@article{8373,
abstract = {It is well known that special Kubo-Ando operator means admit divergence center interpretations, moreover, they are also mean squared error estimators for certain metrics on positive definite operators. In this paper we give a divergence center interpretation for every symmetric Kubo-Ando mean. This characterization of the symmetric means naturally leads to a definition of weighted and multivariate versions of a large class of symmetric Kubo-Ando means. We study elementary properties of these weighted multivariate means, and note in particular that in the special case of the geometric mean we recover the weighted A#H-mean introduced by Kim, Lawson, and Lim.},
author = {Pitrik, József and Virosztek, Daniel},
issn = {0024-3795},
journal = {Linear Algebra and its Applications},
keywords = {Kubo-Ando mean, weighted multivariate mean, barycenter},
pages = {203--217},
publisher = {Elsevier},
title = {{A divergence center interpretation of general symmetric Kubo-Ando means, and related weighted multivariate operator means}},
doi = {10.1016/j.laa.2020.09.007},
volume = {609},
year = {2021},
}
@phdthesis{9022,
abstract = {In the first part of the thesis we consider Hermitian random matrices. Firstly, we consider sample covariance matrices XX∗ with X having independent identically distributed (i.i.d.) centred entries. We prove a Central Limit Theorem for differences of linear statistics of XX∗ and its minor after removing the first column of X. Secondly, we consider Wigner-type matrices and prove that the eigenvalue statistics near cusp singularities of the limiting density of states are universal and that they form a Pearcey process. Since the limiting eigenvalue distribution admits only square root (edge) and cubic root (cusp) singularities, this concludes the third and last remaining case of the Wigner-Dyson-Mehta universality conjecture. The main technical ingredients are an optimal local law at the cusp, and the proof of the fast relaxation to equilibrium of the Dyson Brownian motion in the cusp regime.
In the second part we consider non-Hermitian matrices X with centred i.i.d. entries. We normalise the entries of X to have variance N −1. It is well known that the empirical eigenvalue density converges to the uniform distribution on the unit disk (circular law). In the first project, we prove universality of the local eigenvalue statistics close to the edge of the spectrum. This is the non-Hermitian analogue of the TracyWidom universality at the Hermitian edge. Technically we analyse the evolution of the spectral distribution of X along the Ornstein-Uhlenbeck flow for very long time
(up to t = +∞). In the second project, we consider linear statistics of eigenvalues for macroscopic test functions f in the Sobolev space H2+ϵ and prove their convergence to the projection of the Gaussian Free Field on the unit disk. We prove this result for non-Hermitian matrices with real or complex entries. The main technical ingredients are: (i) local law for products of two resolvents at different spectral parameters, (ii) analysis of correlated Dyson Brownian motions.
In the third and final part we discuss the mathematically rigorous application of supersymmetric techniques (SUSY ) to give a lower tail estimate of the lowest singular value of X − z, with z ∈ C. More precisely, we use superbosonisation formula to give an integral representation of the resolvent of (X − z)(X − z)∗ which reduces to two and three contour integrals in the complex and real case, respectively. The rigorous analysis of these integrals is quite challenging since simple saddle point analysis cannot be applied (the main contribution comes from a non-trivial manifold). Our result
improves classical smoothing inequalities in the regime |z| ≈ 1; this result is essential to prove edge universality for i.i.d. non-Hermitian matrices.},
author = {Cipolloni, Giorgio},
issn = {2663-337X},
pages = {380},
publisher = {IST Austria},
title = {{Fluctuations in the spectrum of random matrices}},
doi = {10.15479/AT:ISTA:9022},
year = {2021},
}
@unpublished{9230,
abstract = {We consider a model of the Riemann zeta function on the critical axis and study its maximum over intervals of length (log T)θ, where θ is either fixed or tends to zero at a suitable rate.
It is shown that the deterministic level of the maximum interpolates smoothly between the ones
of log-correlated variables and of i.i.d. random variables, exhibiting a smooth transition ‘from
3/4 to 1/4’ in the second order. This provides a natural context where extreme value statistics of
log-correlated variables with time-dependent variance and rate occur. A key ingredient of the
proof is a precise upper tail tightness estimate for the maximum of the model on intervals of
size one, that includes a Gaussian correction. This correction is expected to be present for the
Riemann zeta function and pertains to the question of the correct order of the maximum of
the zeta function in large intervals.},
author = {Arguin, Louis-Pierre and Dubach, Guillaume and Hartung, Lisa},
booktitle = {arXiv},
title = {{Maxima of a random model of the Riemann zeta function over intervals of varying length}},
year = {2021},
}
@article{9036,
abstract = {In this short note, we prove that the square root of the quantum Jensen-Shannon divergence is a true metric on the cone of positive matrices, and hence in particular on the quantum state space.},
author = {Virosztek, Daniel},
issn = {0001-8708},
journal = {Advances in Mathematics},
keywords = {General Mathematics},
number = {3},
publisher = {Elsevier},
title = {{The metric property of the quantum Jensen-Shannon divergence}},
doi = {10.1016/j.aim.2021.107595},
volume = {380},
year = {2021},
}
@article{9412,
abstract = {We extend our recent result [22] on the central limit theorem for the linear eigenvalue statistics of non-Hermitian matrices X with independent, identically distributed complex entries to the real symmetry class. We find that the expectation and variance substantially differ from their complex counterparts, reflecting (i) the special spectral symmetry of real matrices onto the real axis; and (ii) the fact that real i.i.d. matrices have many real eigenvalues. Our result generalizes the previously known special cases where either the test function is analytic [49] or the first four moments of the matrix elements match the real Gaussian [59, 44]. The key element of the proof is the analysis of several weakly dependent Dyson Brownian motions (DBMs). The conceptual novelty of the real case compared with [22] is that the correlation structure of the stochastic differentials in each individual DBM is non-trivial, potentially even jeopardising its well-posedness.},
author = {Cipolloni, Giorgio and Erdös, László and Schröder, Dominik J},
issn = {10836489},
journal = {Electronic Journal of Probability},
publisher = {Institute of Mathematical Statistics},
title = {{Fluctuation around the circular law for random matrices with real entries}},
doi = {10.1214/21-EJP591},
volume = {26},
year = {2021},
}