1142/S2010326320500069},
volume = {9},
year = {2020},
}