@article{6240,
abstract = {For a general class of large non-Hermitian random block matrices X we prove that there are no eigenvalues away from a deterministic set with very high probability. This set is obtained from the Dyson equation of the Hermitization of X as the self-consistent approximation of the pseudospectrum. We demonstrate that the analysis of the matrix Dyson equation from (Probab. Theory Related Fields (2018)) offers a unified treatment of many structured matrix ensembles.},
author = {Alt, Johannes and Erdös, László and Krüger, Torben H and Nemish, Yuriy},
issn = {02460203},
journal = {Annales de l'institut Henri Poincare},
number = {2},
pages = {661--696},
publisher = {Institut Henri Poincaré},
title = {{Location of the spectrum of Kronecker random matrices}},
doi = {10.1214/18-AIHP894},
volume = {55},
year = {2019},
}
@article{6511,
abstract = {Let U and V be two independent N by N random matrices that are distributed according to Haar measure on U(N). Let Σ be a nonnegative deterministic N by N matrix. The single ring theorem [Ann. of Math. (2) 174 (2011) 1189–1217] asserts that the empirical eigenvalue distribution of the matrix X:=UΣV∗ converges weakly, in the limit of large N, to a deterministic measure which is supported on a single ring centered at the origin in ℂ. Within the bulk regime, that is, in the interior of the single ring, we establish the convergence of the empirical eigenvalue distribution on the optimal local scale of order N−1/2+ε and establish the optimal convergence rate. The same results hold true when U and V are Haar distributed on O(N).},
author = {Bao, Zhigang and Erdös, László and Schnelli, Kevin},
issn = {00911798},
journal = {Annals of Probability},
number = {3},
pages = {1270--1334},
publisher = {Institute of Mathematical Statistics},
title = {{Local single ring theorem on optimal scale}},
doi = {10.1214/18-AOP1284},
volume = {47},
year = {2019},
}
@article{6843,
abstract = {The aim of this short paper is to offer a complete characterization of all (not necessarily surjective) isometric embeddings of the Wasserstein space Wp(X), where S is a countable discrete metric space and 0