--- _id: '9987' abstract: - lang: eng text: 'Stateless model checking (SMC) is one of the standard approaches to the verification of concurrent programs. As scheduling non-determinism creates exponentially large spaces of thread interleavings, SMC attempts to partition this space into equivalence classes and explore only a few representatives from each class. The efficiency of this approach depends on two factors: (a) the coarseness of the partitioning, and (b) the time to generate representatives in each class. For this reason, the search for coarse partitionings that are efficiently explorable is an active research challenge. In this work we present RVF-SMC , a new SMC algorithm that uses a novel reads-value-from (RVF) partitioning. Intuitively, two interleavings are deemed equivalent if they agree on the value obtained in each read event, and read events induce consistent causal orderings between them. The RVF partitioning is provably coarser than recent approaches based on Mazurkiewicz and “reads-from” partitionings. Our experimental evaluation reveals that RVF is quite often a very effective equivalence, as the underlying partitioning is exponentially coarser than other approaches. Moreover, RVF-SMC generates representatives very efficiently, as the reduction in the partitioning is often met with significant speed-ups in the model checking task.' acknowledgement: The research was partially funded by the ERC CoG 863818 (ForM-SMArt) and the Vienna Science and Technology Fund (WWTF) through project ICT15-003. alternative_title: - LNCS article_processing_charge: Yes author: - first_name: Pratyush full_name: Agarwal, Pratyush last_name: Agarwal - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Shreya full_name: Pathak, Shreya last_name: Pathak - first_name: Andreas full_name: Pavlogiannis, Andreas id: 49704004-F248-11E8-B48F-1D18A9856A87 last_name: Pavlogiannis orcid: 0000-0002-8943-0722 - first_name: Viktor full_name: Toman, Viktor id: 3AF3DA7C-F248-11E8-B48F-1D18A9856A87 last_name: Toman orcid: 0000-0001-9036-063X citation: ama: 'Agarwal P, Chatterjee K, Pathak S, Pavlogiannis A, Toman V. Stateless model checking under a reads-value-from equivalence. In: 33rd International Conference on Computer-Aided Verification . Vol 12759. Springer Nature; 2021:341-366. doi:10.1007/978-3-030-81685-8_16' apa: 'Agarwal, P., Chatterjee, K., Pathak, S., Pavlogiannis, A., & Toman, V. (2021). Stateless model checking under a reads-value-from equivalence. In 33rd International Conference on Computer-Aided Verification (Vol. 12759, pp. 341–366). Virtual: Springer Nature. https://doi.org/10.1007/978-3-030-81685-8_16' chicago: Agarwal, Pratyush, Krishnendu Chatterjee, Shreya Pathak, Andreas Pavlogiannis, and Viktor Toman. “Stateless Model Checking under a Reads-Value-from Equivalence.” In 33rd International Conference on Computer-Aided Verification , 12759:341–66. Springer Nature, 2021. https://doi.org/10.1007/978-3-030-81685-8_16. ieee: P. Agarwal, K. Chatterjee, S. Pathak, A. Pavlogiannis, and V. Toman, “Stateless model checking under a reads-value-from equivalence,” in 33rd International Conference on Computer-Aided Verification , Virtual, 2021, vol. 12759, pp. 341–366. ista: 'Agarwal P, Chatterjee K, Pathak S, Pavlogiannis A, Toman V. 2021. Stateless model checking under a reads-value-from equivalence. 33rd International Conference on Computer-Aided Verification . CAV: Computer Aided Verification , LNCS, vol. 12759, 341–366.' mla: Agarwal, Pratyush, et al. “Stateless Model Checking under a Reads-Value-from Equivalence.” 33rd International Conference on Computer-Aided Verification , vol. 12759, Springer Nature, 2021, pp. 341–66, doi:10.1007/978-3-030-81685-8_16. short: P. Agarwal, K. Chatterjee, S. Pathak, A. Pavlogiannis, V. Toman, in:, 33rd International Conference on Computer-Aided Verification , Springer Nature, 2021, pp. 341–366. conference: end_date: 2021-07-23 location: Virtual name: 'CAV: Computer Aided Verification ' start_date: 2021-07-20 date_created: 2021-09-05T22:01:24Z date_published: 2021-07-15T00:00:00Z date_updated: 2023-09-07T13:30:27Z day: '15' ddc: - '000' department: - _id: KrCh doi: 10.1007/978-3-030-81685-8_16 ec_funded: 1 external_id: arxiv: - '2105.06424' isi: - '000698732400016' file: - access_level: open_access checksum: 4b346e5fbaa8b9bdf107819c7b2aadee content_type: application/pdf creator: dernst date_created: 2022-05-13T07:00:20Z date_updated: 2022-05-13T07:00:20Z file_id: '11368' file_name: 2021_LNCS_Agarwal.pdf file_size: 1516756 relation: main_file success: 1 file_date_updated: 2022-05-13T07:00:20Z has_accepted_license: '1' isi: 1 language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: 341-366 project: - _id: 25892FC0-B435-11E9-9278-68D0E5697425 grant_number: ICT15-003 name: Efficient Algorithms for Computer Aided Verification - _id: 0599E47C-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '863818' name: 'Formal Methods for Stochastic Models: Algorithms and Applications' publication: '33rd International Conference on Computer-Aided Verification ' publication_identifier: eisbn: - 978-3-030-81685-8 eissn: - 1611-3349 isbn: - 978-3-030-81684-1 issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: record: - id: '10199' relation: dissertation_contains status: public scopus_import: '1' status: public title: Stateless model checking under a reads-value-from equivalence tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: '12759 ' year: '2021' ... --- _id: '10191' abstract: - lang: eng text: "In this work we solve the algorithmic problem of consistency verification for the TSO and PSO memory models given a reads-from map, denoted VTSO-rf and VPSO-rf, respectively. For an execution of n events over k threads and d variables, we establish novel bounds that scale as nk+1 for TSO and as nk+1· min(nk2, 2k· d) for PSO. Moreover, based on our solution to these problems, we develop an SMC algorithm under TSO and PSO that uses the RF equivalence. The algorithm is exploration-optimal, in the sense that it is guaranteed to explore each class of the RF partitioning exactly once, and spends polynomial time per class when k is bounded. Finally, we implement all our algorithms in the SMC tool Nidhugg, and perform a large number of experiments over benchmarks from existing literature. Our experimental results show that our algorithms for VTSO-rf and VPSO-rf provide significant scalability improvements over standard alternatives. Moreover, when used for SMC, the RF partitioning is often much coarser than the standard Shasha-Snir partitioning for TSO/PSO, which yields a significant speedup in the model checking task.\r\n\r\n" acknowledgement: "The research was partially funded by the ERC CoG 863818 (ForM-SMArt) and the Vienna Science\r\nand Technology Fund (WWTF) through project ICT15-003." article_number: '164' article_processing_charge: No article_type: original author: - first_name: Truc Lam full_name: Bui, Truc Lam last_name: Bui - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Tushar full_name: Gautam, Tushar last_name: Gautam - first_name: Andreas full_name: Pavlogiannis, Andreas id: 49704004-F248-11E8-B48F-1D18A9856A87 last_name: Pavlogiannis orcid: 0000-0002-8943-0722 - first_name: Viktor full_name: Toman, Viktor id: 3AF3DA7C-F248-11E8-B48F-1D18A9856A87 last_name: Toman orcid: 0000-0001-9036-063X citation: ama: Bui TL, Chatterjee K, Gautam T, Pavlogiannis A, Toman V. The reads-from equivalence for the TSO and PSO memory models. Proceedings of the ACM on Programming Languages. 2021;5(OOPSLA). doi:10.1145/3485541 apa: Bui, T. L., Chatterjee, K., Gautam, T., Pavlogiannis, A., & Toman, V. (2021). The reads-from equivalence for the TSO and PSO memory models. Proceedings of the ACM on Programming Languages. Association for Computing Machinery. https://doi.org/10.1145/3485541 chicago: Bui, Truc Lam, Krishnendu Chatterjee, Tushar Gautam, Andreas Pavlogiannis, and Viktor Toman. “The Reads-from Equivalence for the TSO and PSO Memory Models.” Proceedings of the ACM on Programming Languages. Association for Computing Machinery, 2021. https://doi.org/10.1145/3485541. ieee: T. L. Bui, K. Chatterjee, T. Gautam, A. Pavlogiannis, and V. Toman, “The reads-from equivalence for the TSO and PSO memory models,” Proceedings of the ACM on Programming Languages, vol. 5, no. OOPSLA. Association for Computing Machinery, 2021. ista: Bui TL, Chatterjee K, Gautam T, Pavlogiannis A, Toman V. 2021. The reads-from equivalence for the TSO and PSO memory models. Proceedings of the ACM on Programming Languages. 5(OOPSLA), 164. mla: Bui, Truc Lam, et al. “The Reads-from Equivalence for the TSO and PSO Memory Models.” Proceedings of the ACM on Programming Languages, vol. 5, no. OOPSLA, 164, Association for Computing Machinery, 2021, doi:10.1145/3485541. short: T.L. Bui, K. Chatterjee, T. Gautam, A. Pavlogiannis, V. Toman, Proceedings of the ACM on Programming Languages 5 (2021). date_created: 2021-10-27T15:05:34Z date_published: 2021-10-15T00:00:00Z date_updated: 2023-09-07T13:30:27Z day: '15' ddc: - '000' department: - _id: GradSch - _id: KrCh doi: 10.1145/3485541 ec_funded: 1 external_id: arxiv: - '2011.11763' file: - access_level: open_access checksum: 9d6dce7b611853c529bb7b1915ac579e content_type: application/pdf creator: cchlebak date_created: 2021-11-04T07:24:48Z date_updated: 2021-11-04T07:24:48Z file_id: '10215' file_name: 2021_ProcACMPL_Bui.pdf file_size: 2903485 relation: main_file success: 1 file_date_updated: 2021-11-04T07:24:48Z has_accepted_license: '1' intvolume: ' 5' issue: OOPSLA keyword: - safety - risk - reliability and quality - software language: - iso: eng month: '10' oa: 1 oa_version: Published Version project: - _id: 0599E47C-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '863818' name: 'Formal Methods for Stochastic Models: Algorithms and Applications' - _id: 25892FC0-B435-11E9-9278-68D0E5697425 grant_number: ICT15-003 name: Efficient Algorithms for Computer Aided Verification publication: Proceedings of the ACM on Programming Languages publication_identifier: eissn: - 2475-1421 publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' related_material: record: - id: '10199' relation: dissertation_contains status: public scopus_import: '1' status: public title: The reads-from equivalence for the TSO and PSO memory models tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 8b945eb4-e2f2-11eb-945a-df72226e66a9 volume: 5 year: '2021' ... --- _id: '10199' abstract: - lang: eng text: The design and verification of concurrent systems remains an open challenge due to the non-determinism that arises from the inter-process communication. In particular, concurrent programs are notoriously difficult both to be written correctly and to be analyzed formally, as complex thread interaction has to be accounted for. The difficulties are further exacerbated when concurrent programs get executed on modern-day hardware, which contains various buffering and caching mechanisms for efficiency reasons. This causes further subtle non-determinism, which can often produce very unintuitive behavior of the concurrent programs. Model checking is at the forefront of tackling the verification problem, where the task is to decide, given as input a concurrent system and a desired property, whether the system satisfies the property. The inherent state-space explosion problem in model checking of concurrent systems causes naïve explicit methods not to scale, thus more inventive methods are required. One such method is stateless model checking (SMC), which explores in memory-efficient manner the program executions rather than the states of the program. State-of-the-art SMC is typically coupled with partial order reduction (POR) techniques, which argue that certain executions provably produce identical system behavior, thus limiting the amount of executions one needs to explore in order to cover all possible behaviors. Another method to tackle the state-space explosion is symbolic model checking, where the considered techniques operate on a succinct implicit representation of the input system rather than explicitly accessing the system. In this thesis we present new techniques for verification of concurrent systems. We present several novel POR methods for SMC of concurrent programs under various models of semantics, some of which account for write-buffering mechanisms. Additionally, we present novel algorithms for symbolic model checking of finite-state concurrent systems, where the desired property of the systems is to ensure a formally defined notion of fairness. acknowledged_ssus: - _id: SSU alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Viktor full_name: Toman, Viktor id: 3AF3DA7C-F248-11E8-B48F-1D18A9856A87 last_name: Toman orcid: 0000-0001-9036-063X citation: ama: Toman V. Improved verification techniques for concurrent systems. 2021. doi:10.15479/at:ista:10199 apa: Toman, V. (2021). Improved verification techniques for concurrent systems. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:10199 chicago: Toman, Viktor. “Improved Verification Techniques for Concurrent Systems.” Institute of Science and Technology Austria, 2021. https://doi.org/10.15479/at:ista:10199. ieee: V. Toman, “Improved verification techniques for concurrent systems,” Institute of Science and Technology Austria, 2021. ista: Toman V. 2021. Improved verification techniques for concurrent systems. Institute of Science and Technology Austria. mla: Toman, Viktor. Improved Verification Techniques for Concurrent Systems. Institute of Science and Technology Austria, 2021, doi:10.15479/at:ista:10199. short: V. Toman, Improved Verification Techniques for Concurrent Systems, Institute of Science and Technology Austria, 2021. date_created: 2021-10-29T20:09:01Z date_published: 2021-10-31T00:00:00Z date_updated: 2023-09-19T09:59:54Z day: '31' ddc: - '000' degree_awarded: PhD department: - _id: GradSch - _id: KrCh doi: 10.15479/at:ista:10199 ec_funded: 1 file: - access_level: open_access checksum: 4f412a1ee60952221b499a4b1268df35 content_type: application/pdf creator: vtoman date_created: 2021-11-08T14:12:22Z date_updated: 2021-11-08T14:12:22Z file_id: '10225' file_name: toman_th_final.pdf file_size: 2915234 relation: main_file - access_level: closed checksum: 9584943f99127be2dd2963f6784c37d4 content_type: application/zip creator: vtoman date_created: 2021-11-08T14:12:46Z date_updated: 2021-11-09T09:00:50Z file_id: '10226' file_name: toman_thesis.zip file_size: 8616056 relation: source_file file_date_updated: 2021-11-09T09:00:50Z has_accepted_license: '1' keyword: - concurrency - verification - model checking language: - iso: eng month: '10' oa: 1 oa_version: Published Version page: '166' project: - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program - _id: 25F2ACDE-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11402-N23 name: Rigorous Systems Engineering - _id: 25892FC0-B435-11E9-9278-68D0E5697425 grant_number: ICT15-003 name: Efficient Algorithms for Computer Aided Verification - _id: 0599E47C-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '863818' name: 'Formal Methods for Stochastic Models: Algorithms and Applications' publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '10190' relation: part_of_dissertation status: public - id: '10191' relation: part_of_dissertation status: public - id: '9987' relation: part_of_dissertation status: public - id: '141' relation: part_of_dissertation status: public status: public supervisor: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X title: Improved verification techniques for concurrent systems type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2021' ... --- _id: '9293' abstract: - lang: eng text: 'We consider planning problems for graphs, Markov Decision Processes (MDPs), and games on graphs in an explicit state space. While graphs represent the most basic planning model, MDPs represent interaction with nature and games on graphs represent interaction with an adversarial environment. We consider two planning problems with k different target sets: (a) the coverage problem asks whether there is a plan for each individual target set; and (b) the sequential target reachability problem asks whether the targets can be reached in a given sequence. For the coverage problem, we present a linear-time algorithm for graphs, and quadratic conditional lower bound for MDPs and games on graphs. For the sequential target problem, we present a linear-time algorithm for graphs, a sub-quadratic algorithm for MDPs, and a quadratic conditional lower bound for games on graphs. Our results with conditional lower bounds, based on the boolean matrix multiplication (BMM) conjecture and strong exponential time hypothesis (SETH), establish (i) model-separation results showing that for the coverage problem MDPs and games on graphs are harder than graphs, and for the sequential reachability problem games on graphs are harder than MDPs and graphs; and (ii) problem-separation results showing that for MDPs the coverage problem is harder than the sequential target problem.' article_number: '103499' article_processing_charge: No article_type: original author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Wolfgang full_name: Dvořák, Wolfgang last_name: Dvořák - first_name: Monika H full_name: Henzinger, Monika H id: 540c9bbd-f2de-11ec-812d-d04a5be85630 last_name: Henzinger orcid: 0000-0002-5008-6530 - first_name: Alexander full_name: Svozil, Alexander last_name: Svozil citation: ama: Chatterjee K, Dvořák W, Henzinger MH, Svozil A. Algorithms and conditional lower bounds for planning problems. Artificial Intelligence. 2021;297(8). doi:10.1016/j.artint.2021.103499 apa: Chatterjee, K., Dvořák, W., Henzinger, M. H., & Svozil, A. (2021). Algorithms and conditional lower bounds for planning problems. Artificial Intelligence. Elsevier. https://doi.org/10.1016/j.artint.2021.103499 chicago: Chatterjee, Krishnendu, Wolfgang Dvořák, Monika H Henzinger, and Alexander Svozil. “Algorithms and Conditional Lower Bounds for Planning Problems.” Artificial Intelligence. Elsevier, 2021. https://doi.org/10.1016/j.artint.2021.103499. ieee: K. Chatterjee, W. Dvořák, M. H. Henzinger, and A. Svozil, “Algorithms and conditional lower bounds for planning problems,” Artificial Intelligence, vol. 297, no. 8. Elsevier, 2021. ista: Chatterjee K, Dvořák W, Henzinger MH, Svozil A. 2021. Algorithms and conditional lower bounds for planning problems. Artificial Intelligence. 297(8), 103499. mla: Chatterjee, Krishnendu, et al. “Algorithms and Conditional Lower Bounds for Planning Problems.” Artificial Intelligence, vol. 297, no. 8, 103499, Elsevier, 2021, doi:10.1016/j.artint.2021.103499. short: K. Chatterjee, W. Dvořák, M.H. Henzinger, A. Svozil, Artificial Intelligence 297 (2021). date_created: 2021-03-28T22:01:40Z date_published: 2021-03-16T00:00:00Z date_updated: 2023-09-26T10:41:42Z day: '16' department: - _id: KrCh doi: 10.1016/j.artint.2021.103499 external_id: arxiv: - '1804.07031' isi: - '000657537500003' intvolume: ' 297' isi: 1 issue: '8' language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1804.07031 month: '03' oa: 1 oa_version: Preprint publication: Artificial Intelligence publication_identifier: issn: - 0004-3702 publication_status: published publisher: Elsevier quality_controlled: '1' related_material: record: - id: '35' relation: earlier_version status: public scopus_import: '1' status: public title: Algorithms and conditional lower bounds for planning problems type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 297 year: '2021' ... --- _id: '9393' abstract: - lang: eng text: "We consider the core algorithmic problems related to verification of systems with respect to three classical quantitative properties, namely, the mean-payoff, the ratio, and the minimum initial credit for energy property. The algorithmic problem given a graph and a quantitative property asks to compute the optimal value (the infimum value over all traces) from every node of the graph. We consider graphs with bounded treewidth—a class that contains the control flow graphs of most programs. Let n denote the number of nodes of a graph, m the number of edges (for bounded treewidth \U0001D45A=\U0001D442(\U0001D45B)) and W the largest absolute value of the weights. Our main theoretical results are as follows. First, for the minimum initial credit problem we show that (1) for general graphs the problem can be solved in \U0001D442(\U0001D45B2⋅\U0001D45A) time and the associated decision problem in \U0001D442(\U0001D45B⋅\U0001D45A) time, improving the previous known \U0001D442(\U0001D45B3⋅\U0001D45A⋅log(\U0001D45B⋅\U0001D44A)) and \U0001D442(\U0001D45B2⋅\U0001D45A) bounds, respectively; and (2) for bounded treewidth graphs we present an algorithm that requires \U0001D442(\U0001D45B⋅log\U0001D45B) time. Second, for bounded treewidth graphs we present an algorithm that approximates the mean-payoff value within a factor of 1+\U0001D716 in time \U0001D442(\U0001D45B⋅log(\U0001D45B/\U0001D716)) as compared to the classical exact algorithms on general graphs that require quadratic time. Third, for the ratio property we present an algorithm that for bounded treewidth graphs works in time \U0001D442(\U0001D45B⋅log(|\U0001D44E⋅\U0001D44F|))=\U0001D442(\U0001D45B⋅log(\U0001D45B⋅\U0001D44A)), when the output is \U0001D44E\U0001D44F, as compared to the previously best known algorithm on general graphs with running time \U0001D442(\U0001D45B2⋅log(\U0001D45B⋅\U0001D44A)). We have implemented some of our algorithms and show that they present a significant speedup on standard benchmarks." acknowledgement: 'The research was partly supported by Austrian Science Fund (FWF) Grant No P23499- N23, FWF NFN Grant No S11407-N23 (RiSE/SHiNE), ERC Start Grant (279307: Graph Games), and Microsoft faculty fellows award.' article_processing_charge: No article_type: original author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Rasmus full_name: Ibsen-Jensen, Rasmus id: 3B699956-F248-11E8-B48F-1D18A9856A87 last_name: Ibsen-Jensen orcid: 0000-0003-4783-0389 - first_name: Andreas full_name: Pavlogiannis, Andreas id: 49704004-F248-11E8-B48F-1D18A9856A87 last_name: Pavlogiannis orcid: 0000-0002-8943-0722 citation: ama: Chatterjee K, Ibsen-Jensen R, Pavlogiannis A. Faster algorithms for quantitative verification in bounded treewidth graphs. Formal Methods in System Design. 2021;57:401-428. doi:10.1007/s10703-021-00373-5 apa: Chatterjee, K., Ibsen-Jensen, R., & Pavlogiannis, A. (2021). Faster algorithms for quantitative verification in bounded treewidth graphs. Formal Methods in System Design. Springer. https://doi.org/10.1007/s10703-021-00373-5 chicago: Chatterjee, Krishnendu, Rasmus Ibsen-Jensen, and Andreas Pavlogiannis. “Faster Algorithms for Quantitative Verification in Bounded Treewidth Graphs.” Formal Methods in System Design. Springer, 2021. https://doi.org/10.1007/s10703-021-00373-5. ieee: K. Chatterjee, R. Ibsen-Jensen, and A. Pavlogiannis, “Faster algorithms for quantitative verification in bounded treewidth graphs,” Formal Methods in System Design, vol. 57. Springer, pp. 401–428, 2021. ista: Chatterjee K, Ibsen-Jensen R, Pavlogiannis A. 2021. Faster algorithms for quantitative verification in bounded treewidth graphs. Formal Methods in System Design. 57, 401–428. mla: Chatterjee, Krishnendu, et al. “Faster Algorithms for Quantitative Verification in Bounded Treewidth Graphs.” Formal Methods in System Design, vol. 57, Springer, 2021, pp. 401–28, doi:10.1007/s10703-021-00373-5. short: K. Chatterjee, R. Ibsen-Jensen, A. Pavlogiannis, Formal Methods in System Design 57 (2021) 401–428. date_created: 2021-05-16T22:01:47Z date_published: 2021-09-01T00:00:00Z date_updated: 2023-10-10T11:13:20Z day: '01' department: - _id: KrCh doi: 10.1007/s10703-021-00373-5 ec_funded: 1 external_id: arxiv: - '1504.07384' isi: - '000645490300001' intvolume: ' 57' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/1504.07384 month: '09' oa: 1 oa_version: Preprint page: 401-428 project: - _id: 2584A770-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 23499-N23 name: Modern Graph Algorithmic Techniques in Formal Verification - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 2587B514-B435-11E9-9278-68D0E5697425 name: Microsoft Research Faculty Fellowship publication: Formal Methods in System Design publication_identifier: eissn: - 1572-8102 issn: - 0925-9856 publication_status: published publisher: Springer quality_controlled: '1' scopus_import: '1' status: public title: Faster algorithms for quantitative verification in bounded treewidth graphs type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 57 year: '2021' ... --- _id: '9644' abstract: - lang: eng text: 'We present a new approach to proving non-termination of non-deterministic integer programs. Our technique is rather simple but efficient. It relies on a purely syntactic reversal of the program''s transition system followed by a constraint-based invariant synthesis with constraints coming from both the original and the reversed transition system. The latter task is performed by a simple call to an off-the-shelf SMT-solver, which allows us to leverage the latest advances in SMT-solving. Moreover, our method offers a combination of features not present (as a whole) in previous approaches: it handles programs with non-determinism, provides relative completeness guarantees and supports programs with polynomial arithmetic. The experiments performed with our prototype tool RevTerm show that our approach, despite its simplicity and stronger theoretical guarantees, is at least on par with the state-of-the-art tools, often achieving a non-trivial improvement under a proper configuration of its parameters.' acknowledgement: We thank the anonymous reviewers for their helpful comments. This research was partially supported by the ERCCoG 863818 (ForM-SMArt) and the Czech Science Foundation grant No. GJ19-15134Y. article_processing_charge: No author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Ehsan Kafshdar full_name: Goharshady, Ehsan Kafshdar last_name: Goharshady - first_name: Petr full_name: Novotný, Petr id: 3CC3B868-F248-11E8-B48F-1D18A9856A87 last_name: Novotný - first_name: Dorde full_name: Zikelic, Dorde id: 294AA7A6-F248-11E8-B48F-1D18A9856A87 last_name: Zikelic orcid: 0000-0002-4681-1699 citation: ama: 'Chatterjee K, Goharshady EK, Novotný P, Zikelic D. Proving non-termination by program reversal. In: Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation. Association for Computing Machinery; 2021:1033-1048. doi:10.1145/3453483.3454093' apa: 'Chatterjee, K., Goharshady, E. K., Novotný, P., & Zikelic, D. (2021). Proving non-termination by program reversal. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation (pp. 1033–1048). Online: Association for Computing Machinery. https://doi.org/10.1145/3453483.3454093' chicago: Chatterjee, Krishnendu, Ehsan Kafshdar Goharshady, Petr Novotný, and Dorde Zikelic. “Proving Non-Termination by Program Reversal.” In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation, 1033–48. Association for Computing Machinery, 2021. https://doi.org/10.1145/3453483.3454093. ieee: K. Chatterjee, E. K. Goharshady, P. Novotný, and D. Zikelic, “Proving non-termination by program reversal,” in Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation, Online, 2021, pp. 1033–1048. ista: 'Chatterjee K, Goharshady EK, Novotný P, Zikelic D. 2021. Proving non-termination by program reversal. Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation. PLDI: Programming Language Design and Implementation, 1033–1048.' mla: Chatterjee, Krishnendu, et al. “Proving Non-Termination by Program Reversal.” Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation, Association for Computing Machinery, 2021, pp. 1033–48, doi:10.1145/3453483.3454093. short: K. Chatterjee, E.K. Goharshady, P. Novotný, D. Zikelic, in:, Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation, Association for Computing Machinery, 2021, pp. 1033–1048. conference: end_date: 2021-06-26 location: Online name: 'PLDI: Programming Language Design and Implementation' start_date: 2021-06-20 date_created: 2021-07-11T22:01:17Z date_published: 2021-06-01T00:00:00Z date_updated: 2023-11-30T10:55:37Z day: '01' department: - _id: KrCh doi: 10.1145/3453483.3454093 ec_funded: 1 external_id: arxiv: - '2104.01189' isi: - '000723661700067' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2104.01189 month: '06' oa: 1 oa_version: Preprint page: 1033-1048 project: - _id: 0599E47C-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '863818' name: 'Formal Methods for Stochastic Models: Algorithms and Applications' publication: Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation publication_identifier: isbn: - '9781450383912' publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' related_material: record: - id: '14539' relation: dissertation_contains status: public scopus_import: '1' status: public title: Proving non-termination by program reversal type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 year: '2021' ... --- _id: '10414' abstract: - lang: eng text: 'We consider the almost-sure (a.s.) termination problem for probabilistic programs, which are a stochastic extension of classical imperative programs. Lexicographic ranking functions provide a sound and practical approach for termination of non-probabilistic programs, and their extension to probabilistic programs is achieved via lexicographic ranking supermartingales (LexRSMs). However, LexRSMs introduced in the previous work have a limitation that impedes their automation: all of their components have to be non-negative in all reachable states. This might result in LexRSM not existing even for simple terminating programs. Our contributions are twofold: First, we introduce a generalization of LexRSMs which allows for some components to be negative. This standard feature of non-probabilistic termination proofs was hitherto not known to be sound in the probabilistic setting, as the soundness proof requires a careful analysis of the underlying stochastic process. Second, we present polynomial-time algorithms using our generalized LexRSMs for proving a.s. termination in broad classes of linear-arithmetic programs.' acknowledgement: This research was partially supported by the ERC CoG 863818 (ForM-SMArt), the Czech Science Foundation grant No. GJ19-15134Y, and the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 665385. alternative_title: - LNCS article_processing_charge: No author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Ehsan Kafshdar full_name: Goharshady, Ehsan Kafshdar last_name: Goharshady - first_name: Petr full_name: Novotný, Petr id: 3CC3B868-F248-11E8-B48F-1D18A9856A87 last_name: Novotný - first_name: Jiří full_name: Zárevúcky, Jiří last_name: Zárevúcky - first_name: Dorde full_name: Zikelic, Dorde id: 294AA7A6-F248-11E8-B48F-1D18A9856A87 last_name: Zikelic orcid: 0000-0002-4681-1699 citation: ama: 'Chatterjee K, Goharshady EK, Novotný P, Zárevúcky J, Zikelic D. On lexicographic proof rules for probabilistic termination. In: 24th International Symposium on Formal Methods. Vol 13047. Springer Nature; 2021:619-639. doi:10.1007/978-3-030-90870-6_33' apa: 'Chatterjee, K., Goharshady, E. K., Novotný, P., Zárevúcky, J., & Zikelic, D. (2021). On lexicographic proof rules for probabilistic termination. In 24th International Symposium on Formal Methods (Vol. 13047, pp. 619–639). Virtual: Springer Nature. https://doi.org/10.1007/978-3-030-90870-6_33' chicago: Chatterjee, Krishnendu, Ehsan Kafshdar Goharshady, Petr Novotný, Jiří Zárevúcky, and Dorde Zikelic. “On Lexicographic Proof Rules for Probabilistic Termination.” In 24th International Symposium on Formal Methods, 13047:619–39. Springer Nature, 2021. https://doi.org/10.1007/978-3-030-90870-6_33. ieee: K. Chatterjee, E. K. Goharshady, P. Novotný, J. Zárevúcky, and D. Zikelic, “On lexicographic proof rules for probabilistic termination,” in 24th International Symposium on Formal Methods, Virtual, 2021, vol. 13047, pp. 619–639. ista: 'Chatterjee K, Goharshady EK, Novotný P, Zárevúcky J, Zikelic D. 2021. On lexicographic proof rules for probabilistic termination. 24th International Symposium on Formal Methods. FM: Formal Methods, LNCS, vol. 13047, 619–639.' mla: Chatterjee, Krishnendu, et al. “On Lexicographic Proof Rules for Probabilistic Termination.” 24th International Symposium on Formal Methods, vol. 13047, Springer Nature, 2021, pp. 619–39, doi:10.1007/978-3-030-90870-6_33. short: K. Chatterjee, E.K. Goharshady, P. Novotný, J. Zárevúcky, D. Zikelic, in:, 24th International Symposium on Formal Methods, Springer Nature, 2021, pp. 619–639. conference: end_date: 2021-11-26 location: Virtual name: 'FM: Formal Methods' start_date: 2021-11-20 date_created: 2021-12-05T23:01:45Z date_published: 2021-11-10T00:00:00Z date_updated: 2024-01-17T08:19:41Z day: '10' department: - _id: KrCh doi: 10.1007/978-3-030-90870-6_33 ec_funded: 1 external_id: arxiv: - '2108.02188' isi: - '000758218600033' intvolume: ' 13047' isi: 1 language: - iso: eng main_file_link: - open_access: '1' url: https://arxiv.org/abs/2108.02188 month: '11' oa: 1 oa_version: Preprint page: 619-639 project: - _id: 0599E47C-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '863818' name: 'Formal Methods for Stochastic Models: Algorithms and Applications' - _id: 2564DBCA-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '665385' name: International IST Doctoral Program publication: 24th International Symposium on Formal Methods publication_identifier: eisbn: - 978-3-030-90870-6 eissn: - 1611-3349 isbn: - 9-783-0309-0869-0 issn: - 0302-9743 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: record: - id: '14539' relation: dissertation_contains status: public - id: '14778' relation: later_version status: public scopus_import: '1' status: public title: On lexicographic proof rules for probabilistic termination type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 13047 year: '2021' ... --- _id: '8934' abstract: - lang: eng text: "In this thesis, we consider several of the most classical and fundamental problems in static analysis and formal verification, including invariant generation, reachability analysis, termination analysis of probabilistic programs, data-flow analysis, quantitative analysis of Markov chains and Markov decision processes, and the problem of data packing in cache management.\r\nWe use techniques from parameterized complexity theory, polyhedral geometry, and real algebraic geometry to significantly improve the state-of-the-art, in terms of both scalability and completeness guarantees, for the mentioned problems. In some cases, our results are the first theoretical improvements for the respective problems in two or three decades." acknowledgement: 'The research was partially supported by an IBM PhD fellowship, a Facebook PhD fellowship, and DOC fellowship #24956 of the Austrian Academy of Sciences (OeAW).' alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Amir Kafshdar full_name: Goharshady, Amir Kafshdar id: 391365CE-F248-11E8-B48F-1D18A9856A87 last_name: Goharshady orcid: 0000-0003-1702-6584 citation: ama: Goharshady AK. Parameterized and algebro-geometric advances in static program analysis. 2021. doi:10.15479/AT:ISTA:8934 apa: Goharshady, A. K. (2021). Parameterized and algebro-geometric advances in static program analysis. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8934 chicago: Goharshady, Amir Kafshdar. “Parameterized and Algebro-Geometric Advances in Static Program Analysis.” Institute of Science and Technology Austria, 2021. https://doi.org/10.15479/AT:ISTA:8934. ieee: A. K. Goharshady, “Parameterized and algebro-geometric advances in static program analysis,” Institute of Science and Technology Austria, 2021. ista: Goharshady AK. 2021. Parameterized and algebro-geometric advances in static program analysis. Institute of Science and Technology Austria. mla: Goharshady, Amir Kafshdar. Parameterized and Algebro-Geometric Advances in Static Program Analysis. Institute of Science and Technology Austria, 2021, doi:10.15479/AT:ISTA:8934. short: A.K. Goharshady, Parameterized and Algebro-Geometric Advances in Static Program Analysis, Institute of Science and Technology Austria, 2021. date_created: 2020-12-10T12:17:07Z date_published: 2021-01-01T00:00:00Z date_updated: 2023-09-22T10:03:21Z day: '01' ddc: - '005' degree_awarded: PhD department: - _id: KrCh - _id: GradSch doi: 10.15479/AT:ISTA:8934 file: - access_level: open_access checksum: d1b9db3725aed34dadd81274aeb9426c content_type: application/pdf creator: akafshda date_created: 2020-12-22T20:08:44Z date_updated: 2021-12-23T23:30:04Z embargo: 2021-12-22 file_id: '8969' file_name: Thesis-pdfa.pdf file_size: 5251507 relation: main_file - access_level: closed checksum: 1661df7b393e6866d2460eba3c905130 content_type: application/zip creator: akafshda date_created: 2020-12-22T20:08:50Z date_updated: 2021-03-04T23:30:04Z embargo_to: open_access file_id: '8970' file_name: source.zip file_size: 10636756 relation: source_file file_date_updated: 2021-12-23T23:30:04Z has_accepted_license: '1' language: - iso: eng month: '01' oa: 1 oa_version: Published Version page: '278' project: - _id: 267066CE-B435-11E9-9278-68D0E5697425 name: Quantitative Analysis of Probablistic Systems with a focus on Crypto-currencies - _id: 266EEEC0-B435-11E9-9278-68D0E5697425 name: Quantitative Game-theoretic Analysis of Blockchain Applications and Smart Contracts publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '1386' relation: part_of_dissertation status: public - id: '1437' relation: part_of_dissertation status: public - id: '311' relation: part_of_dissertation status: public - id: '6056' relation: part_of_dissertation status: public - id: '6380' relation: part_of_dissertation status: public - id: '639' relation: part_of_dissertation status: public - id: '66' relation: part_of_dissertation status: public - id: '6780' relation: part_of_dissertation status: public - id: '6918' relation: part_of_dissertation status: public - id: '7810' relation: part_of_dissertation status: public - id: '6175' relation: part_of_dissertation status: public - id: '6378' relation: part_of_dissertation status: public - id: '6490' relation: part_of_dissertation status: public - id: '7014' relation: part_of_dissertation status: public - id: '8089' relation: part_of_dissertation status: public - id: '8728' relation: part_of_dissertation status: public - id: '7158' relation: part_of_dissertation status: public - id: '5977' relation: part_of_dissertation status: public - id: '6009' relation: part_of_dissertation status: public - id: '6340' relation: part_of_dissertation status: public - id: '949' relation: part_of_dissertation status: public status: public supervisor: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X title: Parameterized and algebro-geometric advances in static program analysis tmp: image: /images/cc_0.png legal_code_url: https://creativecommons.org/publicdomain/zero/1.0/legalcode name: Creative Commons Public Domain Dedication (CC0 1.0) short: CC0 (1.0) type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2021' ... --- _id: '10293' abstract: - lang: eng text: "Indirect reciprocity in evolutionary game theory is a prominent mechanism for explaining the evolution of cooperation among unrelated individuals. In contrast to direct reciprocity, which is based on individuals meeting repeatedly, and conditionally cooperating by using their own experiences, indirect reciprocity is based on individuals’ reputations. If a player helps another, this increases the helper’s public standing, benefitting them in the future. This lets cooperation in the population emerge without individuals having to meet more than once. While the two modes of reciprocity are intertwined, they are difficult to compare. Thus, they are usually studied in isolation. Direct reciprocity can maintain cooperation with simple strategies, and is robust against noise even when players do not remember more\r\nthan their partner’s last action. Meanwhile, indirect reciprocity requires its successful strategies, or social norms, to be more complex. Exhaustive search previously identified eight such norms, called the “leading eight”, which excel at maintaining cooperation. However, as the first result of this thesis, we show that the leading eight break down once we remove the fundamental assumption that information is synchronized and public, such that everyone agrees on reputations. Once we consider a more realistic scenario of imperfect information, where reputations are private, and individuals occasionally misinterpret or miss observations, the leading eight do not promote cooperation anymore. Instead, minor initial disagreements can proliferate, fragmenting populations into subgroups. In a next step, we consider ways to mitigate this issue. We first explore whether introducing “generosity” can stabilize cooperation when players use the leading eight strategies in noisy environments. This approach of modifying strategies to include probabilistic elements for coping with errors is known to work well in direct reciprocity. However, as we show here, it fails for the more complex norms of indirect reciprocity. Imperfect information still prevents cooperation from evolving. On the other hand, we succeeded to show in this thesis that modifying the leading eight to use “quantitative assessment”, i.e. tracking reputation scores on a scale beyond good and bad, and making overall judgments of others based on a threshold, is highly successful, even when noise increases in the environment. Cooperation can flourish when reputations\r\nare more nuanced, and players have a broader understanding what it means to be “good.” Finally, we present a single theoretical framework that unites the two modes of reciprocity despite their differences. Within this framework, we identify a novel simple and successful strategy for indirect reciprocity, which can cope with noisy environments and has an analogue in direct reciprocity. We can also analyze decision making when different sources of information are available. Our results help highlight that for sustaining cooperation, already the most simple rules of reciprocity can be sufficient." alternative_title: - ISTA Thesis article_processing_charge: No author: - first_name: Laura full_name: Schmid, Laura id: 38B437DE-F248-11E8-B48F-1D18A9856A87 last_name: Schmid orcid: 0000-0002-6978-7329 citation: ama: Schmid L. Evolution of cooperation via (in)direct reciprocity under imperfect information. 2021. doi:10.15479/at:ista:10293 apa: Schmid, L. (2021). Evolution of cooperation via (in)direct reciprocity under imperfect information. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:10293 chicago: Schmid, Laura. “Evolution of Cooperation via (in)Direct Reciprocity under Imperfect Information.” Institute of Science and Technology Austria, 2021. https://doi.org/10.15479/at:ista:10293. ieee: L. Schmid, “Evolution of cooperation via (in)direct reciprocity under imperfect information,” Institute of Science and Technology Austria, 2021. ista: Schmid L. 2021. Evolution of cooperation via (in)direct reciprocity under imperfect information. Institute of Science and Technology Austria. mla: Schmid, Laura. Evolution of Cooperation via (in)Direct Reciprocity under Imperfect Information. Institute of Science and Technology Austria, 2021, doi:10.15479/at:ista:10293. short: L. Schmid, Evolution of Cooperation via (in)Direct Reciprocity under Imperfect Information, Institute of Science and Technology Austria, 2021. date_created: 2021-11-15T17:12:57Z date_published: 2021-11-17T00:00:00Z date_updated: 2023-11-07T08:28:29Z day: '17' ddc: - '519' - '576' degree_awarded: PhD department: - _id: GradSch - _id: KrCh doi: 10.15479/at:ista:10293 ec_funded: 1 file: - access_level: closed checksum: 86a05b430756ca12ae8107b6e6f3c1e5 content_type: application/zip creator: lschmid date_created: 2021-11-18T12:41:46Z date_updated: 2022-12-20T23:30:08Z embargo_to: open_access file_id: '10305' file_name: submission_new.zip file_size: 29703124 relation: source_file - access_level: open_access checksum: d940af042e94660c6b6a7b4f0b184d47 content_type: application/pdf creator: lschmid date_created: 2021-11-18T12:59:15Z date_updated: 2022-12-20T23:30:08Z embargo: 2022-10-18 file_id: '10306' file_name: thesis_new_upload.pdf file_size: 8320985 relation: main_file file_date_updated: 2022-12-20T23:30:08Z has_accepted_license: '1' language: - iso: eng month: '11' oa: 1 oa_version: Published Version page: '171' project: - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' - _id: 0599E47C-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '863818' name: 'Formal Methods for Stochastic Models: Algorithms and Applications' - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize - _id: 2584A770-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: P 23499-N23 name: Modern Graph Algorithmic Techniques in Formal Verification - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering publication_identifier: issn: - 2663-337X publication_status: published publisher: Institute of Science and Technology Austria related_material: record: - id: '9997' relation: part_of_dissertation status: public - id: '2' relation: part_of_dissertation status: public - id: '9402' relation: part_of_dissertation status: public status: public supervisor: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X title: Evolution of cooperation via (in)direct reciprocity under imperfect information type: dissertation user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 year: '2021' ... --- _id: '9997' abstract: - lang: eng text: Indirect reciprocity is a mechanism for the evolution of cooperation based on social norms. This mechanism requires that individuals in a population observe and judge each other’s behaviors. Individuals with a good reputation are more likely to receive help from others. Previous work suggests that indirect reciprocity is only effective when all relevant information is reliable and publicly available. Otherwise, individuals may disagree on how to assess others, even if they all apply the same social norm. Such disagreements can lead to a breakdown of cooperation. Here we explore whether the predominantly studied ‘leading eight’ social norms of indirect reciprocity can be made more robust by equipping them with an element of generosity. To this end, we distinguish between two kinds of generosity. According to assessment generosity, individuals occasionally assign a good reputation to group members who would usually be regarded as bad. According to action generosity, individuals occasionally cooperate with group members with whom they would usually defect. Using individual-based simulations, we show that the two kinds of generosity have a very different effect on the resulting reputation dynamics. Assessment generosity tends to add to the overall noise and allows defectors to invade. In contrast, a limited amount of action generosity can be beneficial in a few cases. However, even when action generosity is beneficial, the respective simulations do not result in full cooperation. Our results suggest that while generosity can favor cooperation when individuals use the most simple strategies of reciprocity, it is disadvantageous when individuals use more complex social norms. acknowledgement: 'This work was supported by the European Research Council CoG 863818 (ForM-SMArt) (to K.C.) and the European Research Council Starting Grant 850529: E-DIRECT (to C.H.). L.S. received additional partial support by the Austrian Science Fund (FWF) under Grant Z211-N23 (Wittgenstein Award).' article_number: '17443' article_processing_charge: Yes article_type: original author: - first_name: Laura full_name: Schmid, Laura id: 38B437DE-F248-11E8-B48F-1D18A9856A87 last_name: Schmid orcid: 0000-0002-6978-7329 - first_name: Pouya full_name: Shati, Pouya last_name: Shati - first_name: Christian full_name: Hilbe, Christian last_name: Hilbe - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X citation: ama: Schmid L, Shati P, Hilbe C, Chatterjee K. The evolution of indirect reciprocity under action and assessment generosity. Scientific Reports. 2021;11(1). doi:10.1038/s41598-021-96932-1 apa: Schmid, L., Shati, P., Hilbe, C., & Chatterjee, K. (2021). The evolution of indirect reciprocity under action and assessment generosity. Scientific Reports. Springer Nature. https://doi.org/10.1038/s41598-021-96932-1 chicago: Schmid, Laura, Pouya Shati, Christian Hilbe, and Krishnendu Chatterjee. “The Evolution of Indirect Reciprocity under Action and Assessment Generosity.” Scientific Reports. Springer Nature, 2021. https://doi.org/10.1038/s41598-021-96932-1. ieee: L. Schmid, P. Shati, C. Hilbe, and K. Chatterjee, “The evolution of indirect reciprocity under action and assessment generosity,” Scientific Reports, vol. 11, no. 1. Springer Nature, 2021. ista: Schmid L, Shati P, Hilbe C, Chatterjee K. 2021. The evolution of indirect reciprocity under action and assessment generosity. Scientific Reports. 11(1), 17443. mla: Schmid, Laura, et al. “The Evolution of Indirect Reciprocity under Action and Assessment Generosity.” Scientific Reports, vol. 11, no. 1, 17443, Springer Nature, 2021, doi:10.1038/s41598-021-96932-1. short: L. Schmid, P. Shati, C. Hilbe, K. Chatterjee, Scientific Reports 11 (2021). date_created: 2021-09-11T16:22:02Z date_published: 2021-08-31T00:00:00Z date_updated: 2024-03-28T23:30:45Z day: '31' ddc: - '003' department: - _id: GradSch - _id: KrCh doi: 10.1038/s41598-021-96932-1 ec_funded: 1 external_id: isi: - '000692406400018' pmid: - '34465830' file: - access_level: open_access checksum: 19df8816cf958b272b85841565c73182 content_type: application/pdf creator: cchlebak date_created: 2021-09-13T10:31:21Z date_updated: 2021-09-13T10:31:21Z file_id: '10006' file_name: 2021_ScientificReports_Schmid.pdf file_size: 2424943 relation: main_file success: 1 file_date_updated: 2021-09-13T10:31:21Z has_accepted_license: '1' intvolume: ' 11' isi: 1 issue: '1' keyword: - Multidisciplinary language: - iso: eng month: '08' oa: 1 oa_version: Published Version pmid: 1 project: - _id: 0599E47C-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '863818' name: 'Formal Methods for Stochastic Models: Algorithms and Applications' - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: Scientific Reports publication_identifier: eissn: - 2045-2322 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: record: - id: '10293' relation: dissertation_contains status: public status: public title: The evolution of indirect reciprocity under action and assessment generosity tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 11 year: '2021' ... --- _id: '9402' abstract: - lang: eng text: Direct and indirect reciprocity are key mechanisms for the evolution of cooperation. Direct reciprocity means that individuals use their own experience to decide whether to cooperate with another person. Indirect reciprocity means that they also consider the experiences of others. Although these two mechanisms are intertwined, they are typically studied in isolation. Here, we introduce a mathematical framework that allows us to explore both kinds of reciprocity simultaneously. We show that the well-known ‘generous tit-for-tat’ strategy of direct reciprocity has a natural analogue in indirect reciprocity, which we call ‘generous scoring’. Using an equilibrium analysis, we characterize under which conditions either of the two strategies can maintain cooperation. With simulations, we additionally explore which kind of reciprocity evolves when members of a population engage in social learning to adapt to their environment. Our results draw unexpected connections between direct and indirect reciprocity while highlighting important differences regarding their evolvability. acknowledgement: 'This work was supported by the European Research Council CoG 863818 (ForM-SMArt) (to K.C.), the European Research Council Start Grant 279307: Graph Games (to K.C.), and the European Research Council Starting Grant 850529: E-DIRECT (to C.H.). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.' article_processing_charge: No article_type: original author: - first_name: Laura full_name: Schmid, Laura id: 38B437DE-F248-11E8-B48F-1D18A9856A87 last_name: Schmid orcid: 0000-0002-6978-7329 - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Christian full_name: Hilbe, Christian id: 2FDF8F3C-F248-11E8-B48F-1D18A9856A87 last_name: Hilbe orcid: 0000-0001-5116-955X - first_name: Martin A. full_name: Nowak, Martin A. last_name: Nowak citation: ama: Schmid L, Chatterjee K, Hilbe C, Nowak MA. A unified framework of direct and indirect reciprocity. Nature Human Behaviour. 2021;5(10):1292–1302. doi:10.1038/s41562-021-01114-8 apa: Schmid, L., Chatterjee, K., Hilbe, C., & Nowak, M. A. (2021). A unified framework of direct and indirect reciprocity. Nature Human Behaviour. Springer Nature. https://doi.org/10.1038/s41562-021-01114-8 chicago: Schmid, Laura, Krishnendu Chatterjee, Christian Hilbe, and Martin A. Nowak. “A Unified Framework of Direct and Indirect Reciprocity.” Nature Human Behaviour. Springer Nature, 2021. https://doi.org/10.1038/s41562-021-01114-8. ieee: L. Schmid, K. Chatterjee, C. Hilbe, and M. A. Nowak, “A unified framework of direct and indirect reciprocity,” Nature Human Behaviour, vol. 5, no. 10. Springer Nature, pp. 1292–1302, 2021. ista: Schmid L, Chatterjee K, Hilbe C, Nowak MA. 2021. A unified framework of direct and indirect reciprocity. Nature Human Behaviour. 5(10), 1292–1302. mla: Schmid, Laura, et al. “A Unified Framework of Direct and Indirect Reciprocity.” Nature Human Behaviour, vol. 5, no. 10, Springer Nature, 2021, pp. 1292–1302, doi:10.1038/s41562-021-01114-8. short: L. Schmid, K. Chatterjee, C. Hilbe, M.A. Nowak, Nature Human Behaviour 5 (2021) 1292–1302. date_created: 2021-05-18T16:56:57Z date_published: 2021-05-13T00:00:00Z date_updated: 2024-03-28T23:30:45Z day: '13' ddc: - '000' department: - _id: KrCh - _id: GradSch doi: 10.1038/s41562-021-01114-8 ec_funded: 1 external_id: isi: - '000650304000002' pmid: - '33986519' file: - access_level: open_access checksum: 34f55e173f90dc1dab731063458ac780 content_type: application/pdf creator: dernst date_created: 2023-11-07T08:27:23Z date_updated: 2023-11-07T08:27:23Z file_id: '14496' file_name: 2021_NatureHumanBehaviour_Schmid_accepted.pdf file_size: 5232761 relation: main_file success: 1 file_date_updated: 2023-11-07T08:27:23Z has_accepted_license: '1' intvolume: ' 5' isi: 1 issue: '10' language: - iso: eng month: '05' oa: 1 oa_version: Submitted Version page: 1292–1302 pmid: 1 project: - _id: 0599E47C-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '863818' name: 'Formal Methods for Stochastic Models: Algorithms and Applications' - _id: 2581B60A-B435-11E9-9278-68D0E5697425 call_identifier: FP7 grant_number: '279307' name: 'Quantitative Graph Games: Theory and Applications' publication: Nature Human Behaviour publication_identifier: eissn: - 2397-3374 publication_status: published publisher: Springer Nature quality_controlled: '1' related_material: link: - description: News on IST Homepage relation: press_release url: https://ist.ac.at/en/news/the-emergence-of-cooperation/ record: - id: '10293' relation: dissertation_contains status: public scopus_import: '1' status: public title: A unified framework of direct and indirect reciprocity type: journal_article user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 5 year: '2021' ... --- _id: '7346' abstract: - lang: eng text: 'The Price of Anarchy (PoA) is a well-established game-theoretic concept to shed light on coordination issues arising in open distributed systems. Leaving agents to selfishly optimize comes with the risk of ending up in sub-optimal states (in terms of performance and/or costs), compared to a centralized system design. However, the PoA relies on strong assumptions about agents'' rationality (e.g., resources and information) and interactions, whereas in many distributed systems agents interact locally with bounded resources. They do so repeatedly over time (in contrast to "one-shot games"), and their strategies may evolve. Using a more realistic evolutionary game model, this paper introduces a realized evolutionary Price of Anarchy (ePoA). The ePoA allows an exploration of equilibrium selection in dynamic distributed systems with multiple equilibria, based on local interactions of simple memoryless agents. Considering a fundamental game related to virus propagation on networks, we present analytical bounds on the ePoA in basic network topologies and for different strategy update dynamics. In particular, deriving stationary distributions of the stochastic evolutionary process, we find that the Nash equilibria are not always the most abundant states, and that different processes can feature significant off-equilibrium behavior, leading to a significantly higher ePoA compared to the PoA studied traditionally in the literature. ' alternative_title: - LIPIcs article_number: '21' article_processing_charge: No author: - first_name: Laura full_name: Schmid, Laura id: 38B437DE-F248-11E8-B48F-1D18A9856A87 last_name: Schmid orcid: 0000-0002-6978-7329 - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Stefan full_name: Schmid, Stefan last_name: Schmid citation: ama: 'Schmid L, Chatterjee K, Schmid S. The evolutionary price of anarchy: Locally bounded agents in a dynamic virus game. In: Proceedings of the 23rd International Conference on Principles of Distributed Systems. Vol 153. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2020. doi:10.4230/LIPIcs.OPODIS.2019.21' apa: 'Schmid, L., Chatterjee, K., & Schmid, S. (2020). The evolutionary price of anarchy: Locally bounded agents in a dynamic virus game. In Proceedings of the 23rd International Conference on Principles of Distributed Systems (Vol. 153). Neuchâtel, Switzerland: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.OPODIS.2019.21' chicago: 'Schmid, Laura, Krishnendu Chatterjee, and Stefan Schmid. “The Evolutionary Price of Anarchy: Locally Bounded Agents in a Dynamic Virus Game.” In Proceedings of the 23rd International Conference on Principles of Distributed Systems, Vol. 153. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. https://doi.org/10.4230/LIPIcs.OPODIS.2019.21.' ieee: 'L. Schmid, K. Chatterjee, and S. Schmid, “The evolutionary price of anarchy: Locally bounded agents in a dynamic virus game,” in Proceedings of the 23rd International Conference on Principles of Distributed Systems, Neuchâtel, Switzerland, 2020, vol. 153.' ista: 'Schmid L, Chatterjee K, Schmid S. 2020. The evolutionary price of anarchy: Locally bounded agents in a dynamic virus game. Proceedings of the 23rd International Conference on Principles of Distributed Systems. OPODIS: International Conference on Principles of Distributed Systems, LIPIcs, vol. 153, 21.' mla: 'Schmid, Laura, et al. “The Evolutionary Price of Anarchy: Locally Bounded Agents in a Dynamic Virus Game.” Proceedings of the 23rd International Conference on Principles of Distributed Systems, vol. 153, 21, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, doi:10.4230/LIPIcs.OPODIS.2019.21.' short: L. Schmid, K. Chatterjee, S. Schmid, in:, Proceedings of the 23rd International Conference on Principles of Distributed Systems, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. conference: end_date: 2019-12-19 location: Neuchâtel, Switzerland name: 'OPODIS: International Conference on Principles of Distributed Systems' start_date: 2019-12-17 date_created: 2020-01-21T16:00:26Z date_published: 2020-02-10T00:00:00Z date_updated: 2023-02-23T13:05:49Z day: '10' ddc: - '000' department: - _id: KrCh doi: 10.4230/LIPIcs.OPODIS.2019.21 external_id: arxiv: - '1906.00110' file: - access_level: open_access checksum: 9a91916ac2c21ab42458fcda39ef0b8d content_type: application/pdf creator: dernst date_created: 2020-03-23T09:14:06Z date_updated: 2020-07-14T12:47:56Z file_id: '7608' file_name: 2019_LIPIcS_Schmid.pdf file_size: 630752 relation: main_file file_date_updated: 2020-07-14T12:47:56Z has_accepted_license: '1' intvolume: ' 153' language: - iso: eng month: '02' oa: 1 oa_version: Preprint project: - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering publication: Proceedings of the 23rd International Conference on Principles of Distributed Systems publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: '1' status: public title: 'The evolutionary price of anarchy: Locally bounded agents in a dynamic virus game' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 153 year: '2020' ... --- _id: '8600' abstract: - lang: eng text: 'A vector addition system with states (VASS) consists of a finite set of states and counters. A transition changes the current state to the next state, and every counter is either incremented, or decremented, or left unchanged. A state and value for each counter is a configuration; and a computation is an infinite sequence of configurations with transitions between successive configurations. A probabilistic VASS consists of a VASS along with a probability distribution over the transitions for each state. Qualitative properties such as state and configuration reachability have been widely studied for VASS. In this work we consider multi-dimensional long-run average objectives for VASS and probabilistic VASS. For a counter, the cost of a configuration is the value of the counter; and the long-run average value of a computation for the counter is the long-run average of the costs of the configurations in the computation. The multi-dimensional long-run average problem given a VASS and a threshold value for each counter, asks whether there is a computation such that for each counter the long-run average value for the counter does not exceed the respective threshold. For probabilistic VASS, instead of the existence of a computation, we consider whether the expected long-run average value for each counter does not exceed the respective threshold. Our main results are as follows: we show that the multi-dimensional long-run average problem (a) is NP-complete for integer-valued VASS; (b) is undecidable for natural-valued VASS (i.e., nonnegative counters); and (c) can be solved in polynomial time for probabilistic integer-valued VASS, and probabilistic natural-valued VASS when all computations are non-terminating.' alternative_title: - LIPIcs article_number: '23' article_processing_charge: No author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Thomas A full_name: Henzinger, Thomas A id: 40876CD8-F248-11E8-B48F-1D18A9856A87 last_name: Henzinger orcid: 0000-0002-2985-7724 - first_name: Jan full_name: Otop, Jan id: 2FC5DA74-F248-11E8-B48F-1D18A9856A87 last_name: Otop citation: ama: 'Chatterjee K, Henzinger TA, Otop J. Multi-dimensional long-run average problems for vector addition systems with states. In: 31st International Conference on Concurrency Theory. Vol 171. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2020. doi:10.4230/LIPIcs.CONCUR.2020.23' apa: 'Chatterjee, K., Henzinger, T. A., & Otop, J. (2020). Multi-dimensional long-run average problems for vector addition systems with states. In 31st International Conference on Concurrency Theory (Vol. 171). Virtual: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.CONCUR.2020.23' chicago: Chatterjee, Krishnendu, Thomas A Henzinger, and Jan Otop. “Multi-Dimensional Long-Run Average Problems for Vector Addition Systems with States.” In 31st International Conference on Concurrency Theory, Vol. 171. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. https://doi.org/10.4230/LIPIcs.CONCUR.2020.23. ieee: K. Chatterjee, T. A. Henzinger, and J. Otop, “Multi-dimensional long-run average problems for vector addition systems with states,” in 31st International Conference on Concurrency Theory, Virtual, 2020, vol. 171. ista: 'Chatterjee K, Henzinger TA, Otop J. 2020. Multi-dimensional long-run average problems for vector addition systems with states. 31st International Conference on Concurrency Theory. CONCUR: Conference on Concurrency Theory, LIPIcs, vol. 171, 23.' mla: Chatterjee, Krishnendu, et al. “Multi-Dimensional Long-Run Average Problems for Vector Addition Systems with States.” 31st International Conference on Concurrency Theory, vol. 171, 23, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, doi:10.4230/LIPIcs.CONCUR.2020.23. short: K. Chatterjee, T.A. Henzinger, J. Otop, in:, 31st International Conference on Concurrency Theory, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. conference: end_date: 2020-09-04 location: Virtual name: 'CONCUR: Conference on Concurrency Theory' start_date: 2020-09-01 date_created: 2020-10-04T22:01:36Z date_published: 2020-08-06T00:00:00Z date_updated: 2021-01-12T08:20:15Z day: '06' ddc: - '000' department: - _id: KrCh - _id: ToHe doi: 10.4230/LIPIcs.CONCUR.2020.23 external_id: arxiv: - '2007.08917' file: - access_level: open_access checksum: 5039752f644c4b72b9361d21a5e31baf content_type: application/pdf creator: dernst date_created: 2020-10-05T14:04:25Z date_updated: 2020-10-05T14:04:25Z file_id: '8610' file_name: 2020_LIPIcsCONCUR_Chatterjee.pdf file_size: 601231 relation: main_file success: 1 file_date_updated: 2020-10-05T14:04:25Z has_accepted_license: '1' intvolume: ' 171' language: - iso: eng license: https://creativecommons.org/licenses/by/3.0/ month: '08' oa: 1 oa_version: Published Version project: - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 25F2ACDE-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11402-N23 name: Rigorous Systems Engineering - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize publication: 31st International Conference on Concurrency Theory publication_identifier: isbn: - '9783959771603' issn: - '18688969' publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: '1' status: public title: Multi-dimensional long-run average problems for vector addition systems with states tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/3.0/legalcode name: Creative Commons Attribution 3.0 Unported (CC BY 3.0) short: CC BY (3.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 171 year: '2020' ... --- _id: '8533' abstract: - lang: eng text: Game of Life is a simple and elegant model to study dynamical system over networks. The model consists of a graph where every vertex has one of two types, namely, dead or alive. A configuration is a mapping of the vertices to the types. An update rule describes how the type of a vertex is updated given the types of its neighbors. In every round, all vertices are updated synchronously, which leads to a configuration update. While in general, Game of Life allows a broad range of update rules, we focus on two simple families of update rules, namely, underpopulation and overpopulation, that model several interesting dynamics studied in the literature. In both settings, a dead vertex requires at least a desired number of live neighbors to become alive. For underpopulation (resp., overpopulation), a live vertex requires at least (resp. at most) a desired number of live neighbors to remain alive. We study the basic computation problems, e.g., configuration reachability, for these two families of rules. For underpopulation rules, we show that these problems can be solved in polynomial time, whereas for overpopulation rules they are PSPACE-complete. acknowledgement: "Krishnendu Chatterjee: The research was partially supported by the Vienna Science and\r\nTechnology Fund (WWTF) Project ICT15-003.\r\nIsmaël Jecker: This project has received funding from the European Union’s Horizon 2020 research\r\nand innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 754411." alternative_title: - LIPIcs article_number: 22:1-22:13 article_processing_charge: No author: - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Rasmus full_name: Ibsen-Jensen, Rasmus id: 3B699956-F248-11E8-B48F-1D18A9856A87 last_name: Ibsen-Jensen orcid: 0000-0003-4783-0389 - first_name: Ismael R full_name: Jecker, Ismael R id: 85D7C63E-7D5D-11E9-9C0F-98C4E5697425 last_name: Jecker - first_name: Jakub full_name: Svoboda, Jakub id: 130759D2-D7DD-11E9-87D2-DE0DE6697425 last_name: Svoboda citation: ama: 'Chatterjee K, Ibsen-Jensen R, Jecker IR, Svoboda J. Simplified game of life: Algorithms and complexity. In: 45th International Symposium on Mathematical Foundations of Computer Science. Vol 170. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2020. doi:10.4230/LIPIcs.MFCS.2020.22' apa: 'Chatterjee, K., Ibsen-Jensen, R., Jecker, I. R., & Svoboda, J. (2020). Simplified game of life: Algorithms and complexity. In 45th International Symposium on Mathematical Foundations of Computer Science (Vol. 170). Prague, Czech Republic: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.MFCS.2020.22' chicago: 'Chatterjee, Krishnendu, Rasmus Ibsen-Jensen, Ismael R Jecker, and Jakub Svoboda. “Simplified Game of Life: Algorithms and Complexity.” In 45th International Symposium on Mathematical Foundations of Computer Science, Vol. 170. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. https://doi.org/10.4230/LIPIcs.MFCS.2020.22.' ieee: 'K. Chatterjee, R. Ibsen-Jensen, I. R. Jecker, and J. Svoboda, “Simplified game of life: Algorithms and complexity,” in 45th International Symposium on Mathematical Foundations of Computer Science, Prague, Czech Republic, 2020, vol. 170.' ista: 'Chatterjee K, Ibsen-Jensen R, Jecker IR, Svoboda J. 2020. Simplified game of life: Algorithms and complexity. 45th International Symposium on Mathematical Foundations of Computer Science. MFCS: Symposium on Mathematical Foundations of Computer Science, LIPIcs, vol. 170, 22:1-22:13.' mla: 'Chatterjee, Krishnendu, et al. “Simplified Game of Life: Algorithms and Complexity.” 45th International Symposium on Mathematical Foundations of Computer Science, vol. 170, 22:1-22:13, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, doi:10.4230/LIPIcs.MFCS.2020.22.' short: K. Chatterjee, R. Ibsen-Jensen, I.R. Jecker, J. Svoboda, in:, 45th International Symposium on Mathematical Foundations of Computer Science, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. conference: end_date: 2020-08-28 location: Prague, Czech Republic name: 'MFCS: Symposium on Mathematical Foundations of Computer Science' start_date: 2020-08-24 date_created: 2020-09-20T22:01:36Z date_published: 2020-08-18T00:00:00Z date_updated: 2021-01-12T08:19:55Z day: '18' ddc: - '000' department: - _id: KrCh doi: 10.4230/LIPIcs.MFCS.2020.22 ec_funded: 1 external_id: arxiv: - '2007.02894' file: - access_level: open_access checksum: bbd7c4f55d45f2ff2a0a4ef0e10a77b1 content_type: application/pdf creator: dernst date_created: 2020-09-21T13:57:34Z date_updated: 2020-09-21T13:57:34Z file_id: '8550' file_name: 2020_LIPIcs_Chatterjee.pdf file_size: 491374 relation: main_file success: 1 file_date_updated: 2020-09-21T13:57:34Z has_accepted_license: '1' intvolume: ' 170' language: - iso: eng month: '08' oa: 1 oa_version: Published Version project: - _id: 25892FC0-B435-11E9-9278-68D0E5697425 grant_number: ICT15-003 name: Efficient Algorithms for Computer Aided Verification - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: 45th International Symposium on Mathematical Foundations of Computer Science publication_identifier: isbn: - '9783959771597' issn: - '18688969' publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: '1' status: public title: 'Simplified game of life: Algorithms and complexity' tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/3.0/legalcode name: Creative Commons Attribution 3.0 Unported (CC BY 3.0) short: CC BY (3.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 170 year: '2020' ... --- _id: '8534' abstract: - lang: eng text: A regular language L of finite words is composite if there are regular languages L₁,L₂,…,L_t such that L = ⋂_{i = 1}^t L_i and the index (number of states in a minimal DFA) of every language L_i is strictly smaller than the index of L. Otherwise, L is prime. Primality of regular languages was introduced and studied in [O. Kupferman and J. Mosheiff, 2015], where the complexity of deciding the primality of the language of a given DFA was left open, with a doubly-exponential gap between the upper and lower bounds. We study primality for unary regular languages, namely regular languages with a singleton alphabet. A unary language corresponds to a subset of ℕ, making the study of unary prime languages closer to that of primality in number theory. We show that the setting of languages is richer. In particular, while every composite number is the product of two smaller numbers, the number t of languages necessary to decompose a composite unary language induces a strict hierarchy. In addition, a primality witness for a unary language L, namely a word that is not in L but is in all products of languages that contain L and have an index smaller than L’s, may be of exponential length. Still, we are able to characterize compositionality by structural properties of a DFA for L, leading to a LogSpace algorithm for primality checking of unary DFAs. acknowledgement: "Ismaël Jecker: This project has received funding from the European Union’s Horizon\r\n2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No.\r\n754411. Nicolas Mazzocchi: PhD fellowship FRIA from the F.R.S.-FNRS." alternative_title: - LIPIcs article_number: 51:1-51:12 article_processing_charge: No author: - first_name: Ismael R full_name: Jecker, Ismael R id: 85D7C63E-7D5D-11E9-9C0F-98C4E5697425 last_name: Jecker - first_name: Orna full_name: Kupferman, Orna last_name: Kupferman - first_name: Nicolas full_name: Mazzocchi, Nicolas last_name: Mazzocchi citation: ama: 'Jecker IR, Kupferman O, Mazzocchi N. Unary prime languages. In: 45th International Symposium on Mathematical Foundations of Computer Science. Vol 170. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2020. doi:10.4230/LIPIcs.MFCS.2020.51' apa: 'Jecker, I. R., Kupferman, O., & Mazzocchi, N. (2020). Unary prime languages. In 45th International Symposium on Mathematical Foundations of Computer Science (Vol. 170). Prague, Czech Republic: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.MFCS.2020.51' chicago: Jecker, Ismael R, Orna Kupferman, and Nicolas Mazzocchi. “Unary Prime Languages.” In 45th International Symposium on Mathematical Foundations of Computer Science, Vol. 170. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. https://doi.org/10.4230/LIPIcs.MFCS.2020.51. ieee: I. R. Jecker, O. Kupferman, and N. Mazzocchi, “Unary prime languages,” in 45th International Symposium on Mathematical Foundations of Computer Science, Prague, Czech Republic, 2020, vol. 170. ista: 'Jecker IR, Kupferman O, Mazzocchi N. 2020. Unary prime languages. 45th International Symposium on Mathematical Foundations of Computer Science. MFCS: Symposium on Mathematical Foundations of Computer Science, LIPIcs, vol. 170, 51:1-51:12.' mla: Jecker, Ismael R., et al. “Unary Prime Languages.” 45th International Symposium on Mathematical Foundations of Computer Science, vol. 170, 51:1-51:12, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, doi:10.4230/LIPIcs.MFCS.2020.51. short: I.R. Jecker, O. Kupferman, N. Mazzocchi, in:, 45th International Symposium on Mathematical Foundations of Computer Science, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. conference: end_date: 2020-08-28 location: Prague, Czech Republic name: 'MFCS: Symposium on Mathematical Foundations of Computer Science' start_date: 2020-08-24 date_created: 2020-09-20T22:01:36Z date_published: 2020-08-18T00:00:00Z date_updated: 2021-01-12T08:19:56Z day: '18' ddc: - '000' department: - _id: KrCh doi: 10.4230/LIPIcs.MFCS.2020.51 ec_funded: 1 file: - access_level: open_access checksum: 2dc9e2fad6becd4563aef3e27a473f70 content_type: application/pdf creator: dernst date_created: 2020-09-21T14:17:08Z date_updated: 2020-09-21T14:17:08Z file_id: '8552' file_name: 2020_LIPIcsMFCS_Jecker.pdf file_size: 597977 relation: main_file success: 1 file_date_updated: 2020-09-21T14:17:08Z has_accepted_license: '1' intvolume: ' 170' language: - iso: eng month: '08' oa: 1 oa_version: Published Version project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships publication: 45th International Symposium on Mathematical Foundations of Computer Science publication_identifier: isbn: - '9783959771597' issn: - '18688969' publication_status: published publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik quality_controlled: '1' scopus_import: '1' status: public title: Unary prime languages tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/3.0/legalcode name: Creative Commons Attribution 3.0 Unported (CC BY 3.0) short: CC BY (3.0) type: conference user_id: 2DF688A6-F248-11E8-B48F-1D18A9856A87 volume: 170 year: '2020' ... --- _id: '7955' abstract: - lang: eng text: Simple stochastic games are turn-based 2½-player games with a reachability objective. The basic question asks whether one player can ensure reaching a given target with at least a given probability. A natural extension is games with a conjunction of such conditions as objective. Despite a plethora of recent results on the analysis of systems with multiple objectives, the decidability of this basic problem remains open. In this paper, we present an algorithm approximating the Pareto frontier of the achievable values to a given precision. Moreover, it is an anytime algorithm, meaning it can be stopped at any time returning the current approximation and its error bound. acknowledgement: "Pranav Ashok, Jan Křetínský and Maximilian Weininger were funded in part by TUM IGSSE Grant 10.06 (PARSEC) and the German Research Foundation (DFG) project KR 4890/2-1\r\n“Statistical Unbounded Verification”. Krishnendu Chatterjee was supported by the ERC CoG 863818 (ForM-SMArt) and Vienna Science and Technology Fund (WWTF) Project ICT15-\r\n003. Tobias Winkler was supported by the RTG 2236 UnRAVe." article_processing_charge: No author: - first_name: Pranav full_name: Ashok, Pranav last_name: Ashok - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Jan full_name: Kretinsky, Jan last_name: Kretinsky - first_name: Maximilian full_name: Weininger, Maximilian last_name: Weininger - first_name: Tobias full_name: Winkler, Tobias last_name: Winkler citation: ama: 'Ashok P, Chatterjee K, Kretinsky J, Weininger M, Winkler T. Approximating values of generalized-reachability stochastic games. In: Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science . Association for Computing Machinery; 2020:102-115. doi:10.1145/3373718.3394761' apa: 'Ashok, P., Chatterjee, K., Kretinsky, J., Weininger, M., & Winkler, T. (2020). Approximating values of generalized-reachability stochastic games. In Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science (pp. 102–115). Saarbrücken, Germany: Association for Computing Machinery. https://doi.org/10.1145/3373718.3394761' chicago: Ashok, Pranav, Krishnendu Chatterjee, Jan Kretinsky, Maximilian Weininger, and Tobias Winkler. “Approximating Values of Generalized-Reachability Stochastic Games.” In Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science , 102–15. Association for Computing Machinery, 2020. https://doi.org/10.1145/3373718.3394761. ieee: P. Ashok, K. Chatterjee, J. Kretinsky, M. Weininger, and T. Winkler, “Approximating values of generalized-reachability stochastic games,” in Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science , Saarbrücken, Germany, 2020, pp. 102–115. ista: 'Ashok P, Chatterjee K, Kretinsky J, Weininger M, Winkler T. 2020. Approximating values of generalized-reachability stochastic games. Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science . LICS: Symposium on Logic in Computer Science, 102–115.' mla: Ashok, Pranav, et al. “Approximating Values of Generalized-Reachability Stochastic Games.” Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science , Association for Computing Machinery, 2020, pp. 102–15, doi:10.1145/3373718.3394761. short: P. Ashok, K. Chatterjee, J. Kretinsky, M. Weininger, T. Winkler, in:, Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science , Association for Computing Machinery, 2020, pp. 102–115. conference: end_date: 2020-07-11 location: Saarbrücken, Germany name: 'LICS: Symposium on Logic in Computer Science' start_date: 2020-07-08 date_created: 2020-06-14T22:00:48Z date_published: 2020-07-08T00:00:00Z date_updated: 2023-08-21T08:24:36Z day: '08' ddc: - '000' department: - _id: KrCh doi: 10.1145/3373718.3394761 ec_funded: 1 external_id: arxiv: - '1908.05106' isi: - '000665014900010' file: - access_level: open_access checksum: d0d0288fe991dd16cf5f02598b794240 content_type: application/pdf creator: dernst date_created: 2020-11-25T09:38:14Z date_updated: 2020-11-25T09:38:14Z file_id: '8804' file_name: 2020_LICS_Ashok.pdf file_size: 1001395 relation: main_file success: 1 file_date_updated: 2020-11-25T09:38:14Z has_accepted_license: '1' isi: 1 language: - iso: eng month: '07' oa: 1 oa_version: Published Version page: 102-115 project: - _id: 0599E47C-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '863818' name: 'Formal Methods for Stochastic Models: Algorithms and Applications' - _id: 25892FC0-B435-11E9-9278-68D0E5697425 grant_number: ICT15-003 name: Efficient Algorithms for Computer Aided Verification publication: 'Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science ' publication_identifier: isbn: - '9781450371049' publication_status: published publisher: Association for Computing Machinery quality_controlled: '1' scopus_import: '1' status: public title: Approximating values of generalized-reachability stochastic games type: conference user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 year: '2020' ... --- _id: '8767' abstract: - lang: eng text: Resources are rarely distributed uniformly within a population. Heterogeneity in the concentration of a drug, the quality of breeding sites, or wealth can all affect evolutionary dynamics. In this study, we represent a collection of properties affecting the fitness at a given location using a color. A green node is rich in resources while a red node is poorer. More colors can represent a broader spectrum of resource qualities. For a population evolving according to the birth-death Moran model, the first question we address is which structures, identified by graph connectivity and graph coloring, are evolutionarily equivalent. We prove that all properly two-colored, undirected, regular graphs are evolutionarily equivalent (where “properly colored” means that no two neighbors have the same color). We then compare the effects of background heterogeneity on properly two-colored graphs to those with alternative schemes in which the colors are permuted. Finally, we discuss dynamic coloring as a model for spatiotemporal resource fluctuations, and we illustrate that random dynamic colorings often diminish the effects of background heterogeneity relative to a proper two-coloring. acknowledgement: 'We thank Igor Erovenko for many helpful comments on an earlier version of this paper. : Army Research Laboratory (grant W911NF-18-2-0265) (M.A.N.); the Bill & Melinda Gates Foundation (grant OPP1148627) (M.A.N.); the NVIDIA Corporation (A.M.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.' article_number: e1008402 article_processing_charge: No article_type: original author: - first_name: Kamran full_name: Kaveh, Kamran last_name: Kaveh - first_name: Alex full_name: McAvoy, Alex last_name: McAvoy - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X - first_name: Martin A. full_name: Nowak, Martin A. last_name: Nowak citation: ama: Kaveh K, McAvoy A, Chatterjee K, Nowak MA. The Moran process on 2-chromatic graphs. PLOS Computational Biology. 2020;16(11). doi:10.1371/journal.pcbi.1008402 apa: Kaveh, K., McAvoy, A., Chatterjee, K., & Nowak, M. A. (2020). The Moran process on 2-chromatic graphs. PLOS Computational Biology. Public Library of Science. https://doi.org/10.1371/journal.pcbi.1008402 chicago: Kaveh, Kamran, Alex McAvoy, Krishnendu Chatterjee, and Martin A. Nowak. “The Moran Process on 2-Chromatic Graphs.” PLOS Computational Biology. Public Library of Science, 2020. https://doi.org/10.1371/journal.pcbi.1008402. ieee: K. Kaveh, A. McAvoy, K. Chatterjee, and M. A. Nowak, “The Moran process on 2-chromatic graphs,” PLOS Computational Biology, vol. 16, no. 11. Public Library of Science, 2020. ista: Kaveh K, McAvoy A, Chatterjee K, Nowak MA. 2020. The Moran process on 2-chromatic graphs. PLOS Computational Biology. 16(11), e1008402. mla: Kaveh, Kamran, et al. “The Moran Process on 2-Chromatic Graphs.” PLOS Computational Biology, vol. 16, no. 11, e1008402, Public Library of Science, 2020, doi:10.1371/journal.pcbi.1008402. short: K. Kaveh, A. McAvoy, K. Chatterjee, M.A. Nowak, PLOS Computational Biology 16 (2020). date_created: 2020-11-18T07:20:23Z date_published: 2020-11-05T00:00:00Z date_updated: 2023-08-22T12:49:18Z day: '05' ddc: - '000' department: - _id: KrCh doi: 10.1371/journal.pcbi.1008402 external_id: isi: - '000591317200004' file: - access_level: open_access checksum: 555456dd0e47bcf9e0994bcb95577e88 content_type: application/pdf creator: dernst date_created: 2020-11-18T07:26:10Z date_updated: 2020-11-18T07:26:10Z file_id: '8768' file_name: 2020_PlosCompBio_Kaveh.pdf file_size: 2498594 relation: main_file success: 1 file_date_updated: 2020-11-18T07:26:10Z has_accepted_license: '1' intvolume: ' 16' isi: 1 issue: '11' keyword: - Ecology - Modelling and Simulation - Computational Theory and Mathematics - Genetics - Ecology - Evolution - Behavior and Systematics - Molecular Biology - Cellular and Molecular Neuroscience language: - iso: eng month: '11' oa: 1 oa_version: Published Version publication: PLOS Computational Biology publication_identifier: eissn: - 1553-7358 issn: - 1553-734X publication_status: published publisher: Public Library of Science quality_controlled: '1' scopus_import: '1' status: public title: The Moran process on 2-chromatic graphs tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 16 year: '2020' ... --- _id: '8789' abstract: - lang: eng text: Cooperation is a ubiquitous and beneficial behavioural trait despite being prone to exploitation by free-riders. Hence, cooperative populations are prone to invasions by selfish individuals. However, a population consisting of only free-riders typically does not survive. Thus, cooperators and free-riders often coexist in some proportion. An evolutionary version of a Snowdrift Game proved its efficiency in analysing this phenomenon. However, what if the system has already reached its stable state but was perturbed due to a change in environmental conditions? Then, individuals may have to re-learn their effective strategies. To address this, we consider behavioural mistakes in strategic choice execution, which we refer to as incompetence. Parametrising the propensity to make such mistakes allows for a mathematical description of learning. We compare strategies based on their relative strategic advantage relying on both fitness and learning factors. When strategies are learned at distinct rates, allowing learning according to a prescribed order is optimal. Interestingly, the strategy with the lowest strategic advantage should be learnt first if we are to optimise fitness over the learning path. Then, the differences between strategies are balanced out in order to minimise the effect of behavioural uncertainty. acknowledgement: "This work was supported by the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Grant Agreement #754411, the Australian Research Council Discovery Grants DP160101236 and DP150100618, and the European Research Council Consolidator Grant 863818 (FoRM-SMArt).\r\nAuthors would like to thank Patrick McKinlay for his work on the preliminary results for this paper." article_number: '1945' article_processing_charge: No article_type: original author: - first_name: Maria full_name: Kleshnina, Maria id: 4E21749C-F248-11E8-B48F-1D18A9856A87 last_name: Kleshnina - first_name: Sabrina full_name: Streipert, Sabrina last_name: Streipert - first_name: Jerzy full_name: Filar, Jerzy last_name: Filar - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X citation: ama: Kleshnina M, Streipert S, Filar J, Chatterjee K. Prioritised learning in snowdrift-type games. Mathematics. 2020;8(11). doi:10.3390/math8111945 apa: Kleshnina, M., Streipert, S., Filar, J., & Chatterjee, K. (2020). Prioritised learning in snowdrift-type games. Mathematics. MDPI. https://doi.org/10.3390/math8111945 chicago: Kleshnina, Maria, Sabrina Streipert, Jerzy Filar, and Krishnendu Chatterjee. “Prioritised Learning in Snowdrift-Type Games.” Mathematics. MDPI, 2020. https://doi.org/10.3390/math8111945. ieee: M. Kleshnina, S. Streipert, J. Filar, and K. Chatterjee, “Prioritised learning in snowdrift-type games,” Mathematics, vol. 8, no. 11. MDPI, 2020. ista: Kleshnina M, Streipert S, Filar J, Chatterjee K. 2020. Prioritised learning in snowdrift-type games. Mathematics. 8(11), 1945. mla: Kleshnina, Maria, et al. “Prioritised Learning in Snowdrift-Type Games.” Mathematics, vol. 8, no. 11, 1945, MDPI, 2020, doi:10.3390/math8111945. short: M. Kleshnina, S. Streipert, J. Filar, K. Chatterjee, Mathematics 8 (2020). date_created: 2020-11-22T23:01:24Z date_published: 2020-11-04T00:00:00Z date_updated: 2023-08-22T13:25:45Z day: '04' ddc: - '000' department: - _id: KrCh doi: 10.3390/math8111945 ec_funded: 1 external_id: isi: - '000593962100001' file: - access_level: open_access checksum: 61cfcc3b35760656ce7a9385a4ace5d2 content_type: application/pdf creator: dernst date_created: 2020-11-23T13:06:30Z date_updated: 2020-11-23T13:06:30Z file_id: '8797' file_name: 2020_Mathematics_Kleshnina.pdf file_size: 565191 relation: main_file success: 1 file_date_updated: 2020-11-23T13:06:30Z has_accepted_license: '1' intvolume: ' 8' isi: 1 issue: '11' language: - iso: eng month: '11' oa: 1 oa_version: Published Version project: - _id: 260C2330-B435-11E9-9278-68D0E5697425 call_identifier: H2020 grant_number: '754411' name: ISTplus - Postdoctoral Fellowships - _id: 0599E47C-7A3F-11EA-A408-12923DDC885E call_identifier: H2020 grant_number: '863818' name: 'Formal Methods for Stochastic Models: Algorithms and Applications' publication: Mathematics publication_identifier: eissn: - '22277390' publication_status: published publisher: MDPI quality_controlled: '1' scopus_import: '1' status: public title: Prioritised learning in snowdrift-type games tmp: image: /images/cc_by.png legal_code_url: https://creativecommons.org/licenses/by/4.0/legalcode name: Creative Commons Attribution 4.0 International Public License (CC-BY 4.0) short: CC BY (4.0) type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 8 year: '2020' ... --- _id: '8788' abstract: - lang: eng text: 'We consider a real-time setting where an environment releases sequences of firm-deadline tasks, and an online scheduler chooses on-the-fly the ones to execute on a single processor so as to maximize cumulated utility. The competitive ratio is a well-known performance measure for the scheduler: it gives the worst-case ratio, among all possible choices for the environment, of the cumulated utility of the online scheduler versus an offline scheduler that knows these choices in advance. Traditionally, competitive analysis is performed by hand, while automated techniques are rare and only handle static environments with independent tasks. We present a quantitative-verification framework for precedence-aware competitive analysis, where task releases may depend on preceding scheduling choices, i.e., the environment can respond to scheduling decisions dynamically . We consider two general classes of precedences: 1) follower precedences force the release of a dependent task upon the completion of a set of precursor tasks, while and 2) pairing precedences modify the characteristics of a dependent task provided the completion of a set of precursor tasks. Precedences make competitive analysis challenging, as the online and offline schedulers operate on diverging sequences. We make a formal presentation of our framework, and use a GPU-based implementation to analyze ten well-known schedulers on precedence-based application examples taken from the existing literature: 1) a handshake protocol (HP); 2) network packet-switching; 3) query scheduling (QS); and 4) a sporadic-interrupt setting. Our experimental results show that precedences and task parameters can vary drastically the best scheduler. Our framework thus supports application designers in choosing the best scheduler among a given set automatically.' acknowledgement: 'This work was supported by the Austrian Science Foundation (FWF) under the NFN RiSE/SHiNE under Grant S11405 and Grant S11407. This article was presented in the International Conference on Embedded Software 2020 and appears as part of the ESWEEK-TCAD special issue. ' article_processing_charge: No article_type: original author: - first_name: Andreas full_name: Pavlogiannis, Andreas id: 49704004-F248-11E8-B48F-1D18A9856A87 last_name: Pavlogiannis orcid: 0000-0002-8943-0722 - first_name: Nico full_name: Schaumberger, Nico last_name: Schaumberger - first_name: Ulrich full_name: Schmid, Ulrich last_name: Schmid - first_name: Krishnendu full_name: Chatterjee, Krishnendu id: 2E5DCA20-F248-11E8-B48F-1D18A9856A87 last_name: Chatterjee orcid: 0000-0002-4561-241X citation: ama: Pavlogiannis A, Schaumberger N, Schmid U, Chatterjee K. Precedence-aware automated competitive analysis of real-time scheduling. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 2020;39(11):3981-3992. doi:10.1109/TCAD.2020.3012803 apa: Pavlogiannis, A., Schaumberger, N., Schmid, U., & Chatterjee, K. (2020). Precedence-aware automated competitive analysis of real-time scheduling. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. IEEE. https://doi.org/10.1109/TCAD.2020.3012803 chicago: Pavlogiannis, Andreas, Nico Schaumberger, Ulrich Schmid, and Krishnendu Chatterjee. “Precedence-Aware Automated Competitive Analysis of Real-Time Scheduling.” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. IEEE, 2020. https://doi.org/10.1109/TCAD.2020.3012803. ieee: A. Pavlogiannis, N. Schaumberger, U. Schmid, and K. Chatterjee, “Precedence-aware automated competitive analysis of real-time scheduling,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 39, no. 11. IEEE, pp. 3981–3992, 2020. ista: Pavlogiannis A, Schaumberger N, Schmid U, Chatterjee K. 2020. Precedence-aware automated competitive analysis of real-time scheduling. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 39(11), 3981–3992. mla: Pavlogiannis, Andreas, et al. “Precedence-Aware Automated Competitive Analysis of Real-Time Scheduling.” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 39, no. 11, IEEE, 2020, pp. 3981–92, doi:10.1109/TCAD.2020.3012803. short: A. Pavlogiannis, N. Schaumberger, U. Schmid, K. Chatterjee, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 39 (2020) 3981–3992. date_created: 2020-11-22T23:01:24Z date_published: 2020-11-01T00:00:00Z date_updated: 2023-08-22T13:27:05Z day: '01' department: - _id: KrCh doi: 10.1109/TCAD.2020.3012803 external_id: isi: - '000587712700069' intvolume: ' 39' isi: 1 issue: '11' language: - iso: eng month: '11' oa_version: None page: 3981-3992 project: - _id: 25832EC2-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S 11407_N23 name: Rigorous Systems Engineering - _id: 25863FF4-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11407 name: Game Theory publication: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems publication_identifier: eissn: - '19374151' issn: - '02780070' publication_status: published publisher: IEEE quality_controlled: '1' scopus_import: '1' status: public title: Precedence-aware automated competitive analysis of real-time scheduling type: journal_article user_id: 4359f0d1-fa6c-11eb-b949-802e58b17ae8 volume: 39 year: '2020' ... --- _id: '9197' abstract: - lang: eng text: In this paper we introduce and study all-pay bidding games, a class of two player, zero-sum games on graphs. The game proceeds as follows. We place a token on some vertex in the graph and assign budgets to the two players. Each turn, each player submits a sealed legal bid (non-negative and below their remaining budget), which is deducted from their budget and the highest bidder moves the token onto an adjacent vertex. The game ends once a sink is reached, and Player 1 pays Player 2 the outcome that is associated with the sink. The players attempt to maximize their expected outcome. Our games model settings where effort (of no inherent value) needs to be invested in an ongoing and stateful manner. On the negative side, we show that even in simple games on DAGs, optimal strategies may require a distribution over bids with infinite support. A central quantity in bidding games is the ratio of the players budgets. On the positive side, we show a simple FPTAS for DAGs, that, for each budget ratio, outputs an approximation for the optimal strategy for that ratio. We also implement it, show that it performs well, and suggests interesting properties of these games. Then, given an outcome c, we show an algorithm for finding the necessary and sufficient initial ratio for guaranteeing outcome c with probability 1 and a strategy ensuring such. Finally, while the general case has not previously been studied, solving the specific game in which Player 1 wins iff he wins the first two auctions, has been long stated as an open question, which we solve. acknowledgement: This research was supported by the Austrian Science Fund (FWF) under grants S11402-N23 (RiSE/SHiNE), Z211-N23 (Wittgenstein Award), and M 2369-N33 (Meitner fellowship). article_processing_charge: No article_type: original author: - first_name: Guy full_name: Avni, Guy id: 463C8BC2-F248-11E8-B48F-1D18A9856A87 last_name: Avni orcid: 0000-0001-5588-8287 - first_name: Rasmus full_name: Ibsen-Jensen, Rasmus id: 3B699956-F248-11E8-B48F-1D18A9856A87 last_name: Ibsen-Jensen orcid: 0000-0003-4783-0389 - first_name: Josef full_name: Tkadlec, Josef id: 3F24CCC8-F248-11E8-B48F-1D18A9856A87 last_name: Tkadlec orcid: 0000-0002-1097-9684 citation: ama: Avni G, Ibsen-Jensen R, Tkadlec J. All-pay bidding games on graphs. Proceedings of the AAAI Conference on Artificial Intelligence. 2020;34(02):1798-1805. doi:10.1609/aaai.v34i02.5546 apa: 'Avni, G., Ibsen-Jensen, R., & Tkadlec, J. (2020). All-pay bidding games on graphs. Proceedings of the AAAI Conference on Artificial Intelligence. New York, NY, United States: Association for the Advancement of Artificial Intelligence. https://doi.org/10.1609/aaai.v34i02.5546' chicago: Avni, Guy, Rasmus Ibsen-Jensen, and Josef Tkadlec. “All-Pay Bidding Games on Graphs.” Proceedings of the AAAI Conference on Artificial Intelligence. Association for the Advancement of Artificial Intelligence, 2020. https://doi.org/10.1609/aaai.v34i02.5546. ieee: G. Avni, R. Ibsen-Jensen, and J. Tkadlec, “All-pay bidding games on graphs,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 02. Association for the Advancement of Artificial Intelligence, pp. 1798–1805, 2020. ista: Avni G, Ibsen-Jensen R, Tkadlec J. 2020. All-pay bidding games on graphs. Proceedings of the AAAI Conference on Artificial Intelligence. 34(02), 1798–1805. mla: Avni, Guy, et al. “All-Pay Bidding Games on Graphs.” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 02, Association for the Advancement of Artificial Intelligence, 2020, pp. 1798–805, doi:10.1609/aaai.v34i02.5546. short: G. Avni, R. Ibsen-Jensen, J. Tkadlec, Proceedings of the AAAI Conference on Artificial Intelligence 34 (2020) 1798–1805. conference: end_date: 2020-02-12 location: New York, NY, United States name: 'AAAI: Conference on Artificial Intelligence' start_date: 2020-02-07 date_created: 2021-02-25T09:05:18Z date_published: 2020-04-03T00:00:00Z date_updated: 2023-09-05T12:40:00Z day: '03' department: - _id: ToHe - _id: KrCh doi: 10.1609/aaai.v34i02.5546 external_id: arxiv: - '1911.08360' intvolume: ' 34' issue: '02' language: - iso: eng month: '04' oa_version: Preprint page: 1798-1805 project: - _id: 25F2ACDE-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: S11402-N23 name: Rigorous Systems Engineering - _id: 25F42A32-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: Z211 name: The Wittgenstein Prize - _id: 264B3912-B435-11E9-9278-68D0E5697425 call_identifier: FWF grant_number: M02369 name: Formal Methods meets Algorithmic Game Theory publication: Proceedings of the AAAI Conference on Artificial Intelligence publication_identifier: eissn: - 2374-3468 isbn: - '9781577358350' issn: - 2159-5399 publication_status: published publisher: Association for the Advancement of Artificial Intelligence quality_controlled: '1' scopus_import: '1' status: public title: All-pay bidding games on graphs type: journal_article user_id: c635000d-4b10-11ee-a964-aac5a93f6ac1 volume: 34 year: '2020' ...